AGE

, Volume 36, Issue 1, pp 251–264 | Cite as

Metabolic changes in the anterior and posterior cingulate cortices of the normal aging brain: proton magnetic resonance spectroscopy study at 3 T

  • Pui-Wai Chiu
  • Henry Ka-Fung Mak
  • Kelvin Kai-Wing Yau
  • Queenie Chan
  • Raymond Chuen-Chung Chang
  • Leung-Wing Chu
Article

Abstract

Magnetic resonance spectroscopy (MRS) can explore aging at a molecular level. In this study, we investigated the relationships between regional concentrations of metabolites (such as choline, creatine, myo-inositol, and N-acetyl-aspartate) and normal aging in 30 cognitively normal subjects (15 women and 15 men, age range 22–82, mean = 49.9 ± 18.3 years) using quantitative proton magnetic resonance spectroscopy. All MR scans were performed using a 3 T scanner. Point resolved spectroscopy was used as the volume selection method for the region-of-interest and the excitation method for water suppression. Single voxel spectroscopy with short echo time of 39 ms and repetition time of 2,000 ms was employed. Single voxels were placed in the limbic regions, i.e., anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and left and right hippocampi. Cerebrospinal fluid normalization and T1 and T2 correction factors were implemented in the calculation of absolute metabolite concentrations. A standardized T1W 3D volumetric fast field echo and axial T2-weighted fast spin-echo images were also acquired. Our results showed significant positive correlation of choline (r = 0.545, p = 0.002), creatine (r = 0.571, p = 0.001), and N-acetyl-aspartate (r = 0.674, p < 0.001) in the ACC; choline (r = 0.614, p < 0.001), creatine (r = 0.670, p < 0.001), and N-acetyl-aspartate (r = 0.528, p = 0.003) in the PCC; and NAA (r = 0.409, p = 0.025) in the left hippocampus, with age. No significant gender effect on metabolite concentrations was found. In aging, increases in choline and creatine might suggest glial proliferation, and an increase in N-acetyl-aspartate might indicate neuronal hypertrophy. Such findings highlight the metabolic changes of ACC and PCC with age, which could be compensatory to an increased energy demand coupled with a lower cerebral blood flow.

Keywords

Aging Anterior cingulate cortex Posterior cingulate cortex Magnetic resonance spectroscopy Neuronal hypertrophy Absolute quantification 

References

  1. Ances BM, Leontiev O, Perthen JE, Liang C, Lansing AE, Buxton RB (2008) Regional differences in the coupling of cerebral blood flow and oxygen metabolic changes in response to activation: implications for BOLD-fMRI. NeuroImage 29:1510–1521CrossRefGoogle Scholar
  2. Angelie E, Bonmartin A, Boudraa A, Gonnaud PM, Mallet JJ, Sappey-Marinier D (2001) Regional differences and metabolic changes in normal aging of the human brain: proton MR spectroscopic imaging study. AJNR Am J Neuroradiol 22:119–127PubMedGoogle Scholar
  3. Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–35PubMedCentralPubMedCrossRefGoogle Scholar
  4. Brody H (1955) Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. J Comp Neurol 102:511–16PubMedCrossRefGoogle Scholar
  5. Brooks JCW, Roberts N, Kemp GJ, Gosney MA, Lye M, Whitehouse GH (2001) A proton magnetic resonance spectroscopy study of age-related changes in frontal lobe metabolite concentrations. Cereb Cortex 11:598–605PubMedCrossRefGoogle Scholar
  6. Burke SN, Barnes CA (2006) Neural plasticity in the ageing brain. Nat Rev Neurosci 7:30–40PubMedCrossRefGoogle Scholar
  7. Cabeza R, Anderson ND, Locantore JK, McIntosh AR (2002) Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage 17:1394–1402PubMedCrossRefGoogle Scholar
  8. Chang L, Ernst T, Poland RE, Jenden DJ (1996) In vivo proton magnetic resonance spectroscopy of the normal aging human brain. Life Sci 58:2049–2056PubMedCrossRefGoogle Scholar
  9. Charlton RA, McIntyre DJO, Howe FA, Morris RG, Markus HS (2007) The relationship between white matter brain metabolites and cognition in normal aging: the GENIE study. Brain Research 1164:108–16PubMedCrossRefGoogle Scholar
  10. Chiu HFK, Lee HC, Chung WS, Kwong PK (1994) Reliability and validity of the Cantonese version of Mini-Mental State Examination—a preliminary study. J Hong Kong Coll Psychiatr 4:25–28Google Scholar
  11. Chu LW, Chiu KC, Hui SL, Yu GKK, Tsui WJC, Lee PWH (2000) The reliability and validity of the Alzheimer’s Disease Assessment Scale cognitive Subscale (ADAS-cog) among the elderly Chinese in Hong Kong. Annals Academy of Singapore 29:478–85Google Scholar
  12. Chu LW, Tam S, Lee PWH, Yik PY, Song YQ, Cheung BMY, Lam KSL (2009) Late-life body mass index and waist circumference in amnestic mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 17:223–32PubMedGoogle Scholar
  13. Coleman PD, Flood DG (1987) Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neurobiol Aging 8:521–545PubMedCrossRefGoogle Scholar
  14. de Graff RA (2007) In vivo NMR spectroscopy: principles and techniques, 2nd edn. Wiley, ChichesterCrossRefGoogle Scholar
  15. Finch CE (2003) Neurons, glia and plasticity in normal brain aging. Neurobiol Aging 24:S123–S127PubMedCrossRefGoogle Scholar
  16. Glanville NT, Byers DM, Cook HW, Spence MW, Palmer FB (1989) Differences in the metabolism of inositol and phosphoinositides by cultured cells of neuronal and glial origin. Biochem Biophys Acta 1004:169–79PubMedCrossRefGoogle Scholar
  17. Grachev ID, Swarnkar A, Szeverenyi NM, Ramachandran TS, Apkarian AV (2001) Aging alters regional multichemical profile of the human brain: an in vivo 1H-MRS study of young versus middle-aged subjects. J Neurochem 77:292–303PubMedCrossRefGoogle Scholar
  18. Gruber S, Pinker K, Riederer F, Chmelík M, Stadlbauer A, Bittšanský M, Mlynárik V, Frey R, Serles W, Bodamer O, Moser E (2008) Metabolic changes in the normal ageing brain: consistent findings from short and long echo time proton spectroscopy. Eur J Radiol 68:320–327PubMedCrossRefGoogle Scholar
  19. Gruetter R, Weisdorf SA, Rajanayagan V, Terpstra M, Merkle H, Truwit CL, Garwood M, Nyberg SL, Ugurbil K (1998) Resolution improvements in in vivo 1H NMR spectra with increased magnetic field strength. J Magn Reson 135:260–264PubMedCrossRefGoogle Scholar
  20. Harada M, Miyoshi H, Otsuka H, Nishitani H, Uno M (2001) Multivariate analysis of regional metabolic differences in normal ageing on localised quantitative proton MR spectroscopy. Neuroradiol 43:448–452CrossRefGoogle Scholar
  21. Hedden T, Gabrieli JDE (2004) Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 87–96Google Scholar
  22. Heinzer-Schweizer S, De Zanche N, Pavan M, Mens G, Struzenegger U, Henning A, Boesiger P (2010) In-vivo assessment of tissue metabolite levels using 1H MRS and the Electric REference To access In vivo Concentrations (ERETIC) method. NMR in Biomed 23:406–413Google Scholar
  23. Hirono N, Mori E, Ishii K, Ikejiri Y, Imamura T, Shimomura T, Hashimoto M, Yamashita H, Sasaki M (1998) Hypofunction in the posterior cingulate gyrus correlates with disorientation for time and place in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 64:552–554PubMedCrossRefGoogle Scholar
  24. Iacono D, O’Brien R, Resnick SM, Zonderman AB, Pletnikova O, Rudow G, An Y, West MJ, Crain B, Troncoso JC (2008) Neuronal hypertrophy in asymptomatic Alzheimer disease. J Neuropathol Exp Neurol 67:578–89PubMedCentralPubMedCrossRefGoogle Scholar
  25. Imamura K (2003) Proton MR spectroscopy of the brain with a focus on chemical issues. Magn Reson Med 2:117–132Google Scholar
  26. Jansen JFA, Backes WH, Nicolay K, Kooi ME (2006) 1H MRS of brain absolute quantification of metabolites. Radiology 240:318–332PubMedCrossRefGoogle Scholar
  27. Kantarci K, Jack CR Jr, Xu YC, Campeau NG, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Kokmen E, Tangalos EG, Petersen RC (2000) Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease: a 1H MRS study. Neurology 55:210–217PubMedCentralPubMedCrossRefGoogle Scholar
  28. Kreis R, Slotboom J, Hofmann L, Boesch C (2005) Integrated data acquisition and processing to determine metabolite contents, relaxation times, and macromolecule baseline in single examinations of individual subjects. Magn Reson Med 54:761–8PubMedCrossRefGoogle Scholar
  29. Leary SM, Brex PA, MacManus DG, Parker GJM, Barker GJ, Miller DH, Thompson AJ (2000) A 1H magnetic resonance spectroscopy study of aging in parietal white matter: implications for trials in multiple sclerosis. Magn Reson Imaging 18:455–459PubMedCrossRefGoogle Scholar
  30. Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, Kukull W, Morris JC, Hulette CM, Schmechel D, Rogers J, Stephan DA (2008) Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci 105:4441–4446PubMedCrossRefGoogle Scholar
  31. Lu H, Xu F, Rodrigue KM, Cheng Y, Flicker B, Hebrank AC, Uh J, Park DC (2011) Alterations in cerebral metabolic rate and blood supply across the adult lifespan. Cereb Cortex 21:1426–1434PubMedCrossRefGoogle Scholar
  32. Mak HK, Zhang Z, Yau KKW, Zhang L, Chan Q, Chu LW (2011) Efficacy of voxel-based morphometry with DARTEL and standard registration as imaging biomarkers in Alzheimer's patients and cognitively normal older adults at 3.0 Tesla MR imaging. J Alzheimer’s Dis 23:655–664Google Scholar
  33. Martin WRW (2007) MR spectroscopy in neurodegenerative disease. Mol Imaging Biol 9:196–203PubMedCrossRefGoogle Scholar
  34. Maguire EA, Frith CD (2003) Aging affects the engagement of the hippocampus during autobiographical memory retrieval. Brain 126:1511–1523PubMedCrossRefGoogle Scholar
  35. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 42:85–94PubMedCrossRefGoogle Scholar
  36. Milham MP, Erickson KI, Banich MT, Kramer AF, Webb A, Wszalek T, Cohen NJ (2002) Attention control in the aging brain: insights from an fMRI study of the Stroop task. Brain Cogn 49:277–96PubMedCrossRefGoogle Scholar
  37. Mlynarik V, Gruber S, Moser E (2001) Proton T1 and T2 relaxation times of human brain metabolites at 3 Tesla. NMR Biomed 14:325–331PubMedCrossRefGoogle Scholar
  38. Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278:412–19PubMedCrossRefGoogle Scholar
  39. Mrak RE, Griffin WST (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26:349–354PubMedCrossRefGoogle Scholar
  40. Nielson KA, Douville KL, Seidenberg M, Woodard JL, Miller SK, Franczak M, Antuono P, Rao SM (2006) Age-related functional recruitment for famous name recognition: an event-related fMRI study. Neurobiol Aging 27:1494–1504PubMedCentralPubMedCrossRefGoogle Scholar
  41. O’Brien RJ, Resnick SM, Zonderman AB, Ferrucci L, Crain BJ, Pletnikova O, Rudow G, Iacono D, Riudavets MA, Driscoll I, Price DL, Martin LJ, Troncoso JC (2009) Neuropathologic studies of the Baltimore Longitudinal Study of Aging (BLSA). J Alzheimer’s Dis 18:665–675Google Scholar
  42. Pardo JV, Lee JT, Sheikh SA, Surerus-Johnson C, Shah H, Munch KR, Carlis JV, Lewis SM, Kuskowski MA, Dysken MW (2007) Where the brain grows old: decline in anterior cingulated and medial prefrontal function with normal aging. NeuroImage 35:1231–37PubMedCentralPubMedCrossRefGoogle Scholar
  43. Petersen RC, Smith G, Kokman E, Ivnik RJ, Tangalos EG (1992) Memory function in normal aging. Neurology 42:396–401PubMedCrossRefGoogle Scholar
  44. Pfefferbaum A, Adalsteinsson E, Spielman D, Sullivan EV, Lim KO (1999) In vivo spectroscopic quantification of the N-acetyl moiety, creatine, and choline from large volumes of brain gray and white matter: effects of normal aging. Magn Reson Med 41:276–284PubMedCrossRefGoogle Scholar
  45. Raininko R, Mattsson P (2010) Metabolite concentrations in supraventricular white matter from teenage to early old age: a short echo time 1H magnetic resonance spectroscopy (MRS) study. Acta Radiologica 51:309–315PubMedCrossRefGoogle Scholar
  46. Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, Thibodeau SN, Osborne D (1996) Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon-4 allele for apolipoprotein E. N Engl J Med 334:752–758PubMedCrossRefGoogle Scholar
  47. Restom K, Bangen KJ, Bondi MW, Perthen JE, Liu TT (2007) Cerebral blood flow and BOLD responses to a memory encoding task: a comparison between healthy young and elderly adults. NeuroImage 37:430–439PubMedCentralPubMedCrossRefGoogle Scholar
  48. Reuter-Lorenz PA, Cappell KA (2008) Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science 17:177–182CrossRefGoogle Scholar
  49. Reyngoudt H, De Deene Y, Descamps B, Paemeleire K, Achten E (2010) 1H-MRS of brain metabolites in migraine without aura: absolute quantification using the phantom replacement technique. Magn Reson Mater Phys 4:227–241CrossRefGoogle Scholar
  50. Reyngoudt H, Claeys T, Vlerick L, Verleden S, Acou M, Deblaere K, De Deene Y, Audenaert K, Goethals I, Achten E (2012) Age-related differences in metabolites in the posterior cingulate cortex and hippocampus of normal ageing brain: a 1H-MRS study. Eur J Radiol 81:e223–e231PubMedCrossRefGoogle Scholar
  51. Riudavets MA, Iacono D, Resnick SM, O’Brien R, Zonderman AB, Martin LJ, Rudow G, Pletnikova O, Troncoso JC (2007) Resistance to Alzheimer’s pathology is associated with nuclear hypertrophy in neurons. Neurobiol Aging 28:1484–1492PubMedCentralPubMedCrossRefGoogle Scholar
  52. Ross BD, Bluml S, Cowan R, Danielsen E, Farrow N, Tan J (1998) In vivo MR spectroscopy of human dementia. Neuroimaging Clin N Am 8:809–22PubMedGoogle Scholar
  53. Ross AJ, Sachdev PS (2004) Magnetic resonance spectroscopy in cognitive research. Brain Research Reviews 44:83–102PubMedCrossRefGoogle Scholar
  54. Saunders DE, Howe FA, van den Boogaart A, Griffiths JR, Brown MM (1999) Aging of the adult human brain: in vivo quantitation of metabolite content with proton magnetic resonance spectroscopy. J Magn Reson Imaging 9:711–16PubMedCrossRefGoogle Scholar
  55. Schuff N, Ezekiel F, Gamst AC, Amend DL, Capizzano AA, Maudsley AA, Weiner MW (2001) Region and tissue differences of metabolites in normally aged brain using multislice 1H magnetic resonance spectroscopic imaging. Magn Reson Med 45:899–907PubMedCentralPubMedCrossRefGoogle Scholar
  56. Shinno H, Inagaki T, Miyaoka T, Okazaki S, Kawamukai T, Utani E, Inami Y, Horiguchi J (2007) A decrease in N-acetylaspartate and an increase in myoinositol in the anterior cingulate gyrus are associated with behavioral and psychological symptoms in Alzheimer's disease. J Neurol Sci 260:132–138PubMedCrossRefGoogle Scholar
  57. Smith CD, Landrum W, Carney JM, Landfield PW, Avison MJ (1997) Brain creatine kinase with aging in F-344 rats: analysis by saturation transfer magnetic spectroscopy. Neurobiol Aging 18:617–22PubMedCrossRefGoogle Scholar
  58. Sperling RA, Bates JF, Chua EF, Cocchiarella AJ, Rentz DM, Rosen BR, Schacter DL, Albert MS (2003) fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74:44–50PubMedCrossRefGoogle Scholar
  59. Stefan D, Di Cesare F, Andrasescu A, Popa E, Lazariev A, Vescovo E, Strbak O, Williams S, Starcuk Z, Cabanas M, van Ormondt D, Graveron-Demilly D (2009) Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Meas Sci Technol 20:104035CrossRefGoogle Scholar
  60. Terry RD, DeTteresa R, Hansen LA (1987) Neocortical cell counts in normal human adult aging. Ann Neurol 21:530–539PubMedCrossRefGoogle Scholar
  61. Träber F, Block W, Lamerichs R, Gieseke J, Schild HH (2004) 1H metabolite relaxation times at 3.0 Tesla: measurements of T1 and T2 values in normal brain and determination of regional differences in transverse relaxation. Magn Reson Imaging 19:537–545Google Scholar
  62. Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13:981–89PubMedGoogle Scholar
  63. Ugurbil K, Adriany G, Andersen P, Chen W, Gruetter R, Hu X, Merkle H, Kim DS, Kim SG, Strupp J, Zhu XH, Ogawa S (2000) Magnetic resonance studies of brain function and neurochemistry. Annu Rev Biomed Eng 2:633–660PubMedCrossRefGoogle Scholar
  64. Vehmas AK, Kawas CH, Stewart WF, Troncoso JC (2003) Immune reactive cells in senile plaques and cognitive decline in Alzheimer’s disease. Neurobiol Aging 24:321–31PubMedCrossRefGoogle Scholar
  65. Wang Z, Zhao C, Yu L, Zhou W, Li K (2009) Regional metabolic changes in the hippocampus and posterior cingulate area detected with 3-Tesla magnetic resonance spectroscopy in patients with mild cognitive impairment and Alzheimer disease. Acta Radiologica 50:312–319PubMedCrossRefGoogle Scholar
  66. Weschler DA (1997) Weschler Memory Scale-III. Psychological Corp, New YorkGoogle Scholar
  67. West MJ, Coleman PD, Flood DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344:769–772PubMedCrossRefGoogle Scholar
  68. Yankner B, Lu T, Loerch P (2008) The aging brain. Annul Rev Pathol Mech Dis 3:41–66CrossRefGoogle Scholar
  69. Yeo RA, Hill D, Campbell R, Vigil J, Brooks WM (2000) Developmental instability and working memory ability in children: a magnetic resonance spectroscopy investigation. Developmental Neuropsychology 17:143–59PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association 2013

Authors and Affiliations

  • Pui-Wai Chiu
    • 1
  • Henry Ka-Fung Mak
    • 1
    • 6
    • 7
    • 8
  • Kelvin Kai-Wing Yau
    • 2
  • Queenie Chan
    • 1
    • 3
  • Raymond Chuen-Chung Chang
    • 4
    • 6
    • 7
  • Leung-Wing Chu
    • 5
    • 6
    • 7
  1. 1.Department of Diagnostic Radiology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
  2. 2.Department of Management SciencesCity University of Hong KongHong KongChina
  3. 3.Philips HealthcareHong KongChina
  4. 4.Laboratory of Neurodegenerative Disease, Department of Anatomy, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
  5. 5.Division of Geriatric Medicine, Department of MedicineQueen Mary HospitalHong KongChina
  6. 6.Alzheimer’s Disease Research NetworkThe University of Hong KongHong KongChina
  7. 7.Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
  8. 8.Queen Mary HospitalHong KongChina

Personalised recommendations