, 38:10 | Cite as

Heterogeneity in resistance training-induced muscle strength and mass responses in men and women of different ages

  • Juha P. AhtiainenEmail author
  • Simon Walker
  • Heikki Peltonen
  • Jarkko Holviala
  • Elina Sillanpää
  • Laura Karavirta
  • Janne Sallinen
  • Jussi Mikkola
  • Heli Valkeinen
  • Antti Mero
  • Juha J. Hulmi
  • Keijo Häkkinen


Physical activity recommendations for public health include typically muscle-strengthening activities for a minimum of 2 days a week. The range of inter-individual variation in responses to resistance training (RT) aiming to improve health and well-being requires to be investigated. The purpose of this study was to quantify high and low responders for RT-induced changes in muscle size and strength and to examine possible effects of age and sex on these responses. Previously collected data of untrained healthy men and women (age 19 to 78 years, n = 287 with 72 controls) were pooled for the present study. Muscle size and strength changed during RT are 4.8 ± 6.1 % (range from −11 to 30 %) and 21.1 ± 11.5 % (range from −8 to 60 %) compared to pre-RT, respectively. Age and sex did not affect to the RT responses. Fourteen percent and 12 % of the subjects were defined as high responders (>1 standard deviation (SD) from the group mean) for the RT-induced changes in muscle size and strength, respectively. When taking into account the results of non-training controls (upper 95 % CI), 29 and 7 % of the subjects were defined as low responders for the RT-induced changes in muscle size and strength, respectively. The muscle size and strength responses varied extensively between the subjects regardless of subject’s age and sex. Whether these changes are associated with, e.g., functional capacity and metabolic health improvements due to RT requires further studies.


Individual variation Muscle hypertrophy Responders Aging 



Studies included in the present investigation were funded by the following foundations: The Finnish Ministry of Culture and Education; Finnish Cultural Foundation; Ellen and Artturi Nyyssönen Foundation, Finland; Polar Electro Oy; Juho Vainio Foundation, Finland; Central Finland Health Care District, Jyväskylä, Finland; Sport Institute Foundation, Finland; Yrjö Jahnsson Foundation, Finland; and National Doctoral Programme of Musculoskeletal Disorders and Biomaterials, Finland.

Compliance with ethical standards

Subjects were carefully informed about the design of the study with special information on possible risks and benefits both verbally and in writing, and they signed a written consent form before participation in the study. The studies were conducted according to the Declaration of Helsinki and were approved by the Ethics Committee of the University of Jyväskylä, Finland, and/or by the Ethics Committee of the Central Finland Health Care District.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11357_2015_9870_MOESM1_ESM.pdf (642 kb)
Supporting information 1 (PDF 641 kb)
11357_2015_9870_MOESM2_ESM.doc (19 kb)
Supporting information 2 (DOC 19.4 kb)
11357_2015_9870_MOESM3_ESM.pdf (20 kb)
Supporting information 3 (PDF 20 kb)


  1. Ahtiainen JP, Hulmi JJ, Kraemer WJ, Lehti M, Pakarinen A, Mero AA, Karavirta L, Sillanpää E, Selänne H, Alen M et al (2009) Strength, [corrected] endurance or combined training elicit diverse skeletal muscle myosin heavy chain isoform proportion but unaltered androgen receptor concentration in older men. Int J Sports Med 30:879–887. doi: 10.1055/s-0029-1238290 CrossRefPubMedGoogle Scholar
  2. Ahtiainen JP, Hulmi JJ, Kraemer WJ, Lehti M, Nyman K, Selänne H, Alen M, Pakarinen A, Komulainen J, Kovanen V et al (2011) Heavy resistance exercise training and skeletal muscle androgen receptor expression in younger and older men. Steroids 76:183–192. doi: 10.1016/j.steroids.2010.10.012 CrossRefPubMedGoogle Scholar
  3. Bamman MM, Petrella JK, Kim JS, Mayhew DL, Cross JM (2007) Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans. J Appl Physiol (1985) 102:2232–2239. doi: 10.1152/japplphysiol.00024.2007 CrossRefGoogle Scholar
  4. Campbell WW, Leidy HJ (2007) Dietary protein and resistance training effects on muscle and body composition in older persons. J Am Coll Nutr 26:696S–703SCrossRefPubMedGoogle Scholar
  5. Davidsen PK, Gallagher IJ, Hartman JW, Tarnopolsky MA, Dela F, Helge JW, Timmons JA, Phillips SM (2011) High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol (1985) 110:309–317. doi: 10.1152/japplphysiol.00901.2010 CrossRefGoogle Scholar
  6. Devaney JM, Tosi LL, Fritz DT, Gordish-Dressman HA, Jiang S, Orkunoglu-Suer FE, Gordon AH, Harmon BT, Thompson PD, Clarkson PM et al (2009) Differences in fat and muscle mass associated with a functional human polymorphism in a post-transcriptional BMP2 gene regulatory element. J Cell Biochem 107:1073–1082. doi: 10.1002/jcb.22209 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Erskine RM, Jones DA, Williams AG, Stewart CE, Degens H (2010) Inter-individual variability in the adaptation of human muscle specific tension to progressive resistance training. Eur J Appl Physiol 110:1117–1125. doi: 10.1007/s00421-010-1601-9 CrossRefPubMedGoogle Scholar
  8. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP, American College of Sports Medicine (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43:1334–1359. doi: 10.1249/MSS.0b013e318213fefb CrossRefPubMedGoogle Scholar
  9. Häkkinen K, Kallinen M, Izquierdo M, Jokelainen K, Lassila H, Mälkiä E, Kraemer WJ, Newton RU, Alen M (1998) Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol (1985) 84:1341–1349Google Scholar
  10. Häkkinen K, Pakarinen A, Kraemer WJ, Häkkinen A, Valkeinen H, Alen M (2001a) Selective muscle hypertrophy, changes in EMG and force, and serum hormones during strength training in older women. J Appl Physiol 1985 91:569–580PubMedGoogle Scholar
  11. Häkkinen K, Alen M, Kallinen M, Newton RU, Kraemer WJ (2000a) Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. Eur J Appl Physiol 83:51–62. doi: 10.1007/s004210000248 CrossRefPubMedGoogle Scholar
  12. Häkkinen K, Pakarinen A, Kraemer WJ, Newton RU, Alen M (2000b) Basal concentrations and acute responses of serum hormones and strength development during heavy resistance training in middle-aged and elderly men and women. J Gerontol A Biol Sci Med Sci 55:B95–B105CrossRefPubMedGoogle Scholar
  13. Häkkinen K, Kraemer WJ, Newton RU, Alen M (2001b) Changes in electromyographic activity, muscle fibre and force production characteristics during heavy resistance/power strength training in middle-aged and older men and women. Acta Physiol Scand 171:51–62. doi: 10.1046/j.1365-201X.2001.00781.x PubMedGoogle Scholar
  14. Holviala JH, Sallinen JM, Kraemer WJ, Alen MJ, Häkkinen KK (2006) Effects of strength training on muscle strength characteristics, functional capabilities, and balance in middle-aged and older women. J Strength Cond Res 20:336–344. doi: 10.1519/R-17885.1 PubMedGoogle Scholar
  15. Holviala J, Häkkinen A, Karavirta L, Nyman K, Izquierdo M, Gorostiaga EM, Avela J, Korhonen J, Knuutila VP, Kraemer WJ et al (2010) Effects of combined strength and endurance training on treadmill load carrying walking performance in aging men. J Strength Cond Res 24:1584–1595. doi: 10.1519/JSC.0b013e3181dba178 CrossRefPubMedGoogle Scholar
  16. Holviala J, Kraemer WJ, Sillanpää E, Karppinen H, Avela J, Kauhanen A, Häkkinen A, Häkkinen K (2012) Effects of strength, endurance and combined training on muscle strength, walking speed and dynamic balance in aging men. Eur J Appl Physiol 112:1335–1347. doi: 10.1007/s00421-011-2089-7 CrossRefPubMedGoogle Scholar
  17. Hopkins WG (2000) Measures of reliability in sports medicine and science. Sports Med 30:1–15CrossRefPubMedGoogle Scholar
  18. Hubal MJ, Gordish-Dressman H, Thompson PD, Price TB, Hoffman EP, Angelopoulos TJ, Gordon PM, Moyna NM, Pescatello LS, Visich PS et al (2005) Variability in muscle size and strength gain after unilateral resistance training. Med Sci Sports Exerc 37:964–972CrossRefPubMedGoogle Scholar
  19. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA (2009) Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids 37:297–308. doi: 10.1007/s00726-008-0150-6 CrossRefPubMedGoogle Scholar
  20. Karavirta L, Häkkinen A, Sillanpää E, Garcia-Lopez D, Kauhanen A, Haapasaari A, Alen M, Pakarinen A, Kraemer WJ, Izquierdo M et al (2011a) Effects of combined endurance and strength training on muscle strength, power and hypertrophy in 40-67-year-old men. Scand J Med Sci Sports 21:402–411. doi: 10.1111/j.1600-0838.2009.01059.x CrossRefPubMedGoogle Scholar
  21. Karavirta L, Häkkinen K, Kauhanen A, Arija-Blazquez A, Sillanpää E, Rinkinen N, Häkkinen A (2011b) Individual responses to combined endurance and strength training in older adults. Med Sci Sports Exerc 43:484–490. doi: 10.1249/MSS.0b013e3181f1bf0d CrossRefPubMedGoogle Scholar
  22. Mann S, Beedie C, Balducci S, Zanuso S, Allgrove J, Bertiato F, Jimenez A (2014) Changes in insulin sensitivity in response to different modalities of exercise: a review of the evidence. Diabetes Metab Res Rev 30:257–268. doi: 10.1002/dmrr.2488 CrossRefPubMedGoogle Scholar
  23. Mayhew DL, Hornberger TA, Lincoln HC, Bamman MM (2011) Eukaryotic initiation factor 2B epsilon induces cap-dependent translation and skeletal muscle hypertrophy. J Physiol 589:3023–3037. doi: 10.1113/jphysiol.2010.202432 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Mero AA, Hulmi JJ, Salmijärvi H, Katajavuori M, Haverinen M, Holviala J, Ridanpää T, Häkkinen K, Kovanen V, Ahtiainen JP et al (2013) Resistance training induced increase in muscle fiber size in young and older men. Eur J Appl Physiol 113:641–650. doi: 10.1007/s00421-012-2466-x CrossRefPubMedGoogle Scholar
  25. Mikkola J, Rusko H, Izquierdo M, Gorostiaga EM, Häkkinen K (2012) Neuromuscular and cardiovascular adaptations during concurrent strength and endurance training in untrained men. Int J Sports Med 33:702–710. doi: 10.1055/s-0031-1295475 CrossRefPubMedGoogle Scholar
  26. Mitchell CJ, Churchward-Venne TA, Bellamy L, Parise G, Baker SK, Phillips SM (2013) Muscular and systemic correlates of resistance training-induced muscle hypertrophy. PLoS One 8:e78636. doi: 10.1371/journal.pone.0078636 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Oja P, Titze S (2011) Physical activity recommendations for public health: development and policy context. EPMA J 2:253–259. doi: 10.1007/s13167-011-0090-1 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Petrella JK, Kim JS, Mayhew DL, Cross JM, Bamman MM (2008) Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol (1985) 104:1736–1742. doi: 10.1152/japplphysiol.01215.2007 CrossRefGoogle Scholar
  29. Phillips BE, Williams JP, Gustafsson T, Bouchard C, Rankinen T, Knudsen S, Smith K, Timmons JA, Atherton PJ (2013) Molecular networks of human muscle adaptation to exercise and age. PLoS Genet 9:e1003389. doi: 10.1371/journal.pgen.1003389 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Raue U, Trappe TA, Estrem ST, Qian HR, Helvering LM, Smith RC, Trappe S (2012) Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults. J Appl Physiol (1985) 112:1625–1636. doi: 10.1152/japplphysiol.00435.2011 CrossRefPubMedCentralGoogle Scholar
  31. Riechman SE, Balasekaran G, Roth SM, Ferrell RE (2004) Association of interleukin-15 protein and interleukin-15 receptor genetic variation with resistance exercise training responses. J Appl Physiol (1985) 97:2214–2219CrossRefGoogle Scholar
  32. Sallinen J, Pakarinen A, Fogelholm M, Alen M, Volek JS, Kraemer WJ, Häkkinen K (2007) Dietary intake, serum hormones, muscle mass and strength during strength training in 49–73-year-old men. Int J Sports Med 28:1070–1076. doi: 10.1055/s-2007-965003 CrossRefPubMedGoogle Scholar
  33. Sillanpää E, Häkkinen A, Nyman K, Mattila M, Cheng S, Karavirta L, Laaksonen DE, Huuhka N, Kraemer WJ, Häkkinen K (2008) Body composition and fitness during strength and/or endurance training in older men. Med Sci Sports Exerc 40:950–958. doi: 10.1249/MSS.0b013e318165c854 CrossRefPubMedGoogle Scholar
  34. Sillanpää E, Häkkinen A, Laaksonen DE, Karavirta L, Kraemer WJ, Häkkinen K (2010) Serum basal hormone concentrations, nutrition and physical fitness during strength and/or endurance training in 39-64-year-old women. Int J Sports Med 31:110–117. doi: 10.1055/s-0029-1242811 CrossRefPubMedGoogle Scholar
  35. Sipilä S, Suominen H (1991) Ultrasound imaging of the quadriceps muscle in elderly athletes and untrained men. Muscle Nerve 14:527–533. doi: 10.1002/mus.880140607 CrossRefPubMedGoogle Scholar
  36. Thalacker-Mercer AE, Petrella JK, Bamman MM (2009) Does habitual dietary intake influence myofiber hypertrophy in response to resistance training? A cluster analysis. Appl Physiol Nutr Metab 34:632–639. doi: 10.1139/H09-038 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Timpka S, Petersson IF, Zhou C, Englund M (2014) Muscle strength in adolescent men and risk of cardiovascular disease events and mortality in middle age: a prospective cohort study. BMC Med 12:62CrossRefPubMedPubMedCentralGoogle Scholar
  38. Van Deveire KN, Scranton SK, Kostek MA, Angelopoulos TJ, Clarkson PM, Gordon PM, Moyna NM, Visich PS, Zoeller RF, Thompson PD et al (2012) Variants of the ankyrin repeat domain 6 gene (ANKRD6) and muscle and physical activity phenotypes among European-derived American adults. J Strength Cond Res 26:1740–1748. doi: 10.1519/JSC.0b013e31825c2bef CrossRefPubMedPubMedCentralGoogle Scholar
  39. Walker S, Peltonen H, Sautel J, Scaramella C, Kraemer WJ, Avela J, Häkkinen K (2014) Neuromuscular adaptations to constant vs. variable resistance training in older men. Int J Sports Med 35:69–74. doi: 10.1055/s-0033-1343404 PubMedGoogle Scholar
  40. Walker S, Peltonen H, Hakkinen K (2015) Medium-intensity, high-volume “hypertrophic” resistance training did not induce improvements in rapid force production in healthy older men. Age (Dordr) 37:9786. doi: 10.1007/s11357-015-9786-9 CrossRefGoogle Scholar
  41. Walsh S, Haddad CJ, Kostek MA, Angelopoulos TJ, Clarkson PM, Gordon PM, Moyna NM, Visich PS, Zoeller RF, Seip RL et al (2012) Leptin and leptin receptor genetic variants associate with habitual physical activity and the arm body composition response to resistance training. Gene 510:66–70. doi: 10.1016/j.gene.2012.08.020 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Westcott WL (2012) Resistance training is medicine: effects of strength training on health. Curr Sports Med Rep 11:209–216. doi: 10.1249/JSR.0b013e31825dabb8 CrossRefPubMedGoogle Scholar
  43. Xu L, Nicholson P, Wang QJ, Wang Q, Alen M, Cheng S (2010) Fat mass accumulation compromises bone adaptation to load in Finnish women: a cross-sectional study spanning three generations. J Bone Miner Res 25:2341–2349. doi: 10.1002/jbmr.136 CrossRefPubMedGoogle Scholar

Copyright information

© American Aging Association 2016

Authors and Affiliations

  • Juha P. Ahtiainen
    • 1
    Email author
  • Simon Walker
    • 1
  • Heikki Peltonen
    • 1
  • Jarkko Holviala
    • 1
  • Elina Sillanpää
    • 2
  • Laura Karavirta
    • 1
  • Janne Sallinen
    • 1
  • Jussi Mikkola
    • 3
  • Heli Valkeinen
    • 4
  • Antti Mero
    • 1
  • Juha J. Hulmi
    • 1
  • Keijo Häkkinen
    • 1
  1. 1.Department of Biology of Physical ActivityUniversity of JyväskyläJyvaskylaFinland
  2. 2.Gerontology Research Center, Department of Health SciencesUniversity of JyväskyläJyvaskylaFinland
  3. 3.PhysiologyResearch Institute for Olympic SportsJyväskyläFinland
  4. 4.Department of WelfareNational Institute for Health and Welfare (THL)HelsinkiFinland

Personalised recommendations