Skip to main content

Satellite cells in human skeletal muscle; from birth to old age

Abstract

Changes in satellite cell content play a key role in regulating skeletal muscle growth and atrophy. Yet, there is little information on changes in satellite cell content from birth to old age in humans. The present study defines muscle fiber type-specific satellite cell content in human skeletal muscle tissue over the entire lifespan. Muscle biopsies were collected in 165 subjects, from different muscles of children undergoing surgery (<18 years; n = 13) and from the vastus lateralis muscle of young adult (18–49 years; n = 50), older (50–69 years; n = 53), and senescent subjects (70–86 years; n = 49). In a subgroup of 51 aged subjects (71 ± 6 years), additional biopsies were collected after 12 weeks of supervised resistance-type exercise training. Immunohistochemistry was applied to assess skeletal muscle fiber type-specific composition, size, and satellite cell content. From birth to adulthood, muscle fiber size increased tremendously with no major changes in muscle fiber satellite cell content, and no differences between type I and II muscle fibers. In contrast to type I muscle fibers, type II muscle fiber size was substantially smaller with increasing age in adults (r = −0.56; P < 0.001). This was accompanied by an age-related reduction in type II muscle fiber satellite cell content (r = −0.57; P < 0.001). Twelve weeks of resistance-type exercise training significantly increased type II muscle fiber size and satellite cell content. We conclude that type II muscle fiber atrophy with aging is accompanied by a specific decline in type II muscle fiber satellite cell content. Resistance-type exercise training represents an effective strategy to increase satellite cell content and reverse type II muscle fiber atrophy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Andersen JL, Terzis G, Kryger A (1999) Increase in the degree of coexpression of myosin heavy chain isoforms in skeletal muscle fibers of the very old. Muscle Nerve 22(4):449–454

    CAS  PubMed  Article  Google Scholar 

  2. Baumgartner RN, Waters DL, Gallagher D, Morley JE, Garry PJ (1999) Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev 107(2):123–136

    CAS  PubMed  Article  Google Scholar 

  3. Bergstrom J (1975) Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35(7):609–616

    CAS  PubMed  Article  Google Scholar 

  4. Brooke MH, Engel WK (1969) The histographic analysis of human muscle biopsies with regard to fiber types. 4. Children's biopsies. Neurology 19(6):591–605

    CAS  PubMed  Article  Google Scholar 

  5. Brown SC, Stickland NC (1993) Satellite cell content in muscles of large and small mice. J Anat 183(Pt 1):91–96

    PubMed Central  PubMed  Google Scholar 

  6. Bruusgaard JC, Johansen IB, Egner IM, Rana ZA, Gundersen K (2010) Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining. Proc Natl Acad Sci U S A 107(34):15111–15116

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  7. Cardasis CA, Cooper GW (1975) An analysis of nuclear numbers in individual muscle fibers during differentiation and growth: a satellite cell-muscle fiber growth unit. J Exp Zool 191(3):347–358

    CAS  PubMed  Article  Google Scholar 

  8. Cristea A, Qaisar R, Edlund PK, Lindblad J, Bengtsson E, Larsson L (2010) Effects of aging and gender on the spatial organization of nuclei in single human skeletal muscle cells. Aging Cell 9(5):685–697

    CAS  PubMed  Article  Google Scholar 

  9. Delhaas T, Van der Meer SF, Schaart G, Degens H, Drost MR (2013) Steep increase in myonuclear domain size during infancy. Anat Rec (Hoboken) 296(2):192–197

    Google Scholar 

  10. Dhawan J, Rando TA (2005) Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15(12):666–673

    CAS  PubMed  Article  Google Scholar 

  11. Dreyer HC, Blanco CE, Sattler FR, Schroeder ET, Wiswell RA (2006) Satellite cell numbers in young and older men 24 hours after eccentric exercise. Muscle Nerve 33(2):242–253

    PubMed  Article  Google Scholar 

  12. Evans W (1997) Functional and metabolic consequences of sarcopenia. J Nutr 127(5 Suppl):998S–1003S

    CAS  PubMed  Google Scholar 

  13. Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ (1990) High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA 263(22):3029–3034

    CAS  PubMed  Article  Google Scholar 

  14. Frontera WR, Meredith CN, O'Reilly KP, Knuttgen HG, Evans WJ (1988) Strength conditioning in older men: skeletal muscle hypertrophy and improved function. J Appl Physiol 64(3):1038–1044

    CAS  PubMed  Google Scholar 

  15. Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91(2):534–551

    CAS  PubMed  Google Scholar 

  16. Janssen I, Heymsfield SB, Wang ZM, Ross R (2000) Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol 89(1):81–88

    CAS  PubMed  Google Scholar 

  17. Kadi F, Charifi N, Denis C, Lexell J (2004) Satellite cells and myonuclei in young and elderly women and men. Muscle Nerve 29(1):120–127

    PubMed  Article  Google Scholar 

  18. Kadi F, Charifi N, Denis C, Lexell J, Andersen JL, Schjerling P, Olsen S, Kjaer M (2005) The behaviour of satellite cells in response to exercise: what have we learned from human studies? Pflugers Arch 451(2):319–327

    CAS  PubMed  Article  Google Scholar 

  19. Klitgaard H, Zhou M, Schiaffino S, Betto R, Salviati G, Saltin B (1990) Ageing alters the myosin heavy chain composition of single fibres from human skeletal muscle. Acta Physiol Scand 140(1):55–62

    CAS  PubMed  Article  Google Scholar 

  20. Larsson L, Sjodin B, Karlsson J (1978) Histochemical and biochemical changes in human skeletal muscle with age in sedentary males, age 22–65 years. Acta Physiol Scand 103(1):31–39

    CAS  PubMed  Article  Google Scholar 

  21. Lexell J, Taylor CC, Sjostrom M (1988) What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84(2–3):275–294

    CAS  PubMed  Article  Google Scholar 

  22. Lindle RS, Metter EJ, Lynch NA, Fleg JL, Fozard JL, Tobin J, Roy TA, Hurley BF (1997) Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J Appl Physiol 83(5):1581–1587

    CAS  PubMed  Google Scholar 

  23. Lindstrom M, Thornell LE (2009) New multiple labelling method for improved satellite cell identification in human muscle: application to a cohort of power-lifters and sedentary men. Histochem Cell Biol 132(2):141–157

    PubMed  Article  Google Scholar 

  24. Mackey AL, Esmarck B, Kadi F, Koskinen SO, Kongsgaard M, Sylvestersen A, Hansen JJ, Larsen G, Kjaer M (2007) Enhanced satellite cell proliferation with resistance training in elderly men and women. Scand J Med Sci Sports 17(1):34–42

    CAS  PubMed  Google Scholar 

  25. Mackey AL, Kjaer M, Charifi N, Henriksson J, Bojsen-Moller J, Holm L, Kadi F (2009) Assessment of satellite cell number and activity status in human skeletal muscle biopsies. Muscle Nerve 40(3):455–465

    PubMed  Article  Google Scholar 

  26. Martel GF, Roth SM, Ivey FM, Lemmer JT, Tracy BL, Hurlbut DE, Metter EJ, Hurley BF, Rogers MA (2006) Age and sex affect human muscle fibre adaptations to heavy-resistance strength training. Exp Physiol 91(2):457–464

    PubMed  Article  Google Scholar 

  27. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  28. McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Lawson BA, Grimes B, Keller C, Van Zant G, Campbell KS, Esser KA, Dupont-Versteegden EE, Peterson CA (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138(17):3657–3666

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  29. McKay BR, Toth KG, Tarnopolsky MA, Parise G (2010) Satellite cell number and cell cycle kinetics in response to acute myotrauma in humans: immunohistochemistry versus flow cytometry. J Physiol 588(Pt 17):3307–3320

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  30. Monemi M, Kadi F, Liu JX, Thornell LE, Eriksson PO (1999) Adverse changes in fibre type and myosin heavy chain compositions of human jaw muscle vs. limb muscle during ageing. Acta Physiol Scand 167(4):339–345

    CAS  PubMed  Article  Google Scholar 

  31. Oertel G (1988) Morphometric analysis of normal skeletal muscles in infancy, childhood and adolescence. An autopsy study. J Neurol Sci 88(1–3):303–313

    CAS  PubMed  Article  Google Scholar 

  32. Osterlund C, Lindstrom M, Thornell LE, Eriksson PO (2012) Remarkable heterogeneity in myosin heavy-chain composition of the human young masseter compared with young biceps brachii. Histochem Cell Biol 138(4):669–682

    PubMed  Article  Google Scholar 

  33. Petrella JK, Kim JS, Cross JM, Kosek DJ, Bamman MM (2006) Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women. Am J Physiol Endocrinol Metab 291(5):E937–E946

    CAS  PubMed  Article  Google Scholar 

  34. Petrella JK, Kim JS, Mayhew DL, Cross JM, Bamman MM (2008) Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol 104(6):1736–1742

    PubMed  Article  Google Scholar 

  35. Renault V, Thornell LE, Eriksson PO, Butler-Browne G, Mouly V (2002) Regenerative potential of human skeletal muscle during aging. Aging Cell 1(2):132–139

    CAS  PubMed  Article  Google Scholar 

  36. Roth SM, Martel GF, Ivey FM, Lemmer JT, Metter EJ, Hurley BF, Rogers MA (2000) Skeletal muscle satellite cell populations in healthy young and older men and women. Anat Rec 260(4):351–358

    CAS  PubMed  Article  Google Scholar 

  37. Roth SM, Martel GF, Ivey FM, Lemmer JT, Tracy BL, Metter EJ, Hurley BF, Rogers MA (2001) Skeletal muscle satellite cell characteristics in young and older men and women after heavy resistance strength training. J Gerontol A Biol Sci Med Sci 56(6):B240–B247

    CAS  PubMed  Article  Google Scholar 

  38. Schmalbruch H, Hellhammer U (1976) The number of satellite cells in normal human muscle. Anat Rec 185(3):279–287

    CAS  PubMed  Article  Google Scholar 

  39. Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z (2006) Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294(1):50–66

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  40. Singh MA, Ding W, Manfredi TJ, Solares GS, O'Neill EF, Clements KM, Ryan ND, Kehayias JJ, Fielding RA, Evans WJ (1999) Insulin-like growth factor I in skeletal muscle after weight-lifting exercise in frail elders. Am J Physiol 277(1 Pt 1):E135–E143

    CAS  PubMed  Google Scholar 

  41. Snijders T, Verdijk LB, van Loon LJ (2009) The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing Res Rev 8(4):328–338

    PubMed  Article  Google Scholar 

  42. Thornell LE, Lindstrom M, Renault V, Mouly V, Butler-Browne GS (2003) Satellite cells and training in the elderly. Scand J Med Sci Sports 13(1):48–55

    PubMed  Article  Google Scholar 

  43. Vassilopoulos D, Lumb EM, Emery AE (1977) Karyometric changes in human muscle with age. Eur Neurol 16(1–6):31–34

    CAS  PubMed  Article  Google Scholar 

  44. Verdijk LB, Koopman R, Schaart G, Meijer K, Savelberg HH, van Loon LJ (2007) Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab 292(1):E151–E157

    CAS  PubMed  Article  Google Scholar 

  45. Verdijk LB, Gleeson BG, Jonkers RA, Meijer K, Savelberg HH, Dendale P, van Loon LJ (2009a) Skeletal muscle hypertrophy following resistance training is accompanied by a fiber type-specific increase in satellite cell content in elderly men. J Gerontol A Biol Sci Med Sci 64(3):332–339

    PubMed  Article  Google Scholar 

  46. Verdijk LB, Jonkers RA, Gleeson BG, Beelen M, Meijer K, Savelberg HH, Wodzig WK, Dendale P, van Loon LJ (2009b) Protein supplementation before and after exercise does not further augment skeletal muscle hypertrophy after resistance training in elderly men. Am J Clin Nutr 89(2):608–616

    CAS  PubMed  Article  Google Scholar 

  47. Verney J, Kadi F, Charifi N, Feasson L, Saafi MA, Castells J, Piehl-Aulin K, Denis C (2008) Effects of combined lower body endurance and upper body resistance training on the satellite cell pool in elderly subjects. Muscle Nerve 38(3):1147–1154

    PubMed  Article  Google Scholar 

  48. Visser M, Kritchevsky SB, Goodpaster BH, Newman AB, Nevitt M, Stamm E, Harris TB (2002) Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study. J Am Geriatr Soc 50(5):897–904

    PubMed  Article  Google Scholar 

  49. Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166(3):347–357

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  50. Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54(11):1177–1191

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lex B. Verdijk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Plots of regression relationship showing significant predictors for the increase in type II muscle fiber cross-sectional area (CSA) following 3 months of resistance type exercise training in healthy elderly men (n = 51, total R = 0.73). A: change in type II muscle fiber satellite cell (SC) content (standardized B = 0.44; P = 0.001); B: change in type II muscle fiber myonuclear content (standardized B = 0.44; P = 0.004); C: baseline myonuclear content (standardized B = 0.30; P = 0.030). (DOC 119 kb)

About this article

Cite this article

Verdijk, L.B., Snijders, T., Drost, M. et al. Satellite cells in human skeletal muscle; from birth to old age. AGE 36, 545–557 (2014). https://doi.org/10.1007/s11357-013-9583-2

Download citation

Keywords

  • Muscle stem cells
  • Skeletal muscle
  • Development
  • Sarcopenia
  • Exercise