Multiple roads lead to Rome: combined high-intensity aerobic and strength training vs. gross motor activities leads to equivalent improvement in executive functions in a cohort of healthy older adults

Abstract

The effects of physical activity on cognition in older adults have been extensively investigated in the last decade. Different interventions such as aerobic, strength, and gross motor training programs have resulted in improvements in cognitive functions. However, the mechanisms underlying the relationship between physical activity and cognition are still poorly understood. Recently, it was shown that acute bouts of exercise resulted in reduced executive control at higher relative exercise intensities. Considering that aging is characterized by a reduction in potential energy (\( \overset{\cdotp }{V}{\mathrm{O}}_2 \) max − energy cost of walking), which leads to higher relative walking intensity for the same absolute speed, it could be argued that any intervention aimed at reducing the relative intensity of the locomotive task would improve executive control while walking. The objective of the present study was to determine the effects of a short-term (8 weeks) high-intensity strength and aerobic training program on executive functions (single and dual task) in a cohort of healthy older adults. Fifty-one participants were included and 47 (age, 70.7 ± 5.6) completed the study which compared the effects of three interventions: lower body strength + aerobic training (LBS-A), upper body strength + aerobic training (UBS-A), and gross motor activities (GMA). Training sessions were held 3 times every week. Both physical fitness (aerobic, neuromuscular, and body composition) and cognitive functions (RNG) during a dual task were assessed before and after the intervention. Even though the LBS-A and UBS-A interventions increased potential energy to a higher level (Effect size: LBS-A—moderate, UBS-A—small, GMA—trivial), all groups showed equivalent improvement in cognitive function, with inhibition being more sensitive to the intervention. These findings suggest that different exercise programs targeting physical fitness and/or gross motor skills may lead to equivalent improvement in cognition in healthy older adults. Such results call for further investigation of the multiple physiological pathways by which physical exercise can impact cognition in older adults.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abizanda P, Navarro JL, Garcia-Tomas MI, Lopez-Jimenez E, Martinez-Sanchez E, Paterna G (2012) Validity and usefulness of hand-held dynamometry for measuring muscle strength in community-dwelling older persons. Arch Gerontol Geriatr 54(1):21–27. doi:10.1016/j.archger.2011.02.006

    PubMed  Article  Google Scholar 

  2. ACSM (1998) American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc 30(6):992–1008

    Article  Google Scholar 

  3. Angevaren M, Aufdemkampe G, Verhaar HJ, Aleman A, Vanhees L (2008) Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev 3:CD005381. doi:10.1002/14651858.CD005381.pub3

    PubMed  Google Scholar 

  4. Audiffren M, Tomporowski PD, Zagrodnik J (2009) Acute aerobic exercise and information processing: modulation of executive control in a Random Number Generation task. Acta Psychol (Amst) 132(1):85–95. doi:10.1016/j.actpsy.2009.06.008

    Article  Google Scholar 

  5. Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, Plymate SR, Fishel MA, Watson GS, Cholerton BA, Duncan GE, Mehta PD, Craft S (2010) Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol 67(1):71–79. doi:10.1001/archneurol.2009.307

    PubMed  Article  PubMed Central  Google Scholar 

  6. Barnes DE, Yaffe K, Satariano WA, Tager IB (2003) A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults. J Am Geriatr Soc 51(4):459–465

    PubMed  Article  Google Scholar 

  7. Beauchet O, Annweiler C, Dubost V, Allali G, Kressig RW, Bridenbaugh S, Berrut G, Assal F, Herrmann FR (2009) Stops walking when talking: a predictor of falls in older adults? Eur J Neurol 16(7):786–795. doi:10.1111/j.1468-1331.2009.02612.x

    PubMed  Article  CAS  Google Scholar 

  8. Berryman N, Gayda M, Nigam A, Juneau M, Bherer L, Bosquet L (2012) Comparison of the metabolic energy cost of overground and treadmill walking in older adults. Eur J Appl Physiol 112(5):1613–1620. doi:10.1007/s00421-011-2102-1

    PubMed  Article  Google Scholar 

  9. Berryman N, Bherer L, Nadeau S, Lauziere S, Lehr L, Bobeuf F, Kergoat MJ, Vu TT, Bosquet L (2013) Executive functions, physical fitness and mobility in well-functioning older adults. Exp Gerontol. doi:10.1016/j.exger.2013.08.017

    PubMed  Google Scholar 

  10. Bherer L, Erickson KI, Liu-Ambrose T (2013) A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. J Aging Res 2013:657508. doi:10.1155/2013/657508

    PubMed  PubMed Central  Google Scholar 

  11. Boucard GK, Albinet CT, Bugaiska A, Bouquet CA, Clarys D, Audiffren M (2012) Impact of physical activity on executive functions in aging: a selective effect on inhibition among old adults. J Sport Exerc Psychol 34(6):808–827

    PubMed  Google Scholar 

  12. Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28(2):193–213

    PubMed  Article  CAS  Google Scholar 

  13. Cassilhas RC, Viana VA, Grassmann V, Santos RT, Santos RF, Tufik S, Mello MT (2007) The impact of resistance exercise on the cognitive function of the elderly. Med Sci Sports Exerc 39(8):1401–1407. doi:10.1249/mss.0b013e318060111f00005768-200708000-00024

    PubMed  Article  Google Scholar 

  14. Cassilhas RC, Lee KS, Fernandes J, Oliveira MG, Tufik S, Meeusen R, de Mello MT (2012) Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience 202:309–317. doi:10.1016/j.neuroscience.2011.11.029

    PubMed  Article  CAS  Google Scholar 

  15. Cayrou S, Dickes P, Dolbeault S, Gauvain-Piquard A, Desclaux B (2000) French validation of the Profile of Mood States (POMS). Psychooncology 9(5):S52–S52

    Google Scholar 

  16. Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  17. Colcombe S, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14(2):125–130

    PubMed  Article  Google Scholar 

  18. Dupuy O, Lussier M, Fraser S, Bherer L, Audiffren M, Bosquet L (2012) Effect of overreaching on cognitive performance and related cardiac autonomic control. Scand J Med Sci Sports. doi:10.1111/j.1600-0838.2012.01465.x

    PubMed  Google Scholar 

  19. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, McAuley E, Kramer AF (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 108(7):3017–3022. doi:10.1073/pnas.1015950108

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  20. Etnier JL, Nowell PM, Landers DM, Sibley BA (2006) A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Res Rev 52(1):119–130. doi:10.1016/j.brainresrev.2006.01.002

    PubMed  Article  Google Scholar 

  21. Fabre C, Chamari K, Mucci P, Masse-Biron J, Prefaut C (2002) Improvement of cognitive function by mental and/or individualized aerobic training in healthy elderly subjects. Int J Sports Med 23(6):415–421

    PubMed  Article  CAS  Google Scholar 

  22. Fleg JL, Morrell CH, Bos AG, Brant LJ, Talbot LA, Wright JG, Lakatta EG (2005) Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation 112(5):674–682. doi:10.1161/CIRCULATIONAHA.105.545459

    PubMed  Article  Google Scholar 

  23. Fletcher JR, Esau SP, Macintosh BR (2009) Economy of running: beyond the measurement of oxygen uptake. J Appl Physiol 107(6):1918–1922. doi:10.1152/japplphysiol.00307.2009

    PubMed  Article  Google Scholar 

  24. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    PubMed  Article  CAS  Google Scholar 

  25. Forte R, Boreham CA, Leite JC, De Vito G, Brennan L, Gibney ER, Pesce C (2013) Enhancing cognitive functioning in the elderly: multicomponent vs resistance training. Clin Interv Aging 8:19–27. doi:10.2147/CIA.S36514

    PubMed  Article  PubMed Central  Google Scholar 

  26. Guiraud T, Nigam A, Gremeaux V, Meyer P, Juneau M, Bosquet L (2012) High-intensity interval training in cardiac rehabilitation. Sports Med 42(7):587–605. doi:10.2165/11631910-000000000-00000

    PubMed  Article  Google Scholar 

  27. Hartmann A, Knols R, Murer K, de Bruin ED (2009) Reproducibility of an isokinetic strength-testing protocol of the knee and ankle in older adults. Gerontology 55(3):259–268. doi:10.1159/000172832

    PubMed  Article  Google Scholar 

  28. Hawkins S, Wiswell R (2003) Rate and mechanism of maximal oxygen consumption decline with aging: implications for exercise training. Sports Med 33(12):877–888

    PubMed  Article  Google Scholar 

  29. Hillman CH, Erickson KI, Kramer AF (2008) Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9(1):58–65. doi:10.1038/nrn2298

    PubMed  Article  CAS  Google Scholar 

  30. Holt KJ, Jeng SF, Rr RR, Hamill J (1995) Energetic cost and stability during human walking at the preferred stride velocity. J Mot Behav 27(2):164–178. doi:10.1080/00222895.1995.9941708

    PubMed  Article  Google Scholar 

  31. Hortobagyi T, Finch A, Solnik S, Rider P, DeVita P (2011) Association between muscle activation and metabolic cost of walking in young and old adults. J Gerontol A Biol Sci Med Sci 66(5):541–547. doi:10.1093/gerona/glr008

    PubMed  Article  Google Scholar 

  32. Jahanshahi M, Saleem T, Ho AK, Dirnberger G, Fuller R (2006) Random number generation as an index of controlled processing. Neuropsychology 20(4):391–399. doi:10.1037/0894-4105.20.4.391

    PubMed  Article  Google Scholar 

  33. Jones CJ, Rikli RE, Beam WC (1999) A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport 70(2):113–119

    PubMed  Article  CAS  Google Scholar 

  34. Karlsen T, Helgerud J, Stoylen A, Lauritsen N, Hoff J (2009) Maximal strength training restores walking mechanical efficiency in heart patients. Int J Sports Med 30(5):337–342. doi:10.1055/s-0028-1105946

    PubMed  Article  CAS  Google Scholar 

  35. Kervio G, Carre F, Ville NS (2003) Reliability and intensity of the six-minute walk test in healthy elderly subjects. Med Sci Sports Exerc 35(1):169–174. doi:10.1249/01.MSS.0000043545.02712.A7

    PubMed  Article  Google Scholar 

  36. Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, Chason J, Vakil E, Bardell L, Boileau RA, Colcombe A (1999) Ageing, fitness and neurocognitive function. Nature 400(6743):418–419. doi:10.1038/22682

    PubMed  Article  CAS  Google Scholar 

  37. Labelle V, Bosquet L, Mekary S, Bherer L (2013) Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level. Brain Cogn 81(1):10–17. doi:10.1016/j.bandc.2012.10.001

    PubMed  Article  Google Scholar 

  38. Langlois F, Vu TT, Chasse K, Dupuis G, Kergoat MJ, Bherer L (2012) Benefits of physical exercise training on cognition and quality of life in frail older adults. J Gerontol B Psychol Sci Soc Sci. doi:10.1093/geronb/gbs069

    PubMed  Google Scholar 

  39. Larson EB, Wang L, Bowen JD, McCormick WC, Teri L, Crane P, Kukull W (2006) Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med 144(2):73–81

    PubMed  Article  Google Scholar 

  40. Lundin-Olsson L, Nyberg L, Gustafson Y (1997) “Stops walking when talking” as a predictor of falls in elderly people. Lancet 349(9052):617. doi:10.1016/S0140-6736(97)24009-2

    PubMed  Article  CAS  Google Scholar 

  41. Malatesta D, Simar D, Dauvilliers Y, Candau R, Borrani F, Prefaut C, Caillaud C (2003) Energy cost of walking and gait instability in healthy 65- and 80-yr-olds. J Appl Physiol 95(6):2248–2256. doi:10.1152/japplphysiol.01106.200201106.2002

    PubMed  Google Scholar 

  42. Matta Mello Portugal E, Cevada T, Sobral Monteiro-Junior R, Teixeira Guimaraes T, da Cruz Rubini E, Lattari E, Blois C, Camaz Deslandes A (2013) Neuroscience of exercise: from neurobiology mechanisms to mental health. Neuropsychobiology 68(1):1–14. doi:10.1159/000350946

    PubMed  Article  Google Scholar 

  43. Milot MH, Nadeau S, Gravel D (2007) Muscular utilization of the plantarflexors, hip flexors and extensors in persons with hemiparesis walking at self-selected and maximal speeds. J Electromyogr Kinesiol 17(2):184–193

    PubMed  Article  Google Scholar 

  44. Montero-Odasso M, Verghese J, Beauchet O, Hausdorff JM (2012) Gait and cognition: a complementary approach to understanding brain function and the risk of falling. J Am Geriatr Soc 60(11):2127–2136. doi:10.1111/j.1532-5415.2012.04209.x

    PubMed  PubMed Central  Google Scholar 

  45. Munro B (1997) Statistical methods for health care research, 3rd edn. Lippincott, New York

    Google Scholar 

  46. Nana A, Slater GJ, Hopkins WG, Burke LM (2013) Effects of exercise sessions on DXA measurements of body composition in active people. Med Sci Sports Exerc 45(1):178–185. doi:10.1249/MSS.0b013e31826c9cfd

    PubMed  Article  Google Scholar 

  47. Nemoto K, Gen-no H, Masuki S, Okazaki K, Nose H (2007) Effects of high-intensity interval walking training on physical fitness and blood pressure in middle-aged and older people. Mayo Clin Proc 82(7):803–811

    PubMed  Article  Google Scholar 

  48. Perrault H (2006) Efficiency of movement in health and chronic disease. Clin Invest Med 29(2):117–121

    PubMed  CAS  Google Scholar 

  49. Podsiadlo D, Richardson S (1991) The timed "Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39(2):142–148

    PubMed  CAS  Google Scholar 

  50. Renaud M, Bherer L, Maquestiaux F (2010a) A high level of physical fitness is associated with more efficient response preparation in older adults. J Gerontol B Psychol Sci Soc Sci 65(3):317–322. doi:10.1093/geronb/gbq004

    Article  Google Scholar 

  51. Renaud M, Maquestiaux F, Joncas S, Kergoat MJ, Bherer L (2010b) The effect of three months of aerobic training on response preparation in older adults. Front Aging Neurosci 2:148. doi:10.3389/fnagi.2010.00148

    PubMed  Article  PubMed Central  Google Scholar 

  52. Romero-Arenas S, Blazevich AJ, Martinez-Pascual M, Perez-Gomez J, Luque AJ, Lopez-Roman FJ, Alcaraz PE (2013) Effects of high-resistance circuit training in an elderly population. Exp Gerontol 48(3):334–340. doi:10.1016/j.exger.2013.01.007

    PubMed  Article  Google Scholar 

  53. Ronnestad BR, Mujika I (2013) Optimizing strength training for running and cycling endurance performance: a review. Scand J Med Sci Sports. doi:10.1111/sms.12104

    Google Scholar 

  54. Schrack JA, Simonsick EM, Ferrucci L (2010) The energetic pathway to mobility loss: an emerging new framework for longitudinal studies on aging. J Am Geriatr Soc 58(Suppl 2):S329–S336. doi:10.1111/j.1532-5415.2010.02913.x

    PubMed  Article  PubMed Central  Google Scholar 

  55. Smiley-Oyen AL, Lowry KA, Francois SJ, Kohut ML, Ekkekakis P (2008) Exercise, fitness, and neurocognitive function in older adults: the "selective improvement" and "cardiovascular fitness" hypotheses. Ann Behav Med 36(3):280–291. doi:10.1007/s12160-008-9064-5

    PubMed  Article  PubMed Central  Google Scholar 

  56. Smith PJ, Blumenthal JA, Hoffman BM, Cooper H, Strauman TA, Welsh-Bohmer K, Browndyke JN, Sherwood A (2010) Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med 72(3):239–252. doi:10.1097/PSY.0b013e3181d14633

    PubMed  Article  PubMed Central  Google Scholar 

  57. Towse JN, Neil D (1998) Analyzing human random generation behavior: a review of methods used and a computer program for describing performance. Behav Res Methods Instrum Comput 30(4):583–591. doi:10.3758/bf03209475

    Article  Google Scholar 

  58. Towse JN, Valentine JD (1997) Random generation of numbers: a search for underlying processes. Eur J Cogn Psychol 9(4):381–400. doi:10.1080/713752566

    Article  Google Scholar 

  59. Verdijk LB, van Loon L, Meijer K, Savelberg HH (2009) One-repetition maximum strength test represents a valid means to assess leg strength in vivo in humans. J Sports Sci 27(1):59–68

    PubMed  Article  Google Scholar 

  60. Voelcker-Rehage C, Godde B, Staudinger UM (2011) Cardiovascular and coordination training differentially improve cognitive performance and neural processing in older adults. Front Hum Neurosci 5:26. doi:10.3389/fnhum.2011.00026

    PubMed  Article  PubMed Central  Google Scholar 

  61. Voss MW, Nagamatsu LS, Liu-Ambrose T, Kramer AF (2011) Exercise, brain, and cognition across the life span. J Appl Physiol 111(5):1505–1513. doi:10.1152/japplphysiol.00210.2011

    PubMed  Article  PubMed Central  Google Scholar 

  62. Yaffe K, Barnes D, Nevitt M, Lui LY, Covinsky K (2001) A prospective study of physical activity and cognitive decline in elderly women: women who walk. Arch Intern Med 161(14):1703–1708

    PubMed  Article  CAS  Google Scholar 

  63. Yogev-Seligmann G, Hausdorff JM, Giladi N (2008) The role of executive function and attention in gait. Mov Disord 23(3):329–342. doi:10.1002/mds.21720, quiz 472

    PubMed  Article  Google Scholar 

  64. Yogev-Seligmann G, Hausdorff JM, Giladi N (2012) Do we always prioritize balance when walking? Towards an integrated model of task prioritization. Mov Disord 27(6):765–770. doi:10.1002/mds.24963

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Canadian Institutes of Health Research (CIHR #209441). LB is supported by the Canadian Research Chair Program. NB received a doctoral scholarship from the Quebec Network for Research on Aging (QNRA).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laurent Bosquet.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berryman, N., Bherer, L., Nadeau, S. et al. Multiple roads lead to Rome: combined high-intensity aerobic and strength training vs. gross motor activities leads to equivalent improvement in executive functions in a cohort of healthy older adults. AGE 36, 9710 (2014). https://doi.org/10.1007/s11357-014-9710-8

Download citation

Keywords

  • Energy cost of walking
  • Peak oxygen uptake
  • Potential energy
  • Dual task
  • Cognition
  • Mobility