AGE

, 37:27 | Cite as

Cellular senescence: from growth arrest to immunogenic conversion

Article

Abstract

Cellular senescence was first reported in human fibroblasts as a state of stable in vitro growth arrest following extended culture. Since that initial observation, a variety of other phenotypic characteristics have been shown to co-associate with irreversible cell cycle exit in senescent fibroblasts. These include (1) a pro-inflammatory secretory response, (2) the up-regulation of immune ligands, (3) altered responses to apoptotic stimuli and (4) promiscuous gene expression (stochastic activation of genes possibly as a result of chromatin remodeling). Many features associated with senescent fibroblasts appear to promote conversion to an immunogenic phenotype that facilitates self-elimination by the immune system. Pro-inflammatory cytokines can attract and activate immune cells, the presentation of membrane bound immune ligands allows for specific recognition and promiscuous gene expression may function to generate an array of tissue restricted proteins that could subsequently be processed into peptides for presentation via MHC molecules. However, the phenotypes of senescent cells from different tissues and species are often assumed to be broadly similar to those seen in senescent human fibroblasts, but the data show a more complex picture in which the growth arrest mechanism, tissue of origin and species can all radically modulate this basic pattern. Furthermore, well-established triggers of cell senescence are often associated with a DNA damage response (DDR), but this may not be a universal feature of senescent cells. As such, we discuss the role of DNA damage in regulating an immunogenic response in senescent cells, in addition to discussing less established “atypical” senescent states that may occur independent of DNA damage.

Keywords

Immunogenic Senescence Immune surveillance Apoptosis resistance Secretome NKG2D 

References

  1. Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, Fumagalli M, Da Costa M, Brown C, Popov N, Takatsu Y, Melamed J, d’Adda diFagagna F, Bernard D, Hernando E, Gil J (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133(6):1006–1018PubMedGoogle Scholar
  2. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M, Pascual G, Morris KJ, Khan S, Jin H, Dharmalingam G, Snijders AP, Carroll T, Capper D, Pritchard C, Inman GJ, Longerich T, Sansom OJ, Benitah SA, Zender L, Gil J (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15(8):978–90PubMedCentralPubMedGoogle Scholar
  3. Ahmed EK, Rogowska-Wrzesinska A, Roepstorff P, Bulteau AL, Friguet B (2010) Protein modification and replicative senescence of WI-38 human embryonic fibroblasts. Aging Cell 9(2):252–72, 2010 AprPubMedGoogle Scholar
  4. Bahar R, Hartmann CH, Rodriguez KA, Denny AD, Busuttil RA, Dollé ME, Calder RB, Chisholm GB, Pollock BH, Klein CA, Vijg J (2006) Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441(7096):1011–4, 2006 Jun 22PubMedGoogle Scholar
  5. Benhamed M, Herbig U, Ye T, Dejean A, Bischof O (2012) Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nat Cell Biol 14(3):266–75, Feb 26PubMedGoogle Scholar
  6. Benedict WF, Weissman BE, Mark C, Stanbridge EJ (1984) Tumorigenicity of human HT1080 fibrosarcoma X normal fibroblast hybrids: chromosome dosage dependency. Cancer Res 44(8):3471–9, 1984 AugPubMedGoogle Scholar
  7. Biroccio A, Cherfils-Vicini J, Augereau A, Pinte S, Bauwens S, Ye J, Simonet T, Horard B, Jamet K, Cervera L, Mendez-Bermudez A, Poncet D, Grataroli R, de Rodenbeeke CT, Salvati E, Rizzo A, Zizza P, Ricoul M, Cognet C, Kuilman T, Duret H, Lépinasse F, Marvel J, Verhoeyen E, Cosset FL, Peeper D, Smyth MJ, Londoño-Vallejo A, Sabatier L, Picco V, Pages G, Scoazec JY, Stoppacciaro A, Leonetti C, Vivier E, Gilson E (2013) TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells. Nat Cell Biol 15(7):818–28, 2013 JulPubMedGoogle Scholar
  8. Bourougaa K, Naski N, Boularan C, Mlynarczyk C, Candeias MM, Marullo S, Fåhraeus R (2010) Endoplasmic reticulum stress induces G2 cell-cycle arrest via mRNA translation of the p53 isoform p53/47. Mol Cell 38(1):78–88, Apr 9PubMedGoogle Scholar
  9. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dorken B, Jenuwein T, Schmitt CA (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436(7051):660–665PubMedGoogle Scholar
  10. Braumüller H, Wieder T, Brenner E, Aßmann S, Hahn M, Alkhaled M, Schilbach K, Essmann F, Kneilling M, Griessinger C, Ranta F, Ullrich S, Mocikat R, Braungart K, Mehra T, Fehrenbacher B, Berdel J, Niessner H, Meier F, van den Broek M, Häring HU, Handgretinger R, Quintanilla-Martinez L, Fend F, Pesic M, Bauer J, Zender L, Schaller M, Schulze-Osthoff K, Röcken M (2013) T-helper-1-cell cytokines drive cancer into senescence. Nature 494(7437):361–5, Feb 21PubMedGoogle Scholar
  11. Buganim Y, Faddah AD, Jaenisch R (2013) Mechanisms and models of somatic cell reprogramming. Nat Rev Genet 14(6):427–439PubMedCentralPubMedGoogle Scholar
  12. Burton DG, Giles PJ, Sheerin AN, Smith SK, Lawton JJ, Ostler EL, Rhys-Williams W, Kipling D, Faragher RG (2009) Microarray analysis of senescent vascular smooth muscle cells: a link to atherosclerosis and vascular calcification. Exp Gerontol 44(10):659–665PubMedGoogle Scholar
  13. Burton DG (2009) Cellular senescence, ageing and disease. Age (Dordr) 31(1):1–9, 2009 MarGoogle Scholar
  14. Burton DG, Krizhanovsky V (2014) Physiological and pathological consequences of cellular senescence. Cell Mol Life Sci 71(22):4373–86PubMedCentralPubMedGoogle Scholar
  15. Cerboni C, Fionda C, Soriani A, Zingoni A, Doria M, Cippitelli M, Santoni A (2014) The DNA damage response: a common pathway in the regulation of NKG2D and DNAM-1 ligand expression in normal, infected, and cancer cells. Front Immunol 7:4–508, 2014 JanGoogle Scholar
  16. Cerwenka A (2009) New twist on the regulation of NKG2D ligand expression. J Exp Med 206(2):265–268PubMedCentralPubMedGoogle Scholar
  17. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, Cordon-Cardo C, Pandolfi PP (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436(7051):725–730PubMedCentralPubMedGoogle Scholar
  18. Chen JH, Hales CN, Ozanne SE (2007) DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res 35(22):7417–28PubMedCentralPubMedGoogle Scholar
  19. Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, Premsrirut P, Luo W, Chicas A, Lee CS, Kogan SC, Lowe SW (2011) Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev 25(20):2125–36, Oct 15PubMedCentralPubMedGoogle Scholar
  20. Chuprin A, Gal H, Biron-Shental T, Biran A, Amiel A, Rozenblatt S, Krizhanovsky V (2013) Cell fusion induced by ERVWE1 or measles virus causes cellular senescence. Genes Dev 27(21):2356–66, Nov 1PubMedCentralPubMedGoogle Scholar
  21. Codogno P, Meijer AJ (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12(Suppl 2):1509–18PubMedGoogle Scholar
  22. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, Benguria A, Zaballos A, Flores JM, Barbacid M, Beach D, Serrano M (2005) Tumour biology: senescence in premalignant tumours. Nature 436(7051):642PubMedGoogle Scholar
  23. Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12):2853–68, Dec 2PubMedGoogle Scholar
  24. Coppé JP, Patil CK, Rodier F, Krtolica A, Beauséjour CM, Parrinello S, Hodgson JG, Chin K, Desprez PY, Campisi J (2010) A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One 5(2):e9188, Feb 12PubMedCentralPubMedGoogle Scholar
  25. Coppé JP, Rodier F, Patil CK, Freund A, Desprez PY, Campisi J (2011) Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. J Biol Chem 286(42):36396–403, Oct 21PubMedCentralPubMedGoogle Scholar
  26. Crescenzi E, Pacifico F, Lavorgna A, De Palma R, D’Aiuto E, Palumbo G, Formisano S, Leonardi A (2011) NF-κB-dependent cytokine secretion controls Fas expression on chemotherapy-induced premature senescent tumor cells. Oncogene 30(24):2707–17, Jun 16PubMedGoogle Scholar
  27. Cruickshanks HA, McBryan T, Nelson DM, Vanderkraats ND, Shah PP, van Tuyn J, Singh Rai T, Brock C, Donahue G, Dunican DS, Drotar ME, Meehan RR, Edwards JR, Berger SL, Adams PD (2013) Senescent cells harbour features of the cancer epigenome. Nat Cell Biol 15(12):1495–506PubMedCentralPubMedGoogle Scholar
  28. Davalos AR, Kawahara M, Malhotra GK, Schaum N, Huang J, Ved U, Beausejour CM, Coppe JP, Rodier F, Campisi J (2013) p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J Cell Biol 201(4):613–29, May 13PubMedCentralPubMedGoogle Scholar
  29. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, van Steeg H, Dollé MET, Hoeijmakers JHJ, de Bruin A, Hara E, Campisi J (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell, 2014; doi: 10.1016/j.devcel.2014.11.012Google Scholar
  30. Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Müller M, Kreymborg K, Altenberend F, Brandenburg J, Kalbacher H, Brock R, Driessen C, Rammensee HG, Stevanovic S (2005) Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci U S A 102(22):7922–7, May 31PubMedCentralPubMedGoogle Scholar
  31. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre M, Nuciforo PG, Bensimon A, Maestro R, Pelicci PG, d’ Adda di Fagagna F (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444(7119):638–642PubMedGoogle Scholar
  32. Dolezalova D, Mraz M, Barta T, Plevova K, Vinarsky V, Holubcova Z, Jaros J, Dvorak P, Pospisilova S, Hampl A (2012) MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells. Stem Cells 30(7):1362–72PubMedGoogle Scholar
  33. Effros RB, Dagarag M, Spaulding C, Man J (2005) The role of CD8+ T-cell replicative senescence in human aging. Immunol Rev 205:147–57PubMedGoogle Scholar
  34. Epstein CJ, Martin GM, Schultz AL, Motulsky AG (1966) Werner’s syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine (Baltimore) 45(3):177–221Google Scholar
  35. Evans RJ, Wyllie FS, Wynford-Thomas D, Kipling D, Jones CJ (2003) A P53-dependent, telomere-independent proliferative life span barrier in human astrocytes consistent with the molecular genetics of glioma development. Cancer Res 63(16):4854–61, Aug 15PubMedGoogle Scholar
  36. d’Adda di Fagagna F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8:512–522PubMedGoogle Scholar
  37. Feliciano A, Sánchez-Sendra B, Kondoh H, Lleonart ME (2011) MicroRNAs regulate key effector pathways of senescence. J Aging Res 2011:205378PubMedCentralPubMedGoogle Scholar
  38. Fitzner B, Muller S, Walther M, Fischer M, Engelmann R, Muller-Hilke B, Putzer BM, Kreutzer M, Nizze H, Jaster R (2012) Senescence determines the fate of activated rat pancreatic stellate cells. J Cell Mol Med.Google Scholar
  39. Freund A, Patil CK, Campisi J (2011) p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 30(8):1536–48, 2011 Apr 20PubMedCentralPubMedGoogle Scholar
  40. Fumagalli M, Rossiello F, Mondello C, d’Adda di Fagagna F (2014) Stable cellular senescence is associated with persistent DDR activation. PLoS One 9(10):e110969, 2014 Oct 23PubMedCentralPubMedGoogle Scholar
  41. Garg AD, Kaczmarek A, Krysko O, Vandenabeele P, Krysko DV, Agostinis P (2012) ER stress-induced inflammation: does it aid or impede disease progression? Trends Mol Med 18(10):589–98PubMedGoogle Scholar
  42. Gartel AL, Tyner AL (2002) The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 1(8):639–49PubMedGoogle Scholar
  43. Gasser S, Orsulic S, Brown EJ, Raulet DH (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436(7054):1186–90, Aug 25PubMedCentralPubMedGoogle Scholar
  44. Gilbert LA, Hemann MT (2010) DNA damage-mediated induction of a chemoresistant niche. Cell 143(3):355–66, Oct 29PubMedCentralPubMedGoogle Scholar
  45. Goldstein S (1969) Lifespan of cultured cells in progeria. Lancet 1(7591):424, 1969 Feb 22PubMedGoogle Scholar
  46. Hampel B, Malisan F, Niederegger H, Testi R, Jansen-Dürr P (2004) Differential regulation of apoptotic cell death in senescent human cells. Exp Gerontol 39(11-12):1713–21, Nov-DecPubMedGoogle Scholar
  47. Hampel B, Wagner M, Teis D, Zwerschke W, Huber LA, Jansen-Dürr P (2005) Apoptosis resistance of senescent human fibroblasts is correlated with the absence of nuclear IGFBP-3. Aging Cell 4(6):325–30, DecPubMedGoogle Scholar
  48. Han Y, Randell E, Vasdev S, Gill V, Gadag V, Newhook LA, Grant M, Hagerty D (2007) Plasma methylglyoxal and glyoxal are elevated and related to early membrane alteration in young, complication-free patients with type 1 diabetes. Mol Cell Biochem 305(1-2):123–31, NovPubMedGoogle Scholar
  49. Han C, Jin L, Mei Y, Wu M (2013) Endoplasmic reticulum stress inhibits cell cycle progression via induction of p27 in melanoma cells. Cell Signal 25(1):144–9, JanPubMedGoogle Scholar
  50. Hawkins AJ, Golding SE, Khalil A, Valerie K (2011) DNA double-strand break—induced pro-survival signaling. Radiother Oncol 101(1):13–7, OctPubMedCentralPubMedGoogle Scholar
  51. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621PubMedGoogle Scholar
  52. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636PubMedGoogle Scholar
  53. Henson SM, Lanna A, Riddell NE, Franzese O, Macaulay R, Griffiths SJ, Puleston DJ, Watson AS, Simon AK, Tooze SA, Akbar AN (2014) p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8+ T cells. J Clin Invest 124(9):4004–16, 2014 Sep 2PubMedCentralPubMedGoogle Scholar
  54. Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14(4):501–13, May 21PubMedGoogle Scholar
  55. Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311(5765):1257PubMedGoogle Scholar
  56. Hewitt G, Jurk D, Marques FD, Correia-Melo C, Hardy T, Gackowska A, Anderson R, Taschuk M, Mann J, Passos JF (2012) Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun 3:708, Feb 28PubMedCentralPubMedGoogle Scholar
  57. Hoffmann J, Haendeler J, Aicher A, Rössig L, Vasa M, Zeiher AM, Dimmeler S (2001) Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide. Circ Res 89(8):709–15, Oct 12PubMedGoogle Scholar
  58. House NC, Koch MR, Freudenreich CH (2014) Chromatin modifications and DNA repair: beyond double-strand breaks. Front Genet 5:296, Sep 5PubMedCentralPubMedGoogle Scholar
  59. Hubackova S, Krejcikova K, Bartek J, Hodny Z (2012) IL1- and TGFβ-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine 'bystander senescence'. Aging (Albany NY) 4(12):932–51, 2012 DecGoogle Scholar
  60. Itahana K, Campisi J, Dimri GP (2004) Mechanisms of cellular senescence in human and mouse cells. Biogerontology 5(1):1–10PubMedGoogle Scholar
  61. Janssens S, Tschopp J (2006) Signals from within: the DNA-damage-induced NF-kappaB response. Cell Death Differ 13(5):773–84, MayPubMedGoogle Scholar
  62. Jeon H, Boo YC (2013) Senescent endothelial cells are prone to TNF-α-induced cell death due to expression of FAS receptor. Biochem Biophys Res Commun 438(2):277–82, Aug 23PubMedGoogle Scholar
  63. Jun JI, Lau LF (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12(7):676–685PubMedCentralPubMedGoogle Scholar
  64. Jurk D, Wang C, Miwa S, Maddick M, Korolchuk V, Tsolou A, Gonos ES, Thrasivoulou C, Saffrey MJ, Cameron K, von Zglinicki T (2012) Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11(6):996–1004, DecPubMedCentralPubMedGoogle Scholar
  65. Kang TW, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D, Hohmeyer A, Gereke M, Rudalska R, Potapova A, Iken M, Vucur M, Weiss S, Heikenwalder M, Khan S, Gil J, Bruder D, Manns M, Schirmacher P, Tacke F, Ott M, Luedde T, Longerich T, Kubicka S, Zender L (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479(7374):547–51, Nov 9PubMedGoogle Scholar
  66. Kalashnik L, Bridgeman CJ, King AR, Francis SE, Mikhalovsky S, Wallis C, Denyer SP, Crossman D, Faragher RG (2000) A cell kinetic analysis of human umbilical vein endothelial cells. Mech Ageing Dev 120(1-3):23–32, Dec 1PubMedGoogle Scholar
  67. Karakasilioti I, Kamileri I, Chatzinikolaou G, Kosteas T, Vergadi E, Robinson AR, Tsamardinos I, Rozgaja TA, Siakouli S, Tsatsanis C, Niedernhofer LJ, Garinis GA (2013) DNA damage triggers a chronic autoinflammatory response, leading to fat depletion in NER progeria. Cell Metab 18(3):403–15, Sep 3PubMedCentralPubMedGoogle Scholar
  68. Khalil A, Morgan RN, Adams BR, Golding SE, Dever SM, Rosenberg E, Povirk LF, Valerie K (2011) ATM-dependent ERK signaling via AKT in response to DNA double-strand breaks. Cell Cycle 10(3):481–91, 2011 Feb 1PubMedCentralPubMedGoogle Scholar
  69. Kim TW, Kim HJ, Lee C, Kim HY, Baek SH, Kim JH, Kwon KS, Kim JR (2008) Identification of replicative senescence-associated genes in human umbilical vein endothelial cells by an annealing control primer system. Exp Gerontol 43(4):286–95, AprPubMedGoogle Scholar
  70. Kim KH, Chen CC, Monzon RI, Lau LF (2013) Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol Cell Biol 33(10):2078–2090PubMedCentralPubMedGoogle Scholar
  71. Kipling D, Faragher RG (1997) Progeroid syndromes: probing the molecular basis of aging? Mol Pathol 50(5):234–41, 1997 OctPubMedCentralPubMedGoogle Scholar
  72. Kipling D, Jones DL, Smith SK, Giles PJ, Jennert-Burston K, Ibrahim B, Sheerin AN, Evans AJ, Rhys-Willams W, Faragher RG (2009) A transcriptomic analysis of the EK1.Br strain of human fibroblastoid keratocytes: the effects of growth, quiescence and senescence. Exp Eye Res 88(2):277–85, 2009 FebPubMedGoogle Scholar
  73. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396(6706):84–8, Nov 5PubMedGoogle Scholar
  74. Korotchkina LG, Demidenko ZN, Gudkov AV, Blagosklonny MV (2009) Cellular quiescence caused by the Mdm2 inhibitor nutlin-3A. Cell Cycle 8(22):3777–81, Nov 15PubMedGoogle Scholar
  75. Kreis NN, Louwen F, Yuan J (2014) Less understood issues: p21Cip1 in mitosis and its therapeutic potential. Oncogene. May 26;0Google Scholar
  76. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134(4):657–67, Aug 22PubMedCentralPubMedGoogle Scholar
  77. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS (2008) Oncogene-induced senescence relayed by an interleukin dependent inflammatory network. Cell 133(6):1019–1031PubMedGoogle Scholar
  78. Lackner DH, Hayashi MT, Cesare AJ, Karlseder J (2014) A genomics approach identifies senescence-specific gene expression regulation. Aging Cell 13(5):946–50, OctPubMedCentralPubMedGoogle Scholar
  79. Lanna A, Henson SM1, Escors D2, Akbar AN (2014) The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat Immunol 15(10):965–72, OctPubMedCentralPubMedGoogle Scholar
  80. Larsen SA, Kassem M, Rattan SI (2012) Glucose metabolite glyoxal induces senescence in telomerase-immortalized human mesenchymal stem cells. Chem Cent J 6(1):18, Mar 17PubMedCentralPubMedGoogle Scholar
  81. Lin D, Lavender H, Soilleux EJ, O’Callaghan CA (2012) NF-κB regulates MICA gene transcription in endothelial cell through a genetically inhibitable control site. J Biol Chem 287(6):4299–310, Feb 3PubMedCentralPubMedGoogle Scholar
  82. Lindqvist LM, Vaux DL (2014) BCL2 and related prosurvival proteins require BAK1 and BAX to affect autophagy. Autophagy 10(8):1474–5, AugPubMedGoogle Scholar
  83. Liu FJ, Wen T, Liu L (2012) MicroRNAs as a novel cellular senescence regulator. Ageing Res Rev 11(1):41–50, JanPubMedGoogle Scholar
  84. Liu J, Huang K, Cai GY, Chen XM, Yang JR, Lin LR, Yang J, Huo BG, Zhan J, He YN (2014) Receptor for advanced glycation end-products promotes premature senescence of proximal tubular epithelial cells via activation of endoplasmic reticulum stress-dependent p21 signaling. Cell Signal 26(1):110–21, JanPubMedGoogle Scholar
  85. López-Soto A, Huergo-Zapico L, Acebes-Huerta A, Villa-Alvarez M, Gonzalez S (2014) NKG2D signaling in cancer immunosurveillance. Int J Cancer. doi:10.1002/ijc.28775, Feb 8PubMedGoogle Scholar
  86. Lotem J, Sachs L (1999) Cytokines as suppressors of apoptosis. Apoptosis 4(3):187–96, JunPubMedGoogle Scholar
  87. Luo X, Suzuki M, Ghandhi SA, Amundson SA, Boothman DA (2014) ATM regulates insulin-like growth factor 1-secretory clusterin (IGF-1-sCLU) expression that protects cells against senescence. PLoS One 9(6):e99983, Jun 17PubMedCentralPubMedGoogle Scholar
  88. Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, Zhao Z, Thapar V, Joyce JA, Krizhanovsky V, Lowe SW (2013) Non-cell-autonomous tumor suppression by p53. Cell 153(2):449–60, Apr 11PubMedCentralPubMedGoogle Scholar
  89. Ma K, Qiu L, Mrasek K, Zhang J, Liehr T, Quintana LG, Li Z (2012) Common fragile sites: genomic hotspots of DNA damage and carcinogenesis. Int J Mol Sci 13(9):11974–99PubMedCentralPubMedGoogle Scholar
  90. Macieira-Coelho A, Ponten J, Philipson L (1966) The division cycle and RNA-synthesis in diploid human cells at different passage levels in vitro. Exp Cell Res 42:673–684PubMedGoogle Scholar
  91. Marcotte R, Lacelle C, Wang E (2004) Senescent fibroblasts resist apoptosis by downregulating caspase-3. Mech Ageing Dev 125(10-11):777–83, 2004 Oct-NovPubMedGoogle Scholar
  92. Martin GM, Sprague CA, Epstein CJ (1970) Replicative life-span of cultivated human cells. Effects of donor’s age, tissue, and genotype. Lab Invest 23:86–92PubMedGoogle Scholar
  93. Maya-Mendoza A, Ostrakova J, Kosar M, Hall A, Duskova P, Mistrik M, Merchut-Maya JM, Hodny Z, Bartkova J, Christensen C, Bartek J. (2014) Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Mol Oncol. Nov 15Google Scholar
  94. Mayorga M, Bahi N, Ballester M, Comella JX, Sanchis D (2004) Bcl-2 is a key factor for cardiac fibroblast resistance to programmed cell death. J Biol Chem 279(33):34882–9, Aug 13PubMedGoogle Scholar
  95. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ, Peeper DS (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436(7051):720–724PubMedGoogle Scholar
  96. Minagawa S, Araya J, Numata T, Nojiri S, Hara H, Yumino Y, Kawaishi M, Odaka M, Morikawa T, Nishimura SL, Nakayama K, Kuwano K (2010) Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-β-induced senescence of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 300(3):L391–401, MarPubMedCentralPubMedGoogle Scholar
  97. Munoz-Espin D, Canamero M, Maraver A, Gomez-Lopez G, Contreras J, Murillo-Cuesta S, Rodriguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M, Serrano M (2013) Programmed cell senescence during mammalian embryonic development. Cell 155(5):1104–1118PubMedGoogle Scholar
  98. Norsgaard H, Clark BF, Rattan SI (1996) Distinction between differentiation and senescence and the absence of increased apoptosis in human keratinocytes undergoing cellular aging in vitro. Exp Gerontol 31(5):563–70, Sep-OctPubMedGoogle Scholar
  99. Ovadya Y, Krizhanovsky V (2014) Senescent cells: SASPected drivers of age-related pathologies. Biogerontology. 2014 Sep 13Google Scholar
  100. Overhoff MG, Garbe JC, Koh J, Stampfer MR, Beach DH, Bishop CL (2013) Cellular senescence mediated by p16INK4A-coupled miRNA pathways. Nucleic Acids Res 42(3):1606–18, FebPubMedCentralPubMedGoogle Scholar
  101. Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, Miwa S, Olijslagers S, Hallinan J, Wipat A, Saretzki G, Rudolph KL, Kirkwood TB, von Zglinicki T (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6:347, 2010PubMedCentralPubMedGoogle Scholar
  102. Pálmai-Pallag T, Bachrati CZ (2014) Inflammation-induced DNA damage and damage-induced inflammation: a vicious cycle. Microbes Infect 16(10):822–832, Oct 22PubMedGoogle Scholar
  103. Park J, Jo YH, Cho CH, Choe W, Kang I, Baik HH, Yoon KS (2013) ATM-deficient human fibroblast cells are resistant to low levels of DNA double-strand break induced apoptosis and subsequently undergo drug-induced premature senescence. Biochem Biophys Res Commun 430(1):429–35, 2013 Jan 4PubMedGoogle Scholar
  104. Perucca P, Cazzalini O, Madine M, Savio M, Laskey RA, Vannini V, Prosperi E, Stivala LA (2009) Loss of p21 CDKN1A impairs entry to quiescence and activates a DNA damage response in normal fibroblasts induced to quiescence. Cell Cycle 8(1):105–14, Jan 1PubMedGoogle Scholar
  105. Piccolo MT, Crispi S (2012) The dual role played by p21 may influence the apoptotic or anti-apoptotic fate in cancer. J Can Res Updates 1(189–202):189Google Scholar
  106. Price BD, D’Andrea AD (2013) Chromatin remodeling at DNA double-strand breaks. Cell 152(6):1344–54, Mar 14PubMedCentralPubMedGoogle Scholar
  107. Raciti M, Lotti LV, Valia S, Pulcinelli FM, Di Renzo L (2012) JNK2 is activated during ER stress and promotes cell survival. Cell Death Dis 3:e429, Nov 22PubMedCentralPubMedGoogle Scholar
  108. Rajagopalan S, Long EO (2012) Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proc Natl Acad Sci U S A 109(50):20596–601, Dec 11PubMedCentralPubMedGoogle Scholar
  109. Rakhra K, Bachireddy P, Zabuawala T, Zeiser R, Xu L, Kopelman A, Fan AC, Yang Q, Braunstein L, Crosby E, Ryeom S, Felsher DW (2010) CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18(5):485–98, Nov 16PubMedCentralPubMedGoogle Scholar
  110. Reimann M, Lee S, Loddenkemper C, Dörr JR, Tabor V, Aichele P, Stein H, Dörken B, Jenuwein T, Schmitt CA (2010) Tumor stroma-derived TGF-beta limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell 17(3):262–72, Mar 16PubMedGoogle Scholar
  111. Reuschenbach M, von Knebel Doeberitz M, Wentzensen N (2009) A systematic review of humoral immune responses against tumor antigens. Cancer Immunol Immunother 58(10):1535–44, OctPubMedCentralPubMedGoogle Scholar
  112. Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11(8):973–979PubMedCentralPubMedGoogle Scholar
  113. Robles SJ, Adami GR (1998) Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16(9):1113–1123PubMedGoogle Scholar
  114. Rodriguez-Rocha H, Garcia-Garcia A, Panayiotidis MI, Franco R (2011) DNA damage and autophagy. Mutat Res 711(1-2):158–66, Jun 3PubMedCentralPubMedGoogle Scholar
  115. Rose J, Söder S, Skhirtladze C, Schmitz N, Gebhard PM, Sesselmann S, Aigner T (2012) DNA damage, discoordinated gene expression and cellular senescence in osteoarthritic chondrocytes. Osteoarthr Cartil 20(9):1020–8, SepPubMedGoogle Scholar
  116. Ryu SJ, Oh YS, Park SC (2007) Failure of stress-induced downregulation of Bcl-2 contributes to apoptosis resistance in senescent human diploid fibroblasts. Cell Death Differ 14(5):1020–8, 2007 MayPubMedGoogle Scholar
  117. Sagiv A, Biran A, Yon M, Simon J, Lowe SW, Krizhanovsky V (2013) Granule exocytosis mediates immune surveillance of senescent cells. Oncogene 32(15):1971–7, Apr 11PubMedCentralPubMedGoogle Scholar
  118. Sagiv A, Krizhanovsky V (2013) Immunosurveillance of senescent cells: the bright side of the senescence program. Biogerontology 14(6):617–28, DecPubMedGoogle Scholar
  119. Scherz-Shouval R, Elazar Z (2011) Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36(1):30–8, JanPubMedGoogle Scholar
  120. Schröder M (2008) Endoplasmic reticulum stress responses. Cell Mol Life Sci 65(6):862–94, MarPubMedGoogle Scholar
  121. Seluanov A, Gorbunova V, Falcovitz A, Sigal A, Milyavsky M, Zurer I, Shohat G, Goldfinger N, Rotter V (2001) Change of the death pathway in senescent human fibroblasts in response to DNA damage is caused by an inability to stabilize p53. Mol Cell Biol 21(5):1552–1564PubMedCentralPubMedGoogle Scholar
  122. Senturk S, Mumcuoglu M, Gursoy-Yuzugullu O, Cingoz B, Akcali KC, Ozturk M (2010) Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology 52(3):966–74, SepPubMedGoogle Scholar
  123. Sejersen, Rattan (2009) Dicarbonyl-induced accelerated aging in vitro in human skin fibroblasts. Biogerontology 10(2):203–11PubMedGoogle Scholar
  124. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602PubMedGoogle Scholar
  125. Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ (2000) Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res 257(1):162–71, 2000 May 25PubMedGoogle Scholar
  126. Shangari O’B (2004) The cytotoxic mechanism of glyoxal involves oxidative stress. Biochem Pharmacol 68(7):1433–1442, 1 OctoberPubMedGoogle Scholar
  127. Shelton DN, Chang E, Whittier PS, Choi D, Funk WD (1999) Microarray analysis of replicative senescence. Curr Biol 9:939–945PubMedGoogle Scholar
  128. Singh K, Matsuyama S, Drazba JA, Almasan A (2012) Autophagy-dependent senescence in response to DNA damage and chronic apoptotic stress. Autophagy 8(2):236–51, Feb 1PubMedCentralPubMedGoogle Scholar
  129. Smith SK, Kipling D (2004) The role of replicative senescence in cancer and human ageing: utility (or otherwise) of murine models. Cytogenet Genome Res 105(2–4):455–63PubMedGoogle Scholar
  130. Smith J, Tho LM, Xu N, Gillespie DA (2010) The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108:73–112PubMedGoogle Scholar
  131. Sousa-Victor P, Gutarra S, Garcia-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V, Jardi M, Ballestar E, Gonzalez S, Serrano AL, Perdiguero E, Munoz-Canoves P (2014) Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506(7488):316–321PubMedGoogle Scholar
  132. Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V, Cippitelli M, Fionda C, Petrucci MT, Guarini A, Foà R, Santoni A (2009) ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113(15):3503–11, Apr 9PubMedGoogle Scholar
  133. Stern-Ginossar N, Gur C, Biton M, Horwitz E, Elboim M, Stanietsky N, Mandelboim M, Mandelboim O (2008) Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat Immunol 9(9):1065–73, SepPubMedGoogle Scholar
  134. Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, Yosef R, Pilpel N, Krizhanovsky V, Sharpe J, Keyes WM (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155(5):1119–1130PubMedGoogle Scholar
  135. Sun X, Mao Y, Wang J, Zu L, Hao M, Cheng G, Qu Q, Cui D, Keller ET, Chen X, Shen K, Wang J (2014) IL-6 secreted by cancer-associated fibroblasts induces tamoxifen resistance in luminal breast cancer. Oncogene Jun 9; 0Google Scholar
  136. Suram A, Kaplunov J, Patel PL, Ruan H, Cerutti A, Boccardi V, Fumagalli M, Di Micco R, Mirani N, Gurung RL, Hande MP, d’Adda di Fagagna F, Herbig U (2012) Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions. EMBO J 31(13):2839–2851PubMedCentralPubMedGoogle Scholar
  137. Takacova S, Slany R, Bartkova J, Stranecky V, Dolezel P, Luzna P, Bartek J, Divoky V (2012) DNA damage response and inflammatory signaling limit the MLL-ENL-induced leukemogenesis in vivo. Cancer Cell 21(4):517–31, Apr 17PubMedGoogle Scholar
  138. Tang ML, Khan MK, Croxford JL, Tan KW, Angeli V, Gasser S (2014) The DNA damage response induces antigen presenting cell-like functions in fibroblasts. Eur J Immunol 44(4):1108–18PubMedGoogle Scholar
  139. Tepper CG, Seldin MF, Mudryj M (2000) Fas-mediated apoptosis of proliferating, transiently growth-arrested, and senescent normal human fibroblasts. Exp Cell Res 260(1):9–19, Oct 10PubMedGoogle Scholar
  140. Thornalley PJ (2008) Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems–role in ageing and disease. Drug Metabol Drug Interact 23(1–2):125–50PubMedCentralPubMedGoogle Scholar
  141. Tokarsky-Amiel R, Azazmeh N, Helman A, Stein Y, Hassan A, Maly A, Ben-Porath I (2013) Dynamics of senescent cell formation and retention revealed by p14ARF induction in the epidermis. Cancer Res 73(9):2829–39, May 1PubMedGoogle Scholar
  142. Toledo LI, Murga M, Gutierrez-Martinez P, Soria R, Fernandez-Capetillo O (2008) ATR signaling can drive cells into senescence in the absence of DNA breaks. Genes Dev 22(3):297–302, Feb 1PubMedCentralPubMedGoogle Scholar
  143. Toso A, Revandkar A, Di Mitri D, Guccini I, Proietti M, Sarti M, Pinton S, Zhang J, Kalathur M, Civenni G, Jarrossay D, Montani E, Marini C, Garcia-Escudero R, Scanziani E, Grassi F, Pandolfi PP, Catapano CV, Alimonti A (2014) Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep 9(1):75–89, Oct 9PubMedGoogle Scholar
  144. Toussaint O, Medrano EE, von Zglinicki T (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35(8):927–945PubMedGoogle Scholar
  145. Untergasser G, Gander R, Rumpold H, Heinrich E, Plas E, Berger P (2003) TGF-beta cytokines increase senescence-associated beta-galactosidase activity in human prostate basal cells by supporting differentiation processes, but not cellular senescence. Exp Gerontol 38(10):1179–88, OctPubMedGoogle Scholar
  146. Vasey DB, Wolf CR, Brown K, Whitelaw CB (2011) Spatial p21 expression profile in the mid-term mouse embryo. Transgenic Res 20(1):23–8, FebPubMedGoogle Scholar
  147. Valés-Gómez M, Chisholm SE, Cassady-Cain RL, Roda-Navarro P, Reyburn HT (2008) Selective induction of expression of a ligand for the NKG2D receptor by proteasome inhibitors. Cancer Res 68(5):1546–54, Mar 1PubMedGoogle Scholar
  148. Vermeij WP, Hoeijmakers JH, Pothof J (2014) Aging: not all DNA damage is equal. Curr Opin Genet Dev 26C:124–130, JunGoogle Scholar
  149. Vitiello PF, Wu YC, Staversky RJ, O’Reilly MA (2009) p21(Cip1) protects against oxidative stress by suppressing ER-dependent activation of mitochondrial death pathways. Free Radic Biol Med 46(1):33–41, Jan 1PubMedCentralPubMedGoogle Scholar
  150. Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, von Zglinicki T (2009) DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8(3):311–323PubMedGoogle Scholar
  151. Wang X, Brégégère F, Soroka Y, Kayat A, Redziniak G, Milner Y (2004) Enhancement of Fas-mediated apoptosis in ageing human keratinocytes. Mech Ageing Dev 125(3):237–49, 2004 MarPubMedGoogle Scholar
  152. Wang E (1995) Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Res 55(11):2284–2292PubMedGoogle Scholar
  153. Wang Y, Taniguchi T (2013) MicroRNAs and DNA damage response: implications for cancer therapy. Cell Cycle 12(1):32–42, Jan 1PubMedCentralPubMedGoogle Scholar
  154. West MD, Pereira-Smith OM, Smith JR (1989) Replicative senescence of human skin fibroblasts correlates with a loss of regulation and overexpression of collagenase activity. Exp Cell Res 184:138–147PubMedGoogle Scholar
  155. Weyemi U, Lagente-Chevallier O, Boufraqech M, Prenois F, Courtin F, Caillou B, Talbot M, Dardalhon M, Al Ghuzlan A, Bidart JM, Schlumberger M, Dupuy C (2012) ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene 31(9):1117–29, 2012 Mar 1PubMedCentralPubMedGoogle Scholar
  156. Wu J, Niu J, Li X, Wang X, Guo Z, Zhang F (2014) TGF-β1 induces senescence of bone marrow mesenchymal stem cells via increase of mitochondrial ROS production. BMC Dev Biol 14:21, May 18PubMedCentralPubMedGoogle Scholar
  157. Xu HD, Wu D, Gu JH, Ge JB, Wu JC, Han R, Liang ZQ, Qin ZH (2013) The pro-survival role of autophagy depends on Bcl-2 under nutrition stress conditions. PLoS One 8(5):e63232, May 3PubMedCentralPubMedGoogle Scholar
  158. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445(7128):656–660Google Scholar
  159. Yu AL, Birke K, Moriniere J, Welge-Lüssen U (2010) TGF-{beta}2 induces senescence-associated changes in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 51(11):5718–23, NovPubMedGoogle Scholar
  160. Zhang H, Pan KH, Cohen SN (2003) Senescence-specific gene expression fingerprints reveal cell-type-dependent physical clustering of up-regulated chromosomal loci. Proc Natl Acad Sci U S A 100(6):3251–3256PubMedCentralPubMedGoogle Scholar
  161. Zhang K, Chen C, Liu Y, Chen H, Liu JP (2014) Cellular senescence occurred widespread to multiple selective sites in the fetal tissues and organs of mice. Clin Exp Pharmacol Physiol 41(12):965–75, DecPubMedGoogle Scholar
  162. Zhou F, Yang Y, Xing D (2011) Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis. FEBS J 278(3):403–13, FebPubMedGoogle Scholar
  163. Zhu J, Woods D, McMahon M, Bishop JM (1998) Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12(19):2997–3007PubMedCentralPubMedGoogle Scholar

Copyright information

© American Aging Association 2015

Authors and Affiliations

  1. 1.Department of Molecular Cell BiologyThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.School of Pharmacy & Biomolecular ScienceUniversity of BrightonBrightonUK

Personalised recommendations