Skip to main content

Advertisement

Log in

Differential effects of IGF-1 deficiency during the life span on structural and biomechanical properties in the tibia of aged mice

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Advanced aging is associated with the loss of structural and biomechanical properties in bones, which increases the risk for bone fracture. Aging is also associated with reductions in circulating levels of the anabolic signaling hormone, insulin-like growth factor (IGF)-1. While the role of IGF-1 in bone development has been well characterized, the impact of the age-related loss of IGF-1 on bone aging remains controversial. Here, we describe the effects of reducing IGF-1 at multiple time points in the mouse life span—early in postnatal development, early adulthood, or late adulthood on tibia bone aging in both male and female igf f/f mice. Bone structure was analyzed at 27 months of age using microCT. We find that age-related reductions in cortical bone fraction, cortical thickness, and tissue mineral density were more pronounced when IGF-1 was reduced early in life and not in late adulthood. Three-point bone bending assays revealed that IGF-1 deficiency early in life resulted in reduced maximum force, maximum bending moment, and bone stiffness in aged males and females. The effects of IGF-1 on bone aging are microenvironment specific, as early-life loss of IGF-1 resulted in decreased cortical bone structure and strength along the diaphysis while significantly increasing trabecular bone fraction and trabecular number at the proximal metaphysis. The increases in trabecular bone were limited to males, as early-life loss of IGF-1 did not alter bone fraction or number in females. Together, our data suggest that the age-related loss of IGF-1 influences tibia bone aging in a sex-specific, microenvironment-specific, and time-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashpole NM et al. (2015) IGF-1 regulates vertebral bone aging through sex-specific and time-dependent mechanisms. J Bone Mineral Res: Off J Am Soc Bone Miner Res. doi:10.1002/jbmr.2689

    Google Scholar 

  • Baker J, Liu JP, Robertson EJ, Efstratiadis A (1993) Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75:73–82

    Article  CAS  PubMed  Google Scholar 

  • Bando H, Zhang C, Takada Y, Yamasaki R, Saito S (1991) Impaired secretion of growth hormone-releasing hormone, growth hormone and IGF-I in elderly men. Acta Endocrinol 124:31–36

    CAS  PubMed  Google Scholar 

  • Behrendt AK et al. (2015) Dietary restriction-induced alterations in bone phenotype: effects of lifelong versus short-term caloric restriction on femoral and vertebral bone in C57BL/6 mice. J Bone Miner Res: Off J Am Soc Bone Miner Res. doi:10.1002/jbmr.2745

    Google Scholar 

  • Bikle D et al. (2001) The skeletal structure of insulin-like growth factor I-deficient mice. J Bone Miner Res off J Am Soc Bone Miner Res 16:2320–2329. doi:10.1359/jbmr.2001.16.12.2320

    Article  CAS  Google Scholar 

  • Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res: Off J Am Soc Bone Miner Res 25:1468–1486. doi:10.1002/jbmr.141

    Article  Google Scholar 

  • Brennan-Speranza TC, Rizzoli R, Kream BE, Rosen C, Ammann P (2011) Selective osteoblast overexpression of IGF-I in mice prevents low protein-induced deterioration of bone strength and material level properties. Bone 49:1073–1079. doi:10.1016/j.bone.2011.07.039

    Article  CAS  PubMed  Google Scholar 

  • Brodt MD, Ellis CB, Silva MJ (1999) Growing C57Bl/6 mice increase whole bone mechanical properties by increasing geometric and material properties. J Bone Miner Res off J Am Soc Bone Miner Res 14:2159–2166. doi:10.1359/jbmr.1999.14.12.2159

    Article  CAS  Google Scholar 

  • Carter CS, Ramsey MM, Sonntag WE (2002) A critical analysis of the role of growth hormone and IGF-1 in aging and lifespan. Trends Genet: TIG 18:295–301. doi:10.1016/S0168-9525(02)02696-3

    Article  CAS  PubMed  Google Scholar 

  • Corpas E, Harman SM, Pineyro MA, Roberson R, Blackman MR (1993) Continuous subcutaneous infusions of growth hormone (GH) releasing hormone 1-44 for 14 days increase GH and insulin-like growth factor-I levels in old men. J Clin Endocrinol Metabo 76:134–138. doi:10.1210/jcem.76.1.8421077

    CAS  Google Scholar 

  • Courtland HW, Elis S, Wu Y, Sun H, Rosen CJ, Jepsen KJ, Yakar S (2011) Serum IGF-1 affects skeletal acquisition in a temporal and compartment-specific manner. PLoS one 6:e14762. doi:10.1371/journal.pone.0014762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courtland HW, Kennedy OD, Wu Y, Gao Y, Sun H, Schaffler MB, Yakar S (2013) Low levels of plasma IGF-1 inhibit intracortical bone remodeling during aging. Age 35:1691–1703. doi:10.1007/s11357-012-9469-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane JL, Zhao L, Frye JS, Xian L, Qiu T, Cao X (2013) IGF-1 Signaling is essential for differentiation of mesenchymal stem cells for peak bone mass. Bone Res 1:186–194. doi:10.4248/BR201302007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn SE, Kari FW, French J, Leininger JR, Travlos G, Wilson R, Barrett JC (1997) Dietary restriction reduces insulin-like growth factor I levels, which modulates apoptosis, cell proliferation, and tumor progression in p53-deficient mice. Cancer Res 57:4667–4672

    CAS  PubMed  Google Scholar 

  • Eckstein F, Matsuura M, Kuhn V, Priemel M, Muller R, Link TM, Lochmuller EM (2007) Sex differences of human trabecular bone microstructure in aging are site-dependent. J Bone Miner Res: the Off J Am Soc Bone Miner Res 22:817–824. doi:10.1359/jbmr.070301

    Article  Google Scholar 

  • Fontana L, Weiss EP, Villareal DT, Klein S, Holloszy JO (2008) Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell 7:681–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillberg P, Olofsson H, Mallmin H, Blum WF, Ljunghall S, Nilsson AG (2002) Bone mineral density in femoral neck is positively correlated to circulating insulin-like growth factor (IGF)-I and IGF-binding protein (IGFBP)-3 in Swedish men. Calcif Tissue Int 70:22–29. doi:10.1007/s002230020048

    Article  CAS  PubMed  Google Scholar 

  • Glatt V, Canalis E, Stadmeyer L, Bouxsein ML (2007) Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res: Off J Am Soc Bone Miner Res 22:1197–1207. doi:10.1359/jbmr.070507

    Article  Google Scholar 

  • Gong Z et al. (2014) Reductions in serum IGF-1 during aging impair health span. Aging Cell 13:408–418. doi:10.1111/acel.12188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govoni KE, Lee SK, Chung YS, Behringer RR, Wergedal JE, Baylink DJ, Mohan S (2007a) Disruption of insulin-like growth factor-I expression in type IIalphaI collagen-expressing cells reduces bone length and width in mice. Physiol Genom 30:354–362. doi:10.1152/physiolgenomics.00022.2007

    Article  CAS  Google Scholar 

  • Govoni KE, Wergedal JE, Florin L, Angel P, Baylink DJ, Mohan S (2007b) Conditional deletion of insulin-like growth factor-I in collagen type 1alpha2-expressing cells results in postnatal lethality and a dramatic reduction in bone accretion. Endocrinology 148:5706–5715. doi:10.1210/en.2007-0608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guntur AR, Rosen CJ (2013) IGF-1 regulation of key signaling pathways in bone. Bonekey Rep 2:437. doi:10.1038/bonekey.2013.171

  • Hadem IK, Sharma R (2015) Age- and tissue-dependent modulation of IGF-1/PI3K/Akt protein expression by dietary restriction in mice. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et metabolisme. doi:10.1055/s-0035-1559770

  • Hamrick MW, Ding KH, Ponnala S, Ferrari SL, Isales CM (2008) Caloric restriction decreases cortical bone mass but spares trabecular bone in the mouse skeleton: implications for the regulation of bone mass by body weight. J Bone Miner Res: Off J Am Soc Bone Miner Res 23:870–878. doi:10.1359/jbmr.080213

    Article  CAS  Google Scholar 

  • Ikeno Y, Lew CM, Cortez LA, Webb CR, Lee S, Hubbard GB (2006) Do long-lived mutant and calorie-restricted mice share common anti-aging mechanisms?—a pathological point of view. Age 28:163–171. doi:10.1007/s11357-006-9007-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen JA, Burger H, Stolk RP, Grobbee DE, de Jong FH, Lamberts SW, Pols HA (1998) Gender-specific relationship between serum free and total IGF-I and bone mineral density in elderly men and women. Eur J Endocrinol/Eur Fed Endocr Soc 138:627–632

    Article  CAS  Google Scholar 

  • Jilka RL (2013) The relevance of mouse models for investigating age-related bone loss in humans. J Gerontol A Biol Sci Med Sci 68:1209–1217. doi:10.1093/gerona/glt046

    Article  PubMed  PubMed Central  Google Scholar 

  • Krebsbach PH, Kuznetsov SA, Bianco P, Robey PG (1999) Bone marrow stromal cells: characterization and clinical application. Crit Rev Oral Biol Med: Off Publ Am Assoc Oral Biol 10:165–181

  • Kubota T et al. (2013) Insulin-like growth factor-1 receptor in mature osteoblasts is required for periosteal bone formation induced by reloading. Acta Astronaut 92:73–78. doi:10.1016/j.actaastro.2012.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurland ES et al. (1997) Insulin-like growth factor-I in men with idiopathic osteoporosis. J Clin Endocrinol Metab 82:2799–2805. doi:10.1210/jcem.82.9.4253

    CAS  PubMed  Google Scholar 

  • Langlois JA, Rosen CJ, Visser M, Hannan MT, Harris T, Wilson PW, Kiel DP (1998) Association between insulin-like growth factor I and bone mineral density in older women and men: the Framingham Heart Study. J Clin Endocrinol Metab 83:4257–4262. doi:10.1210/jcem.83.12.5308

    CAS  PubMed  Google Scholar 

  • Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75:59–72

    CAS  PubMed  Google Scholar 

  • Liu JM et al. (2008) IGF-1 as an early marker for low bone mass or osteoporosis in premenopausal and postmenopausal women. J Bone Miner Metab 26:159–164. doi:10.1007/s00774-007-0799-z

    Article  CAS  PubMed  Google Scholar 

  • Mocsai A et al. (2004) The immunomodulatory adapter proteins DAP12 and Fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc NatL Acad Sci U S A 101:6158–6163. doi:10.1073/pnas.0401602101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3:379–389. doi:10.1111/j.1474-9728.2004.00127.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamad MI, Khater MS (2015) Evaluation of insulin like growth factor-1 (IGF-1) level and its impact on muscle and bone mineral density in frail elderly male. Arch Gerontol Geriatr 60:124–127. doi:10.1016/j.archger.2014.08.011

    Article  CAS  PubMed  Google Scholar 

  • Niblock MM, Brunso-Bechtold JK, Lynch CD, Ingram RL, McShane T, Sonntag WE (1998) Distribution and levels of insulin-like growth factor I mRNA across the life span in the Brown Norway x Fischer 344 rat brain. Brain Res 804:79–86

    Article  CAS  PubMed  Google Scholar 

  • Paccou J, Dewailly J, Cortet B (2012) Reduced levels of serum IGF-1 is related to the presence of osteoporotic fractures in male idiopathic osteoporosis. Joint, Bone, Spine: Revue Du Rhumatisme 79:78–82. doi:10.1016/j.jbspin.2011.06.002

    Article  CAS  Google Scholar 

  • Pittenger MF et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Rhee EJ et al. (2004) Age, body mass index, current smoking history, and serum insulin-like growth factor-I levels associated with bone mineral density in middle-aged Korean men. J Bone Miner Metab 22:392–398. doi:10.1007/s00774-003-0500-0

    Article  CAS  PubMed  Google Scholar 

  • Richardson A, Liu F, Adamo ML, Van Remmen H, Nelson JF (2004) The role of insulin and insulin-like growth factor-I in mammalian ageing. Best Pract Res Clin Endocrinol Metab 18:393–406. doi:10.1016/j.beem.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  • Riggs BL et al. (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res: Off J Am Soc Bone Miner Res 19:1945–1954. doi:10.1359/JBMR.040916

    Article  Google Scholar 

  • Ruff CB, Hayes WC (1982) Subperiosteal expansion and cortical remodeling of the human femur and tibia with aging. Science 217:945–948

    Article  CAS  PubMed  Google Scholar 

  • Sjogren K et al. (2002) Effects of liver-derived insulin-like growth factor I on bone metabolism in mice. J Bone Miner Res: Off J Am Soc Bone Miner Res 17:1977–1987. doi:10.1359/jbmr.2002.17.11.1977

    Article  CAS  Google Scholar 

  • Smith CP et al. (1989) Relationship between insulin, insulin-like growth factor I, and dehydroepiandrosterone sulfate concentrations during childhood, puberty, and adult life. J Clin Endocrinol Metab 68:932–937. doi:10.1210/jcem-68-5-932

    Article  CAS  PubMed  Google Scholar 

  • Sonntag WE, Lynch CD, Cefalu WT, Ingram RL, Bennett SA, Thornton PL, Khan AS (1999) Pleiotropic effects of growth hormone and insulin-like growth factor (IGF)-1 on biological aging: inferences from moderate caloric-restricted animals. J Gerontol A Biol Sci Med Sci 54:B521–B538

    Article  CAS  PubMed  Google Scholar 

  • Sonntag WE, Csiszar A, de Cabo R, Ferrucci L, Ungvari Z (2012) Diverse roles of growth hormone and insulin-like growth factor-1 in mammalian aging: progress and controversies. J Gerontol A Biol Sci Med Sci 67:587–598. doi:10.1093/gerona/gls115

    Article  PubMed  Google Scholar 

  • Sugimoto T, Nishiyama K, Kuribayashi F, Chihara K (1997) Serum levels of insulin-like growth factor (IGF) I, IGF-binding protein (IGFBP)-2, and IGFBP-3 in osteoporotic patients with and without spinal fractures. J Bone Miner Res: Off J Am Soc Bone Miner Res 12:1272–1279. doi:10.1359/jbmr.1997.12.8.1272

    Article  CAS  Google Scholar 

  • Szulc P, Joly-Pharaboz MO, Marchand F, Delmas PD (2004) Insulin-like growth factor I is a determinant of hip bone mineral density in men less than 60 years of age: MINOS study. Calcif Tissue Int 74:322–329. doi:10.1007/s00223-003-0090-9

    Article  CAS  PubMed  Google Scholar 

  • Torchia EC, Stolz A, Agellon LB (2001) Differential modulation of cellular death and survival pathways by conjugated bile acids. BMC Biochem 2:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth P et al. (2014) IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab 34:1887–1897. doi:10.1038/jcbfm.2014.156

    Article  CAS  Google Scholar 

  • Van Remmen H, Guo Z, Richardson, A (2001) The anti-ageing action of dietary restriction. Novartis Foundation Symposium 235:221–230; discussion 230-223

  • Wang Y, Nishida S, Elalieh HZ, Long RK, Halloran BP, Bikle DD (2006a) Role of IGF-I signaling in regulating osteoclastogenesis. J Bone Miner Res: the Off J Am Soc Bone Miner Res 21:1350–1358. doi:10.1359/jbmr.060610

    Article  CAS  Google Scholar 

  • Wang Y et al. (2006b) Insulin-like growth factor-I is essential for embryonic bone development. Endocrinology 147:4753–4761. doi:10.1210/en.2006-0196

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al. (2011) IGF-1R signaling in chondrocytes modulates growth plate development by interacting with the PTHrP/Ihh pathway. J Bone Miner Res off J Am Soc Bone Miner Res 26:1437–1446. doi:10.1002/jbmr.359

    Article  CAS  Google Scholar 

  • Wang Y, Bikle DD, Chang W (2013) Autocrine and paracrine actions of IGF-I signaling in skeletal development. Bone Res 1:249–259. doi:10.4248/BR201303003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willinghamm MD, Brodt MD, Lee KL, Stephens AL, Ye J, Silva MJ (2010) Age-related changes in bone structure and strength in female and male BALB/c mice. Calcif Tissue Int 86:470–483. doi:10.1007/s00223-010-9359-y

    Article  CAS  PubMed  Google Scholar 

  • Woods KA, Camacho-Hubner C, Savage MO, Clark AJ (1996) Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene the New England. J Med 335:1363–1367. doi:10.1056/NEJM199610313351805

    CAS  Google Scholar 

  • Wu Y et al. (2013) Serum IGF-1 is insufficient to restore skeletal size in the total absence of the growth hormone receptor. J Bone Miner Res off J Am Soc Bone Miner Res 28:1575–1586. doi:10.1002/jbmr.1920

    Article  CAS  Google Scholar 

  • Xian L et al. (2012) Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med 18:1095–1101. doi:10.1038/nm.2793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakar S, Isaksson O (2015) Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: lessons from mouse models. Growth Horm IGF Res: Off J Growth Horm Res Soc Int IGF Res Soc. doi:10.1016/j.ghir.2015.09.004

    Google Scholar 

  • Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B, LeRoith D (1999) Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci U S A 96:7324–7329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakar S et al. (2001) Liver-specific igf-1 gene deletion leads to muscle insulin insensitivity. Diabetes 50:1110–1118

    Article  CAS  PubMed  Google Scholar 

  • Yakar S et al. (2009) Serum IGF-1 determines skeletal strength by regulating subperiosteal expansion and trait interactions. J Bone Miner Res off J Am Soc Bone Miner Res 24:1481–1492. doi:10.1359/jbmr.090226

    Article  CAS  Google Scholar 

  • Zhang M et al. (2002) Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem 277:44005–44012. doi:10.1074/jbc.M208265200

    Article  CAS  PubMed  Google Scholar 

  • Zhao G et al. (2000) Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinol 141:2674–2682. doi:10.1210/endo.141.7.7585

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Julie Farley and Joanna Hudson for their assistance isolating tissues and Dr. Timothy Griffin for his critical comments on the manuscript. This work was supported by NIH R01AG038747 to WES and the Donald W. Reynolds Foundation.

Author contributions

NMA, JCH, PNE, and ELH performed experiments. NA, JCH, SL, AY, MBH, and WES analyzed data and interpreted results. NMA prepared figures and drafted the manuscript. NMA, JCH, PNE, MBH, and WES edited/revised manuscript. NMA, JCH, PNE, MBH, and WES designed research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole M. Ashpole.

Ethics declarations

All procedures were approved by and followed the guidelines of the Institutional Animal Care and Use Committee and veterinarians at University of Oklahoma Health Sciences Center (OUHSC).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashpole, N.M., Herron, J.C., Estep, P.N. et al. Differential effects of IGF-1 deficiency during the life span on structural and biomechanical properties in the tibia of aged mice. AGE 38, 38 (2016). https://doi.org/10.1007/s11357-016-9902-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-016-9902-5

Keywords

Navigation