Advertisement

AGE

, 38:49 | Cite as

Bisulfite oligonucleotide-capture sequencing for targeted base- and strand-specific absolute 5-methylcytosine quantitation

  • Dustin R. Masser
  • David R. Stanford
  • Niran Hadad
  • Cory B. Giles
  • Jonathan D. Wren
  • William E. Sonntag
  • Arlan Richardson
  • Willard M. FreemanEmail author
Article

Abstract

Epigenetic regulation through DNA methylation (5mC) plays an important role in development, aging, and a variety of diseases. Genome-wide studies of base- and strand-specific 5mC are limited by the extensive sequencing required. Targeting bisulfite sequencing to specific genomic regions through sequence capture with complimentary oligonucleotide probes retains the advantages of bisulfite sequencing while focusing sequencing reads on regions of interest, enables analysis of more samples by decreasing the amount of sequence required per sample, and provides base- and strand-specific absolute quantitation of CG and non-CG methylation levels. As an example, an oligonucleotide capture set to interrogate 5mC levels in all rat RefSeq gene promoter regions (18,814) and CG islands, shores, and shelves (18,411) was generated. Validation using whole-genome methylation standards and biological samples demonstrates enrichment of the targeted regions and accurate base-specific quantitation of CG and non-CG methylation for both forward and reverse genomic strands. A total of 170 Mb of the rat genome is covered including 6.6 million CGs and over 67 million non-CG sites, while reducing the amount of sequencing required by ~85 % as compared to existing whole-genome sequencing methods. This oligonucleotide capture targeting approach and quantitative validation workflow can also be applied to any genome of interest.

Keywords

Bisulfite sequencing Rat DNA methylation 

Notes

Acknowledgments

The authors wish to thank Dr. Graham Wiley, Dr. Patrick Gaffney, and the Oklahoma Medical Research Foundation Genomics facility for the sequencing services and John Ferguson for aiding in figure generation. This work was supported the Donald W. Reynolds Foundation, the National Institute on Aging [R01AG026607, P30AG050911], National Eye Institute [R01EY021716, T32EY023202], National Institute on Drug Abuse [R21DA029405], Oklahoma Center for Advancement of Science and Technology [HR14-174], and in part by an award from Harold Hamm Diabetes Center at the University of Oklahoma.

Author contributions

D.R.M, D.R.S, and W.M.F designed the study. D.R.M generated the study data. D.R.M, D.R.S, N.H., C.B.G, J.D.W, and W.M.F performed analysis of data. D.R.M, D.R.S, and W.M.F wrote the manuscript. W.E.S and A.R. provided intellectual input and design considerations. All authors reviewed and contributed to the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11357_2016_9914_MOESM1_ESM.pdf (1.8 mb)
ESM 1 (PDF 1885 kb)

References

  1. Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, Mason CE (2012) methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 13:R87. doi: 10.1186/gb-2012-13-10-r87 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allum F et al. (2015) Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants. Nat Commun 6:7211. doi: 10.1038/ncomms8211 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Altobelli G, Bogdarina IG, Stupka E, Clark AJ, Langley-Evans S (2013) Genome-wide methylation and gene expression changes in newborn rats following maternal protein restriction and reversal by folic acid. PLoS One 8:e82989. doi: 10.1371/journal.pone.0082989 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Asada K et al. (2006) LINE-1 hypomethylation in a choline-deficiency-induced liver cancer in rats: dependence on feeding period. J Biomed Biotechnol 2006:17142. doi: 10.1155/JBB/2006/17142 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bellizzi D, D'Aquila P, Scafone T, Giordano M, Riso V, Riccio A, Passarino G (2013) The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res Int J Rapid Publ Rep Genes Genomes 20:537–547. doi: 10.1093/dnares/dst029 Google Scholar
  6. Bose R et al. (2015) Tet3 mediates stable glucocorticoid-induced alterations in DNA methylation and Dnmt3a/Dkk1 expression in neural progenitors. Cell Death Dis 6:e1793. doi: 10.1038/cddis.2015.159 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Breese MR, Liu Y (2013) NGSUtils: a software suite for analyzing and manipulating next-generation sequencing datasets. Bioinformatics 29:494–496. doi: 10.1093/bioinformatics/bts731 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chilamakuri CS et al. (2014) Performance comparison of four exome capture systems for deep sequencing. BMC Genomics 15:449. doi: 10.1186/1471-2164-15-449 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190. doi: 10.1101/gr.849004 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dupont JM, Tost J, Jammes H, Gut IG (2004) De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem 333:119–127. doi: 10.1016/j.ab.2004.05.007 CrossRefPubMedGoogle Scholar
  11. Ehrich M et al. (2005) Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci U S A 102:15785–15790. doi: 10.1073/pnas.0507816102 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Flister MJ, Prokop JW, Lazar J, Shimoyama M, Dwinell M, Geurts A (2015) 2015 Guidelines for establishing genetically modified rat models for cardiovascular research. J Cardiovasc Transl Res 8:269–277. doi: 10.1007/s12265-015-9626-4 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282CrossRefPubMedGoogle Scholar
  14. Griffin HR et al. (2014) Accurate mitochondrial DNA sequencing using off-target reads provides a single test to identify pathogenic point mutations. Genet Med 16:962–971. doi: 10.1038/gim.2014.66 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A (2011) Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 6:468–481. doi: 10.1038/nprot.2010.190 CrossRefPubMedGoogle Scholar
  16. Hansen KD, Langmead B, Irizarry RA (2012) BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol 13:R83. doi: 10.1186/gb-2012-13-10-r83 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hartung T et al. (2012) Diametrically opposite methylome-transcriptome relationships in high- and low-CpG promoter genes in postmitotic neural rat tissue. Epigenetics Off J DNA Methylation Soc 7:421–428. doi: 10.4161/epi.19565 CrossRefGoogle Scholar
  18. Hong EE, Okitsu CY, Smith AD, Hsieh CL (2013) Regionally specific and genome-wide analyses conclusively demonstrate the absence of CpG methylation in human mitochondrial. DNA Mol Cell Biol 33:2683–2690. doi: 10.1128/MCB.00220-13 CrossRefPubMedGoogle Scholar
  19. Iannaccone PM, Jacob HJ (2009) Rats! Dis Model Mech 2:206–210. doi: 10.1242/dmm.002733 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Irizarry RA et al. (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186. doi: 10.1038/ng.298 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ivanov M, Kals M, Kacevska M, Metspalu A, Ingelman-Sundberg M, Milani L (2013) In-solution hybrid capture of bisulfite-converted DNA for targeted bisulfite sequencing of 174 ADME genes. Nucleic Acids Res 41:e72. doi: 10.1093/nar/gks1467 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Izzi B, Binder AM, Michels KB (2014) Pyrosequencing evaluation of widely available bisulfite conversion methods: considerations for application. Med Epigenetics 2:28–36. doi: 10.1159/000358882 CrossRefGoogle Scholar
  23. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254. doi: 10.1038/ng1089 CrossRefPubMedGoogle Scholar
  24. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492. doi: 10.1038/nrg3230 CrossRefPubMedGoogle Scholar
  25. Kinde B, Gabel HW, Gilbert CS, Griffith EC, Greenberg ME (2015) Reading the unique DNA methylation landscape of the brain: Non-CpG methylation, hydroxymethylation, and MeCP2. Proc Natl Acad Sci U S A 112:6800–6806. doi: 10.1073/pnas.1411269112 CrossRefPubMedPubMedCentralGoogle Scholar
  26. King GD, Rosene DL, Abraham CR (2012) Promoter methylation and age-related downregulation of Klotho in rhesus monkey. Age (Dordr) 34:1405–1419. doi: 10.1007/s11357-011-9315-4 CrossRefGoogle Scholar
  27. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for bisulfite-seq applications. Bioinformatics 27:1571–1572. doi: 10.1093/bioinformatics/btr167 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Krueger F, Kreck B, Franke A, Andrews SR (2012) DNA methylome analysis using short bisulfite sequencing data. Nat Methods 9:145–151. doi: 10.1038/nmeth.1828 CrossRefPubMedGoogle Scholar
  29. Krzywinski M et al. (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645. doi: 10.1101/gr.092759.109 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Laird PW (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11:191–203. doi: 10.1038/nrg2732 CrossRefPubMedGoogle Scholar
  31. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi: 10.1038/nmeth.1923 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Larkin MA et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi: 10.1093/bioinformatics/btm404 CrossRefPubMedGoogle Scholar
  33. Li H et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi: 10.1093/bioinformatics/btp352 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Li Q et al. (2015) Post-conversion targeted capture of modified cytosines in mammalian and plant genomes. Nucleic Acids Res 43:e81. doi: 10.1093/nar/gkv244 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lister R et al. (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322. doi: 10.1038/nature08514 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Martin-Nunez GM et al. (2014) Methylation levels of the SCD1 gene promoter and LINE-1 repeat region are associated with weight change: an intervention study. Mol Nutr Food Res 58:1528–1536. doi: 10.1002/mnfr.201400079 CrossRefPubMedGoogle Scholar
  37. Masser DR, Berg AS, Freeman WM (2013) Focused, high accuracy 5-methylcytosine quantitation with base resolution by benchtop next-generation sequencing. Epigenetics Chromatin 6:33. doi: 10.1186/1756-8935-6-33 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Masser DR, Stanford DR, Freeman WM (2015) Targeted DNA methylation analysis by next-generation sequencing. J Vis Exp JoVE. doi: 10.3791/52488 PubMedGoogle Scholar
  39. Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33:5868–5877. doi: 10.1093/nar/gki901 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pruitt KD et al. (2014) RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 42:D756–D763. doi: 10.1093/nar/gkt1114 CrossRefPubMedGoogle Scholar
  41. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. doi: 10.1093/bioinformatics/btq033 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rosenbloom KR et al. (2015) The UCSC genome browser database: 2015 update. Nucleic Acids Res 43:D670–D681. doi: 10.1093/nar/gku1177 CrossRefPubMedGoogle Scholar
  43. Samuels DC, Han L, Li J, Quanghu S, Clark TA, Shyr Y, Guo Y (2013) Finding the lost treasures in exome sequencing data. Trends Genet 29:593–599. doi: 10.1016/j.tig.2013.07.006 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, Esteller M (2011) Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics Off J DNA Methylation Soc 6:692–702CrossRefGoogle Scholar
  45. Team MGCP et al. (2009) The completion of the mammalian gene collection (MGC). Genome Res 19:2324–2333. doi: 10.1101/gr.095976.109 CrossRefGoogle Scholar
  46. Watson CT, Szutorisz H, Garg P, Martin Q, Landry JA, Sharp AJ, Hurd YL (2015) Genome-wide DNA methylation profiling reveals epigenetic changes in the rat nucleus accumbens associated with cross-generational effects of adolescent THC exposure. Neuropsychopharmacology. doi: 10.1038/npp.2015.155 PubMedCentralGoogle Scholar
  47. Ziller MJ, Hansen KD, Meissner A, Aryee MJ (2015) Coverage recommendations for methylation analysis by whole-genome bisulfite sequencing. Nat Methods 12:230–232. doi: 10.1038/nmeth.3152231 p following 232CrossRefPubMedGoogle Scholar

Copyright information

© American Aging Association 2016

Authors and Affiliations

  • Dustin R. Masser
    • 1
    • 2
    • 3
  • David R. Stanford
    • 1
    • 2
    • 3
    • 4
  • Niran Hadad
    • 2
    • 5
  • Cory B. Giles
    • 6
  • Jonathan D. Wren
    • 2
    • 4
    • 6
    • 7
  • William E. Sonntag
    • 1
    • 2
    • 4
    • 9
  • Arlan Richardson
    • 1
    • 2
    • 4
    • 8
    • 9
  • Willard M. Freeman
    • 1
    • 2
    • 3
    • 4
    • 9
    • 10
    Email author
  1. 1.Department of PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Reynolds Oklahoma Center on AgingOklahoma CityUSA
  3. 3.Harold Hamm Diabetes CenterOklahoma CityUSA
  4. 4.Oklahoma Nathan Shock Center of Excellence in Basic Biology of AgingOklahoma CityUSA
  5. 5.Oklahoma Center for NeuroscienceOklahoma CityUSA
  6. 6.Arthritis and Clinical Immunology ProgramOklahoma Medical Research FoundationOklahoma CityUSA
  7. 7.Department of Biochemistry and Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  8. 8.Oklahoma City VA Medical CenterOklahoma CityUSA
  9. 9.Department of Geriatric MedicineUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  10. 10.Department of Physiology OUHSCOklahoma CityUSA

Personalised recommendations