AGE

, Volume 35, Issue 6, pp 2445–2454 | Cite as

Association of the K153R polymorphism in the myostatin gene and extreme longevity

  • Nuria Garatachea
  • Tomàs Pinós
  • Yolanda Cámara
  • Gabriel Rodríguez-Romo
  • Enzo Emanuele
  • Giovanni Ricevuti
  • Letizia Venturini
  • Alejandro Santos-Lozano
  • Catalina Santiago-Dorrego
  • Carmen Fiuza-Luces
  • Thomas Yvert
  • Antoni L. Andreu
  • Alejandro Lucia
Article

Abstract

The myostatin (MSTN) gene is a candidate to influence extreme longevity owing to its role in modulating muscle mass and sarcopenia and especially in inhibiting the main nutrient-sensing pathway involved in longevity, i.e. mammalian target of rapamycin. We compared allele/genotype distributions of the exonic MSTN variants K153R (rs1805086), E164K (rs35781413), I225T and P198A, in Spanish centenarians (cases, n = 156; 132 women, age range 100–111 years) and younger adults (controls, n = 384; 167 women, age <50 years). No subject of either group carried a mutant allele of the E164K, I225T or P198A variation. The frequency of the variant R allele was significantly higher in centenarians (7.1 %) than in controls (2.7 %) (P = 0.001). The odds ratio of being a centenarian if the subject had the R allele was 3.48 (95 % confidence interval 1.67–7.28, P = 0.001), compared to the control group, after adjusting for sex. The results were replicated in an Italian cohort (centenarians, n = 79 (40 women), age range 100–104 years; younger controls, n = 316 (155 women), age <50 years), where a higher frequency of the R allele in centenarians (7.6 %) compared to controls (3.0 %) (P = 0.004) was independently confirmed. Although more research is needed, the variant allele of the MSTN K153R polymorphism could be among the genetic contributors associated with exceptional longevity.

Keywords

Centenarians MSTN Genetics 

Notes

Acknowledgments

This study was funded by the Fondo de Investigaciones Sanitarias (FIS, ref. # PS09/00194).

References

  1. Amirouche A, Durieux AC, Banzet S, Koulmann N, Bonnefoy R, Mouret C, Bigard X, Peinnequin A, Freyssenet D (2009) Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology 150(1):286–294. doi:10.1210/en.2008-0959 PubMedGoogle Scholar
  2. Baumann AP, Ibebunjo C, Grasser WA, Paralkar VM (2003) Myostatin expression in age and denervation-induced skeletal muscle atrophy. J Musculoskelet Neuronal Interact 3(1):8–16PubMedGoogle Scholar
  3. Benny Klimek ME, Aydogdu T, Link MJ, Pons M, Koniaris LG, Zimmers TA (2010) Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochem Biophys Res Commun 391(3):1548–1554. doi:10.1016/j.bbrc.2009.12.123 PubMedGoogle Scholar
  4. Bjedov I, Partridge L (2011) A longer and healthier life with TOR down-regulation: genetics and drugs. Biochem Soc Trans 39(2):460–465. doi:10.1042/BST0390460 PubMedGoogle Scholar
  5. Bogdanovich S, Krag TO, Barton ER, Morris LD, Whittemore LA, Ahima RS, Khurana TS (2002) Functional improvement of dystrophic muscle by myostatin blockade. Nature 420(6914):418–421. doi:10.1038/nature01154 PubMedGoogle Scholar
  6. Carlson CJ, Booth FW, Gordon SE (1999) Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Physiol 277(2 Pt 2):R601–606PubMedGoogle Scholar
  7. Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN, Abecasis G, Altshuler D, Bailey-Wilson JE, Brooks LD, Cardon LR, Daly M, Donnelly P, Fraumeni JF Jr, Freimer NB, Gerhard DS, Gunter C, Guttmacher AE, Guyer MS, Harris EL, Hoh J, Hoover R, Kong CA, Merikangas KR, Morton CC, Palmer LJ, Phimister EG, Rice JP, Roberts J, Rotimi C, Tucker MA, Vogan KJ, Wacholder S, Wijsman EM, Winn DM, Collins FS (2007) Replicating genotype-phenotype associations. Nature 447(7145):655–660. doi:10.1038/447655a PubMedGoogle Scholar
  8. Christensen K, McGue M, Petersen I, Jeune B, Vaupel JW (2008) Exceptional longevity does not result in excessive levels of disability. Proc Natl Acad Sci U S A 105(36):13274–13279. doi:10.1073/pnas.0804931105 PubMedGoogle Scholar
  9. Collin C, Wade DT, Davies S, Horne V (1988) The Barthel ADL Index: a reliability study. Int Disabil Stud 10(2):61–63PubMedGoogle Scholar
  10. Constantin D, McCullough J, Mahajan RP, Greenhaff PL (2011) Novel events in the molecular regulation of muscle mass in critically ill patients. J Physiol 589(Pt 15):3883–3895. doi:10.1113/jphysiol.2011.206193 PubMedGoogle Scholar
  11. Corsi AM, Ferrucci L, Gozzini A, Tanini A, Brandi ML (2002) Myostatin polymorphisms and age-related sarcopenia in the Italian population. J Am Geriatr Soc 50(8):1463PubMedGoogle Scholar
  12. Cybulski N, Hall MN (2009) TOR complex 2: a signaling pathway of its own. Trends Biochem Sci 34(12):620–627. doi:10.1016/j.tibs.2009.09.004 PubMedGoogle Scholar
  13. Dasarathy S, Dodig M, Muc SM, Kalhan SC, McCullough AJ (2004) Skeletal muscle atrophy is associated with an increased expression of myostatin and impaired satellite cell function in the portacaval anastamosis rat. Am J Physiol Gastrointest Liver Physiol 287(6):G1124–1130. doi:10.1152/ajpgi.00202.2004 PubMedGoogle Scholar
  14. Emanuele E, Fontana JM, Minoretti P, Geroldi D (2010) Preliminary evidence of a genetic association between chromosome 9p21.3 and human longevity. Rejuvenation research 13(1):23–26. doi:10.1089/rej.2009.0970 PubMedGoogle Scholar
  15. Fenton TR, Gout IT (2011) Functions and regulation of the 70 kDa ribosomal S6 kinases. Int J Biochem Cell Biol 43(1):47–59. doi:10.1016/j.biocel.2010.09.018 PubMedGoogle Scholar
  16. Ferrell RE, Conte V, Lawrence EC, Roth SM, Hagberg JM, Hurley BF (1999) Frequent sequence variation in the human myostatin (GDF8) gene as a marker for analysis of muscle-related phenotypes. Genomics 62(2):203–207. doi:10.1006/geno.1999.5984 PubMedGoogle Scholar
  17. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198PubMedGoogle Scholar
  18. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span—from yeast to humans. Science 328(5976):321–326. doi:10.1126/science.1172539 PubMedGoogle Scholar
  19. Garatachea N, Lucía A (2013) Genes and the ageing muscle: a review on genetic association studies. Age (Dordr) 35(1):207–233. doi:10.1007/s11357-011-9327-0
  20. Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, Sinha-Hikim I, Ma K, Ezzat S, Shen R, Lalani R, Asa S, Mamita M, Nair G, Arver S, Bhasin S (1998) Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci U S A 95(25):14938–14943PubMedGoogle Scholar
  21. Gonzalez-Freire M, Rodriguez-Romo G, Santiago C, Bustamante-Ara N, Yvert T, Gomez-Gallego F, Serra Rexach JA, Ruiz JR, Lucia A (2010) The K153R variant in the myostatin gene and sarcopenia at the end of the human lifespan. Age 32(3):405–409. doi:10.1007/s11357-010-9139-7 PubMedGoogle Scholar
  22. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17(1):71–74. doi:10.1038/ng0997-71 PubMedGoogle Scholar
  23. Huygens W, Thomis MA, Peeters MW, Aerssens J, Janssen R, Vlietinck RF, Beunen G (2004) Linkage of myostatin pathway genes with knee strength in humans. Physiol Genom 17(3):264–270. doi:10.1152/physiolgenomics.00224.2003 Google Scholar
  24. Jiang MS, Liang LF, Wang S, Ratovitski T, Holmstrom J, Barker C, Stotish R (2004) Characterization and identification of the inhibitory domain of GDF-8 propeptide. Biochem Biophys Res Commun 315(3):525–531. doi:10.1016/j.bbrc.2004.01.085 PubMedGoogle Scholar
  25. Kawada S, Tachi C, Ishii N (2001) Content and localization of myostatin in mouse skeletal muscles during aging, mechanical unloading and reloading. J Muscle Res Cell Motil 22(8):627–633PubMedGoogle Scholar
  26. Kenyon CJ (2010) The genetics of ageing. Nature 464(7288):504–512. doi:10.1038/nature08980 PubMedGoogle Scholar
  27. Kostek MA, Angelopoulos TJ, Clarkson PM, Gordon PM, Moyna NM, Visich PS, Zoeller RF, Price TB, Seip RL, Thompson PD, Devaney JM, Gordish-Dressman H, Hoffman EP, Pescatello LS (2009) Myostatin and follistatin polymorphisms interact with muscle phenotypes and ethnicity. Med Sci Sports Exerc 41(5):1063–1071. doi:10.1249/MSS.0b013e3181930337 PubMedGoogle Scholar
  28. Krivickas LS, Walsh R, Amato AA (2009) Single muscle fiber contractile properties in adults with muscular dystrophy treated with MYO-029. Muscle Nerve 39(1):3–9. doi:10.1002/mus.21200 PubMedGoogle Scholar
  29. Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277(51):49831–49840. doi:10.1074/jbc.M204291200 PubMedGoogle Scholar
  30. Lawlor MW, Read BP, Edelstein R, Yang N, Pierson CR, Stein MJ, Wermer-Colan A, Buj-Bello A, Lachey JL, Seehra JS, Beggs AH (2011) Inhibition of activin receptor type IIB increases strength and lifespan in myotubularin-deficient mice. Am J Pathol 178(2):784–793. doi:10.1016/j.ajpath.2010.10.035 PubMedGoogle Scholar
  31. Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A 98(16):9306–9311. doi:10.1073/pnas.151270098 PubMedGoogle Scholar
  32. Lee SJ, Reed LA, Davies MV, Girgenrath S, Goad ME, Tomkinson KN, Wright JF, Barker C, Ehrmantraut G, Holmstrom J, Trowell B, Gertz B, Jiang MS, Sebald SM, Matzuk M, Li E, Liang LF, Quattlebaum E, Stotish RL, Wolfman NM (2005) Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc Natl Acad Sci U S A 102(50):18117–18122. doi:10.1073/pnas.0505996102 PubMedGoogle Scholar
  33. Lipina C, Kendall H, McPherron AC, Taylor PM, Hundal HS (2010) Mechanisms involved in the enhancement of mammalian target of rapamycin signalling and hypertrophy in skeletal muscle of myostatin-deficient mice. FEBS Lett 584(11):2403–2408. doi:10.1016/j.febslet.2010.04.039 PubMedGoogle Scholar
  34. Liu CM, Yang Z, Liu CW, Wang R, Tien P, Dale R, Sun LQ (2008) Myostatin antisense RNA-mediated muscle growth in normal and cancer cachexia mice. Gene Ther 15(3):155–160. doi:10.1038/sj.gt.3303016 PubMedGoogle Scholar
  35. Mahoney FI, Barthel DW (1965) Functional Evaluation: the Barthel Index. Md State Med J 14:61–65PubMedGoogle Scholar
  36. Martin GM, Bergman A, Barzilai N (2007) Genetic determinants of human health span and life span: progress and new opportunities. PLoS Genet 3(7):e125. doi:10.1371/journal.pgen.0030125 PubMedGoogle Scholar
  37. McFarlane C, Plummer E, Thomas M, Hennebry A, Ashby M, Ling N, Smith H, Sharma M, Kambadur R (2006) Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol 209(2):501–514. doi:10.1002/jcp.20757 PubMedGoogle Scholar
  38. McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A 94(23):12457–12461PubMedGoogle Scholar
  39. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387(6628):83–90. doi:10.1038/387083a0 PubMedGoogle Scholar
  40. Metter EJ, Talbot LA, Schrager M, Conwit RA (2004) Arm-cranking muscle power and arm isometric muscle strength are independent predictors of all-cause mortality in men. J Appl Physiol 96(2):814–821. doi:10.1152/japplphysiol.00370.2003 PubMedGoogle Scholar
  41. Minoretti P, Gazzaruso C, Vito CD, Emanuele E, Bianchi M, Coen E, Reino M, Geroldi D (2006) Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer’s disease. Neurosci Lett 391(3):147–149. doi:10.1016/j.neulet.2005.08.047 PubMedGoogle Scholar
  42. Morissette MR, Stricker JC, Rosenberg MA, Buranasombati C, Levitan EB, Mittleman MA, Rosenzweig A (2009) Effects of myostatin deletion in aging mice. Aging cell 8(5):573–583. doi:10.1111/j.1474-9726.2009.00508.x PubMedGoogle Scholar
  43. Morrison BM, Lachey JL, Warsing LC, Ting BL, Pullen AE, Underwood KW, Kumar R, Sako D, Grinberg A, Wong V, Colantuoni E, Seehra JS, Wagner KR (2009) A soluble activin type IIB receptor improves function in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 217(2):258–268. doi:10.1016/j.expneurol.2009.02.017 PubMedGoogle Scholar
  44. Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA (2007) A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS genetics 3(5):e79. doi:10.1371/journal.pgen.0030079 PubMedGoogle Scholar
  45. Murphy KT, Ryall JG, Snell SM, Nair L, Koopman R, Krasney PA, Ibebunjo C, Holden KS, Loria PM, Salatto CT, Lynch GS (2010) Antibody-directed myostatin inhibition improves diaphragm pathology in young but not adult dystrophic mdx mice. Am J Pathol 176(5):2425–2434. doi:10.2353/ajpath.2010.090932 PubMedGoogle Scholar
  46. Neufeld TP (2010) TOR-dependent control of autophagy: biting the hand that feeds. Curr Opin Cell Biol 22(2):157–168. doi:10.1016/j.ceb.2009.11.005 PubMedGoogle Scholar
  47. Qiao C, Li J, Zheng H, Bogan J, Yuan Z, Zhang C, Bogan D, Kornegay J, Xiao X (2009) Hydrodynamic limb vein injection of adeno-associated virus serotype 8 vector carrying canine myostatin propeptide gene into normal dogs enhances muscle growth. Hum Gene Ther 20(1):1–10. doi:10.1089/hum.2008.135 PubMedGoogle Scholar
  48. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90(4):1383–1435. doi:10.1152/physrev.00030.2009 PubMedGoogle Scholar
  49. Rios R, Fernandez-Nocelos S, Carneiro I, Arce VM, Devesa J (2004) Differential response to exogenous and endogenous myostatin in myoblasts suggests that myostatin acts as an autocrine factor in vivo. Endocrinology 145(6):2795–2803. doi:10.1210/en.2003-1166 PubMedGoogle Scholar
  50. Rose FF Jr, Mattis VB, Rindt H, Lorson CL (2009) Delivery of recombinant follistatin lessens disease severity in a mouse model of spinal muscular atrophy. Hum Mol Genet 18(6):997–1005. doi:10.1093/hmg/ddn426 PubMedGoogle Scholar
  51. Ruiz JR, Sui X, Lobelo F, Morrow JR Jr, Jackson AW, Sjostrom M, Blair SN (2008) Association between muscular strength and mortality in men: prospective cohort study. BMJ 337:a439. doi:10.1136/bmj.a439 PubMedGoogle Scholar
  52. Sakuma K, Yamaguchi A (2012) Sarcopenia and age-related endocrine function. Int J Endocrinol 2012:127362. doi:10.1155/2012/127362 PubMedGoogle Scholar
  53. Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R, Sandri M (2009) Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 296(6):C1248–1257. doi:10.1152/ajpcell.00104.2009 PubMedGoogle Scholar
  54. Saunders MA, Good JM, Lawrence EC, Ferrell RE, Li WH, Nachman MW (2006) Human adaptive evolution at myostatin (GDF8), a regulator of muscle growth. Am J Hum Genet 79(6):1089–1097. doi:10.1086/509707 PubMedGoogle Scholar
  55. Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40(2):310–322. doi:10.1016/j.molcel.2010.09.026 PubMedGoogle Scholar
  56. Siriett V, Platt L, Salerno MS, Ling N, Kambadur R, Sharma M (2006) Prolonged absence of myostatin reduces sarcopenia. J Cell Physiol 209(3):866–873. doi:10.1002/jcp.20778 PubMedGoogle Scholar
  57. Sparks CA, Guertin DA (2010) Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene 29(26):3733–3744. doi:10.1038/onc.2010.139 PubMedGoogle Scholar
  58. Swan M (2011) Meeting report: American Aging Association 40th Annual Meeting, Raleigh, North Carolina, June 3–6, 2011. Rejuvenation research 14(4):449–455. doi:10.1089/rej.2011.1216 PubMedGoogle Scholar
  59. Terry DF, Sebastiani P, Andersen SL, Perls TT (2008) Disentangling the roles of disability and morbidity in survival to exceptional old age. Arch Intern Med 168(3):277–283. doi:10.1001/archinternmed.2007.75 PubMedGoogle Scholar
  60. Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ (2009) Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol 296(6):C1258–1270. doi:10.1152/ajpcell.00105.2009 PubMedGoogle Scholar
  61. Tsuchida K (2008) Myostatin inhibition by a follistatin-derived peptide ameliorates the pathophysiology of muscular dystrophy model mice. Acta Myol 27:14–18PubMedGoogle Scholar
  62. Wagner KR, Fleckenstein JL, Amato AA, Barohn RJ, Bushby K, Escolar DM, Flanigan KM, Pestronk A, Tawil R, Wolfe GI, Eagle M, Florence JM, King WM, Pandya S, Straub V, Juneau P, Meyers K, Csimma C, Araujo T, Allen R, Parsons SA, Wozney JM, Lavallie ER, Mendell JR (2008) A phase I/IItrial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol 63(5):561–571. doi:10.1002/ana.21338 PubMedGoogle Scholar
  63. Welle S, Bhatt K, Shah B, Thornton C (2002) Insulin-like growth factor-1 and myostatin mRNA expression in muscle: comparison between 62–77 and 21–31 yr old men. Exp Gerontol 37(6):833–839PubMedGoogle Scholar
  64. Yarasheski KE, Bhasin S, Sinha-Hikim I, Pak-Loduca J, Gonzalez-Cadavid NF (2002) Serum myostatin-immunoreactive protein is increased in 60–92 year old women and men with muscle wasting. J Nutr Health Aging 6(5):343–348PubMedGoogle Scholar
  65. Zhu J, Li Y, Shen W, Qiao C, Ambrosio F, Lavasani M, Nozaki M, Branca MF, Huard J (2007) Relationships between transforming growth factor-beta1, myostatin, and decorin: implications for skeletal muscle fibrosis. J Biol Chem 282(35):25852–25863. doi:10.1074/jbc.M704146200 PubMedGoogle Scholar

Copyright information

© American Aging Association 2013

Authors and Affiliations

  • Nuria Garatachea
    • 1
  • Tomàs Pinós
    • 2
    • 3
  • Yolanda Cámara
    • 2
    • 3
  • Gabriel Rodríguez-Romo
    • 4
  • Enzo Emanuele
    • 5
  • Giovanni Ricevuti
    • 6
    • 7
  • Letizia Venturini
    • 6
    • 7
  • Alejandro Santos-Lozano
    • 1
  • Catalina Santiago-Dorrego
    • 8
  • Carmen Fiuza-Luces
    • 8
  • Thomas Yvert
    • 8
  • Antoni L. Andreu
    • 2
    • 3
  • Alejandro Lucia
    • 8
  1. 1.Facultad de Ciencias de la Salud y del DeporteUniversidad de ZaragozaHuescaSpain
  2. 2.Departament de Patología Mitocondrial i NeuromuscularInstitut de Recerca Hospital Universitari Vall d’HebronBarcelonaSpain
  3. 3.CIBERERBarcelonaSpain
  4. 4.INEFUniversidad PolitécnicaMadridSpain
  5. 5.Department of Health SciencesUniversity of PaviaPaviaItaly
  6. 6.Department of Internal Medicine and Therapeutics, Section of Gerontology and Geriatrics, IDR S. MargheritaUniversity of PaviaPaviaItaly
  7. 7.Cellular Pathophysiology and Clinical Immunology Laboratory, Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
  8. 8.School of Doctorate Studies and ResearchUniversidad Europea de MadridMadridSpain

Personalised recommendations