AGE

, Volume 36, Issue 1, pp 151–165 | Cite as

Presence of a neo-epitope and absence of amyloid beta and tau protein in degenerative hippocampal granules of aged mice

  • Gemma Manich
  • Jaume del Valle
  • Itsaso Cabezón
  • Antoni Camins
  • Mercè Pallàs
  • Carme Pelegrí
  • Jordi Vilaplana
Article

Abstract

Clustered pathological granules related to a degenerative process appear and increase progressively with age in the hippocampus of numerous mouse strains. We describe herein the presence of a neo-epitope of carbohydrate nature in these granules, which is not present in other brain areas and thus constitutes a new marker of these degenerative structures. We also found that this epitope is recognised by a contaminant IgM present in several antibodies obtained from mouse ascites and from both mouse and rabbit sera. These findings entail the need to revise the high number of components that are thought to be present in the granules, such as the controversial β-amyloid peptides described in the granules of senescence-accelerated mouse prone-8 (SAMP8) mice. Characterisation of the composition of SAMP8 granules, taking into account the presence of the neo-epitope and the contaminant IgM, showed that granules do not contain either β-amyloid peptides or tau protein. The presence of the neo-epitope in the granules but not in other brain areas opens up a new direction in the study of the neurodegenerative processes associated with age. The SAMP8 strain, in which the progression of the granules is enhanced, may be a useful model for this purpose.

Keywords

Aging SAMP8 Hippocampus Mouse ascites Golgi IgM Periodic acid-Schiff β-Amyloid 

References

  1. Akiyama H, Kameyama M, Akiguchi I, Sugiyama H, Kawamata T, Fukuyama H, Kimura H, Matsushita M, Takeda T (1986) Periodic acid-Schiff (PAS)-positive, granular structures increase in the brain of senescence accelerated mouse (SAM). Acta Neuropathol 72:124–129PubMedCrossRefGoogle Scholar
  2. Brändlein S, Pohle T, Ruoff N, Wozniak E, Müller-Hermelink HK, Vollmers HP (2003) Natural IgM antibodies and immunosurveillance mechanisms against epithelial cancer cells in humans. Cancer Res 63:7995–8005PubMedGoogle Scholar
  3. Canudas AM, Gutiérrez-Cuesta J, Rodriguez MI, Acuña-Castroviejo D, Sureda FX, Camins A, Pallàs M (2005) Hyperphosphorylation of microtubule-associated protein tau in senescence-accelerated mouse (SAM). Mech Ageing Dev 126:1300–1304PubMedCrossRefGoogle Scholar
  4. Cobb BA, Kasper DL (2005) Coming of age: carbohydrates and immunity. Eur J Immunol 35:352–356PubMedCrossRefGoogle Scholar
  5. Currais A, Prior M, Lo D, Jolivalt C, Schubert D, Maher P (2012) Diabetes exacerbates amyloid and neurovascular pathology in aging-accelerated mice. Aging Cell 11:1017–1026PubMedCentralPubMedCrossRefGoogle Scholar
  6. Del Valle J, Duran-Vilaregut J, Manich G, Casadesús G, Smith MA, Camins A, Pallàs M, Pelegrí C, Vilaplana J (2010) Early amyloid accumulation in the hippocampus of SAMP8 mice. J Alzheimers Dis 19:1303–1315PubMedGoogle Scholar
  7. Doehner J, Madhusudan A, Konietzko U, Fritschy JM, Knuesel I (2010) Co-localization of Reelin and proteolytic AbetaPP fragments in hippocampal plaques in aged wild-type mice. J Alzheimers Dis 19:1339–1357PubMedGoogle Scholar
  8. Finstad CL, Yin BW, Gordon CM, Federici MG, Welt S, Lloyd KO (1991) Some monoclonal antibody reagents (C219 and JSB-1) to P-glycoprotein contain antibodies to blood group A carbohydrate determinants: a problem of quality control for immunohistochemical analysis. J Histochem Cytochem 39:1603–1610PubMedCrossRefGoogle Scholar
  9. Fukunari A, Kato A, Sakai Y, Yoshimoto T, Ishiura S, Suzuki K, Nakajima T (1994) CoIocalization of prolyl endopeptidase and amyloid P-peptide in brains of senescence-accelerated mouse. Neurosci Lett 176:201–204PubMedCrossRefGoogle Scholar
  10. Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605PubMedCrossRefGoogle Scholar
  11. Gooi HC, Feizi T (1982) Natural antibodies as contaminants of hybridoma products. Biochem Biophys Res Commun 106:539–545PubMedCrossRefGoogle Scholar
  12. Grönwall C, Vas J, Silverman GJ (2012) Protective roles of natural IgM antibodies. Front Immunol 3:66PubMedCentralPubMedCrossRefGoogle Scholar
  13. Jucker M, Walker L, Martin L, Kitt C, Kleinman H, Ingram DK, Price D (1992) Age-associated inclusions in normal and transgenic mouse brain. Science 255:1445CrossRefGoogle Scholar
  14. Jucker M, Walker LC, Schwarb P, Hengemihle J, Kuo H, Snow D, Bamert F, Ingram DK (1994) Age-related deposition of glia-associated fibrillar material in brains of C57BL/6 mice. Neuroscience 60:875–89PubMedCrossRefGoogle Scholar
  15. Kawamata T, Akiguchi I, Yagi H, Irino M, Sugiyama H, Akiyama H, Shimada A, Takemura M, Ueno M, Kitabayashi T, Ohnishi K, Seriu N, Higuchi K, Hosokawa M, Takeda T (1997) Neuropathological studies on strains of senescence-accelerated mice (SAM) with age-related deficits in learning and memory. Exp Gerontol 32:161–169PubMedCrossRefGoogle Scholar
  16. Kitamura Y, Zhao XH, Ohnuki T, Takei M, Nomura Y (1992) Age-related changes in transmitter glutamate and NMDA receptor/channels in the brain of senescence-accelerated mouse. Neurosci Lett 137:169–172PubMedCrossRefGoogle Scholar
  17. Kliman HJ, Feinberg RF, Schwartz LB, Feinman M, Lavi E, Meaddough EL (1995) A mucin-like glycoprotein identified by MAG (mouse ascites Golgi) antibodies. Menstrual cycle-dependent localization in human endometrium. Am J Pathol 146:166–181PubMedGoogle Scholar
  18. Knuesel I, Nyffeler M, Mormède C, Muhia M, Meyer U, Pietropaolo S, Yee BK, Pryce CR, LaFerla FM, Marighetto A, Feldon J (2009) Age-related accumulation of Reelin in amyloid-like deposits. Neurobiol Aging 30:697–716PubMedCrossRefGoogle Scholar
  19. Kumar VB, Farr SA, Flood JF, Kamlesh V, Franko M, Banks WA, Morley JE (2000) Site-directed antisense oligonucleotide decreases the expression of amyloid precursor protein and reverses deficits in learning and memory in aged SAMP8 mice. Peptides 21:1769–1775PubMedCrossRefGoogle Scholar
  20. Kuo H, Ingram DK, Walker LC, Tian M, Hengemihle JM, Jucker M (1996) Similarities in the age-related hippocampal deposition of periodic acid-Schiff-positive granules in the senescence-accelerated mouse P8 and C57BL/6 mouse strains. Neuroscience 74:733–740PubMedCrossRefGoogle Scholar
  21. Lamar CH, Hinsman EJ, Henrikson CK (1976) Alterations in the hippocampus of aged mice. Acta Neuropathol 36:387–391PubMedCrossRefGoogle Scholar
  22. Manich G, Mercader C, Del Valle J, Duran-Vilaregut J, Camins A, Pallàs M, Vilaplana J, Pelegrí C (2011) Characterization of amyloid-β granules in the hippocampus of SAMP8 mice. J Alzheimers Dis 25:535–546PubMedGoogle Scholar
  23. Mitsuno S, Takahashi M, Gondo T, Hoshii Y, Hanai N, Ishihara T, Yamada M (1999) Immunohistochemical, conventional and immunoelectron microscopical characteristics of periodic acid-Schiff-positive granules in the mouse brain. Acta Neuropathol 98:31–38PubMedCrossRefGoogle Scholar
  24. Miyamoto M (1997) Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP8 and SAMP10. Exp Gerontol 32(1–2):139–148PubMedCrossRefGoogle Scholar
  25. Morley JE, Kumar VB, Bernardo AE, Farr SA, Uezu K, Tumosa N, Flood JF (2000) Beta-amyloid precursor polypeptide in SAMP8 mice affects learning and memory. Peptides 21:1761–1767PubMedCrossRefGoogle Scholar
  26. Nomura Y, Okuma Y (1999) Age-related defects in lifespan and learning ability in SAMP8 mice. Neurobiol Aging 20:111–115PubMedCrossRefGoogle Scholar
  27. Nomura Y, Yamanaka Y, Kitamura Y, Arima T, Ohnuki T, Oomura Y, Sasaki K, Nagashima K, Ihara Y (1996) Senescence-accelerated mouse. Neurochemical studies on aging. Ann N Y Acad Sci 786:410–418Google Scholar
  28. Ouwendijk WJD, Flowerdew SE, Wick D, Horn AK, Sinicina I, Strupp M, Osterhaus AD, Verjans GM, Hüfner K (2012) Immunohistochemical detection of intra-neuronal VZV proteins in snap-frozen human ganglia is confounded by antibodies directed against blood group A1-associated antigens. J Neurovirol 18:172–180PubMedCrossRefGoogle Scholar
  29. Porquet D, Casadesús G, Bayod S, Vicente A, Canudas AM, Vilaplana J, Pelegrí C, Sanfeliu C, Camins A, Pallàs M, Del Valle J (2013) Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age (Dordr). In press. doi:10.1007/s11357-012-9489-4
  30. Schmidt AM, Hori O, Brett J, Yan SD, Wautier JL, Stern D (1994) Cellular receptors for advanced glycation end products: implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb 14:1521–1528PubMedCrossRefGoogle Scholar
  31. Shaw MA (1986) Inherent anti-A in mouse ascites fluid. Med Lab Sci 43:194–195PubMedGoogle Scholar
  32. Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44:129–146PubMedCrossRefGoogle Scholar
  33. Soontornniyomkij V, Risbrough VB, Young JW, Soontornniyomkij B, Jeste DV, Achim CL (2012) Increased hippocampal accumulation of autophagosomes predicts short-term recognition memory impairment in aged mice. Age 34:305–316PubMedCrossRefGoogle Scholar
  34. Spicer SS, Spivey M, Ito M, Schulte B (1994) Some ascites monoclonal antibody preparations contain contaminants that bind to selected Golgi zones or mast cells. J Histochem Cytochem 42:213–221PubMedCrossRefGoogle Scholar
  35. Takeda T (2009) Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem Res 34:639–659PubMedCrossRefGoogle Scholar
  36. Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T, Tomita Y, Yasuhira K, Hamamoto H, Shimizu K, Ishii M, Yamamuro T (1981) A new murine model of accelerated senescence. Mech Ageing Dev 17:183–194PubMedCrossRefGoogle Scholar
  37. Takemura M, Nakamura S, Akiguchi I, Ueno M, Oka N, Ishikawa S, Shimada A, Kimura J, Takeda T (1993) Beta/A4 proteinlike immunoreactive granular structures in the brain of senescence-accelerated mouse. Am J Pathol 142:1887–1897PubMedGoogle Scholar
  38. Veurink G, Liu D, Taddei K, Perry G, Smith MA, Robertson TA, Hone E, Groth DM, Atwood CS, Martins RN (2003) Reduction of inclusion body pathology in ApoE-deficient mice fed a combination of antioxidants. Free Radic Biol Med 34:1070–1077PubMedCrossRefGoogle Scholar
  39. Vollmers HP, Brändlein S (2006) Natural IgM antibodies: the orphaned molecules in immune surveillance. Adv Drug Deliv Rev 58:755–765PubMedCrossRefGoogle Scholar
  40. Wei X, Zhang Y, Zhou J (1999) Differential display and cloning of the hippocampal gene mRNAs in senescence accelerated mouse. Neurosci Lett 275:17–20PubMedCrossRefGoogle Scholar
  41. Yamaguchi Y, Saito K, Matsuno T, Takeda K, Hino M (2012) Effects of ZSET1446/ST101 on cognitive deficits and amyloid β deposition in the senescence accelerated prone mouse brain. J Pharmacol Sci 119:160–166PubMedCrossRefGoogle Scholar
  42. Zhang G, Zhang B, Fu X, Tomozawa H, Matsumoto K, Higuchi K, Mori M (2008) Senescence-accelerated mouse (SAM) strains have a spontaneous mutation in the Abcb1a gene. Exp Anim 57:413–417PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association 2013

Authors and Affiliations

  • Gemma Manich
    • 1
  • Jaume del Valle
    • 1
    • 3
  • Itsaso Cabezón
    • 1
  • Antoni Camins
    • 2
    • 3
  • Mercè Pallàs
    • 2
    • 3
  • Carme Pelegrí
    • 1
    • 3
  • Jordi Vilaplana
    • 1
    • 3
  1. 1.Departament de Fisiologia, Facultat de FarmàciaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina (IBUB)Universitat de BarcelonaBarcelonaSpain
  3. 3.CIBERNED, Centros de Biomedicina en Red de Enfermedades NeurodegenerativasBarcelonaSpain

Personalised recommendations