, Volume 38, Issue 5–6, pp 445–454 | Cite as

Basal body temperature as a biomarker of healthy aging

  • Eleanor M. Simonsick
  • Helen C. S. Meier
  • Nancy Chiles Shaffer
  • Stephanie A. Studenski
  • Luigi Ferrucci
Original Article


Scattered evidence indicates that a lower basal body temperature may be associated with prolonged health span, yet few studies have directly evaluated this relationship. We examined cross-sectional and longitudinal associations between early morning oral temperature (95.0–98.6 °F) and usual gait speed, endurance walk performance, fatigability, and grip strength in 762 non-frail men (52 %) and women aged 65–89 years participating in the Baltimore Longitudinal Study of Aging. Since excessive adiposity (body mass index ≥35 kg/m2 or waist-to-height ratio ≥0.62) may alter temperature set point, associations were also examined within adiposity strata. Overall, controlling for age, race, sex, height, exercise, and adiposity, lower temperature was associated with faster gait speed, less time to walk 400 m quickly, and lower perceived exertion following 5-min of walking at 0.67 m/s (all p ≤ 0.02). In the non-adipose (N = 662), these associations were more robust (all p ≤ 0.006). Direction of association was reversed in the adipose (N = 100), but none attained significance (all p > 0.22). Over 2.2 years, basal temperature was not associated with functional change in the overall population or non-adipose. Among the adipose, lower baseline temperature was associated with greater decline in endurance walking performance (p = 0.006). In longitudinal analyses predicting future functional performance, low temperature in the non-adipose was associated with faster gait speed (p = 0.021) and less time to walk 400 m quickly (p = 0.003), whereas in the adipose, lower temperature was associated with slower gait speed (p = 0.05) and more time to walk 400 m (p = 0.008). In older adults, lower basal body temperature appears to be associated with healthy aging in the absence of excessive adiposity.


Aging Body temperature Functional performance Excessive adiposity 



Funded by the Intramural Research Program, National Institute on Aging, and National Institutes of Health. The Baltimore Longitudinal Study of Aging is supported by the Intramural Research Program of the National Institute on Aging.

Supplementary material

11357_2016_9952_MOESM1_ESM.docx (12 kb)
ESM 1 (DOCX 12 kb)
11357_2016_9952_MOESM2_ESM.docx (12 kb)
ESM 2 (DOCX 12 kb)
11357_2016_9952_MOESM3_ESM.docx (15 kb)
ESM 3 (DOCX 14 kb)


  1. Ashwell M, Mayhew L, Richardson J, Rickayzen B (2014) Waist-to-height ratio is more predictive of years of life lost than body mass index. PLoS One 9(9):e103483. doi: 10.1371/journal.pone.0103483 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baum E, Bruck K, Schwennicke HP (1976) Adaptive modifications in the thermoregulatory system of long-distance runners. J Appl Physiol 40:404–410PubMedGoogle Scholar
  3. Borg G (1990) Psychophysical scaling with applications in physical work and the perception of exertion. Scan DJ Work Environ Health 16(Suppl 1):55–58CrossRefGoogle Scholar
  4. Brach JS, Simonsick EM, Kritchevsky S, Yaffe K, Newman AB, Health, Aging and Body Composition Study Research Group (2004) The association between physical function and lifestyle activity and exercise in the health, aging and body composition study. J Am Geriatr Soc 52:502–509CrossRefPubMedGoogle Scholar
  5. Carrillo AE, Flouris AD (2011) Caloric restriction and longevity: effects of reduced body temperature. Ageing Res Rev 10:153–162. doi: 10.1016/j.arr.2010.10.001 CrossRefPubMedGoogle Scholar
  6. Chudecka M, Lubkowska A, Kempińska-Podhorodecka A (2014) Body surface temperature distribution in relation to body composition in obese women. J Therm Biol 43:1–6. doi: 10.1016/j.jtherbio.2014.03.001 CrossRefPubMedGoogle Scholar
  7. Conti B (2008) Considerations on temperature, longevity and aging. Cell Mol Life Sci 65:1626–1630CrossRefPubMedPubMedCentralGoogle Scholar
  8. Eldadah BA (2010) Fatigue and fatigability in older adults. PM R 2:406–413. doi: 10.1016/j.pmrj.2010.03.022 CrossRefPubMedGoogle Scholar
  9. Grimaldi D, Provini F, Pierangeli G, Mazzella N, Zamboni G, Marchesini G, Cortelli P (2015) Evidence of a diurnal thermogenic handicap in obesity. Chronobiol Int 32:299–302. doi: 10.3109/07420528.2014.983603 CrossRefPubMedGoogle Scholar
  10. Gubin DG, Gubin GD, Waterhouse J, Weinert D (2006) The circadian body temperature rhythm in the elderly. Effect of single daily melatonin dosing. Chronobiol Int 23:639–658CrossRefPubMedGoogle Scholar
  11. Heikens MJ, Gorbach AM, Eden HS, Savastano DM, Chen KY, Skarulis MC, Yanovski JA (2011) Core body temperature in obesity. Am J Clin Nutr 93:963–967. doi: 10.3945/ajcn.110.006270 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Heilbronn LK, de Jonge L, Frisard MI et al (2006) Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation and oxidative stress in overweight individuals. JAMA 295:1539–1548CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hins J, Sériès F, Alméras N, Tremblay A (2006) Relationship between severity of nocturnal desaturation and adaptive thermogenesis: preliminary data of apneic patients tested in a whole-body indirect calorimetry chamber. Int J Obes 30:574–577. doi: 10.1038/sj.ijo.0803159 CrossRefGoogle Scholar
  14. Hoffmann ME, Rodriguez SM, Zeiss DM, Wachsberg KN, Kushner RF, Landsberg L, Linsenmeier RA (2012) 24-h core temperature in obese and lean men and women. Obesity 20:1585–1590. doi: 10.1038/oby.2011.380 CrossRefPubMedGoogle Scholar
  15. Kelly GS (2006) Body temperature variability (part 1): a review of the history of body temperature and us variability due to site selection, biological rhythms, fitness and aging. Altern Med Rev 11(4):278–293PubMedGoogle Scholar
  16. Krauchi K (2007) The human sleep-wake cycle reconsidered from a thermoregulatory point of view. Physiol Behav 90:236–245CrossRefPubMedGoogle Scholar
  17. Landsberg L (2012) Core temperature: a forgotten variable in energy expenditure and obesity? Obes Rev 13(suppl 2):97–104. doi: 10.1111/j.1467-789X.2012.01040.x CrossRefPubMedGoogle Scholar
  18. Lane MA, Baer DJ, Rumpler WV, Weindruch R, Ingram DK, Tilmont EM, Cutler RG, Roth GS (1996) Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents. Proc Natl Acad Sci 93:4159–4164CrossRefPubMedPubMedCentralGoogle Scholar
  19. McLellan TM (2001) The importance of aerobic fitness in determining tolerance to uncompensable heat stress. Comp Biochem Physiol 128:691–700CrossRefGoogle Scholar
  20. Metter EJ, Talbot LA, Schrager M, Conwit R (2002) Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci 57(10):B359–B365CrossRefPubMedGoogle Scholar
  21. Newman AB, Simonsick EM, Naydeck BL, Boudreau RM, Kritchevsky SB, Nevitt MC, Pahor M, Satterfield S, Brach JS, Studenski SA, Harris TB (2006) Association of long-distance corridor walk performance with mortality, cardiovascular disease, mobility limitation and disability. JAMA 295(17):2018–2026CrossRefPubMedGoogle Scholar
  22. Rantanen T, Guralnik JM, Foley D, Masaki K, Leveille S, Curb JD, White L (1999) Midlife hand grip strength as a predictor of old age disability. JAMA 281(6):558–560CrossRefPubMedGoogle Scholar
  23. Rantanen T, Masaki K, He Q, Ross GW, Willcox BJ, White L (2012) Midlife muscle strength and human longevity up to age 100 years: a 44-year prospective study among a decedent cohort. Age 34:563–570. doi: 10.1007/s11357-011-9256-y CrossRefPubMedGoogle Scholar
  24. Rising R, Keys A, Ravussin E, Bogardus C (1992) Concomitant interindividual variation in body temperature and metabolic rate. Am J Phys 263:E730–E734Google Scholar
  25. Roth GS, Lane MA, Ingram DK, Mattison JA, Elahi D, Tobin JD, Muller D, Metter EJ (2002) Biomarkers of caloric restriction may predict longevity in humans. Science 297:811CrossRefPubMedGoogle Scholar
  26. Ruggiero C, Metter EJ, Melenovsky V, Cherubini A, Najjar SS, Ble A, Senin U, Longo DL, Ferrucci L (2008) High basal metabolic rate is a risk factor for mortality: the Baltimore longitudinal study of aging. J Gerontol A Biol Sci Med Sci 63A(7):698–706CrossRefGoogle Scholar
  27. Savastano DM, Gorbach AM, Eden HS, Brady SM, Reynolds JC, Yanovski JA (2009) Adiposity and human regional body temperature. Am J Clin Nutr 90:1124–1131. doi: 10.3945/ajcn.2009.27567 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Schrack JA, Knuth ND, Simonsick EM, Ferrucci L (2014) “IDEAL” aging is associated with lower resting metabolic rate: the Baltimore longitudinal study of aging. J Am Geriatr Soc 62:667–672. doi: 10.1111/jgs.12740 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Schrack JA, Simonsick EM, Chaves PHM, Ferrucci L (2012) The role of energetic cost in the age-related slowing of gait speed. J Am Geriatr Soc 60(10):1811–1816. doi: 10.1111/j.1532-5415.2012.04153.x CrossRefPubMedPubMedCentralGoogle Scholar
  30. Schupf N, Costa R, Luchsinger J, Tang M-X, Lee JH, Mayeux R (2005) Relationship between plasma lipids and all cause mortality in nondemented elderly. J Am Geriatr Soc 53:219–226CrossRefPubMedGoogle Scholar
  31. Shvartz E, Magazanik A, Glick Z (1974) Thermal responses during training in a temperate climate. J Appl Physiol 36(5):572–576PubMedGoogle Scholar
  32. Simonsick EM, Fan E, Fleg JL (2006) Estimating cardiorespiratory fitness in well-functioning older adults: treadmill validation of the long distance corridor walk. J Am Geriatr Soc 54:127–132CrossRefPubMedGoogle Scholar
  33. Simonsick EM, Glynn NW, Jerome GJ, Shardell M, Schrack JA, Ferrucci L (2016) Fatigued, but not frail: perceived fatigability as a marker of impending decline in mobility-intact older adults. J Am Geriatr Soc 64:1287–1292. doi: 10.1111/jgs.14138 CrossRefPubMedGoogle Scholar
  34. Simonsick EM, Schrack JA, Glynn NW, Ferrucci L (2014) Assessing fatigability in mobility-intact older adults. J Am Geriatr Soc 2014;62:347–351. doi: 10.1111/jgs.12638
  35. Soare A, Cangemi R, Omodei D, Holloszy JO, Fontana L (2011) Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans. Aging 3(4):374–379CrossRefPubMedPubMedCentralGoogle Scholar
  36. Studenski S, Perera S, Patel K et al (2011) Gait speed and survival in older adults. JAMA 305(1):50–58. doi: 10.1001/jama2010.1923 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M (2008) Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc 40(1):181–188CrossRefPubMedGoogle Scholar
  38. Waalen J, Buxbaum JN (2011) Is older colder or colder older? The association of age with body temperature in 18, 630 individuals. J Gerontol A Biol Sci Med Sci 66A:487–492. doi: 10.1093/gerona/glr001 CrossRefPubMedCentralGoogle Scholar
  39. Ware JE, Kosinski M, Keller SD (1996) A 12-item short-form health survey: construction of scales and preliminary tests of reliability and validity. Med Care 34:220–233CrossRefPubMedGoogle Scholar
  40. Weinert D (2010) Circadian temperature variation and aging. Aging Res Rev 9:51–60. doi: 10.1016/j.arr.2009.07.003 CrossRefGoogle Scholar

Copyright information

© American Aging Association (outside the USA) 2016

Authors and Affiliations

  • Eleanor M. Simonsick
    • 1
  • Helen C. S. Meier
    • 2
  • Nancy Chiles Shaffer
    • 1
  • Stephanie A. Studenski
    • 1
  • Luigi Ferrucci
    • 1
  1. 1.Intramural Research Program National Institute on AgingBaltimoreUSA
  2. 2.Joseph J. Zilber School of Public HealthUniversity of Wisconsin-MadisonWilwaukeeUSA

Personalised recommendations