Skip to main content
Log in

Association of the K153R polymorphism in the myostatin gene and extreme longevity

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The myostatin (MSTN) gene is a candidate to influence extreme longevity owing to its role in modulating muscle mass and sarcopenia and especially in inhibiting the main nutrient-sensing pathway involved in longevity, i.e. mammalian target of rapamycin. We compared allele/genotype distributions of the exonic MSTN variants K153R (rs1805086), E164K (rs35781413), I225T and P198A, in Spanish centenarians (cases, n = 156; 132 women, age range 100–111 years) and younger adults (controls, n = 384; 167 women, age <50 years). No subject of either group carried a mutant allele of the E164K, I225T or P198A variation. The frequency of the variant R allele was significantly higher in centenarians (7.1 %) than in controls (2.7 %) (P = 0.001). The odds ratio of being a centenarian if the subject had the R allele was 3.48 (95 % confidence interval 1.67–7.28, P = 0.001), compared to the control group, after adjusting for sex. The results were replicated in an Italian cohort (centenarians, n = 79 (40 women), age range 100–104 years; younger controls, n = 316 (155 women), age <50 years), where a higher frequency of the R allele in centenarians (7.6 %) compared to controls (3.0 %) (P = 0.004) was independently confirmed. Although more research is needed, the variant allele of the MSTN K153R polymorphism could be among the genetic contributors associated with exceptional longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amirouche A, Durieux AC, Banzet S, Koulmann N, Bonnefoy R, Mouret C, Bigard X, Peinnequin A, Freyssenet D (2009) Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology 150(1):286–294. doi:10.1210/en.2008-0959

    PubMed  CAS  Google Scholar 

  • Baumann AP, Ibebunjo C, Grasser WA, Paralkar VM (2003) Myostatin expression in age and denervation-induced skeletal muscle atrophy. J Musculoskelet Neuronal Interact 3(1):8–16

    PubMed  CAS  Google Scholar 

  • Benny Klimek ME, Aydogdu T, Link MJ, Pons M, Koniaris LG, Zimmers TA (2010) Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochem Biophys Res Commun 391(3):1548–1554. doi:10.1016/j.bbrc.2009.12.123

    PubMed  CAS  Google Scholar 

  • Bjedov I, Partridge L (2011) A longer and healthier life with TOR down-regulation: genetics and drugs. Biochem Soc Trans 39(2):460–465. doi:10.1042/BST0390460

    PubMed  CAS  Google Scholar 

  • Bogdanovich S, Krag TO, Barton ER, Morris LD, Whittemore LA, Ahima RS, Khurana TS (2002) Functional improvement of dystrophic muscle by myostatin blockade. Nature 420(6914):418–421. doi:10.1038/nature01154

    PubMed  CAS  Google Scholar 

  • Carlson CJ, Booth FW, Gordon SE (1999) Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Physiol 277(2 Pt 2):R601–606

    PubMed  CAS  Google Scholar 

  • Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN, Abecasis G, Altshuler D, Bailey-Wilson JE, Brooks LD, Cardon LR, Daly M, Donnelly P, Fraumeni JF Jr, Freimer NB, Gerhard DS, Gunter C, Guttmacher AE, Guyer MS, Harris EL, Hoh J, Hoover R, Kong CA, Merikangas KR, Morton CC, Palmer LJ, Phimister EG, Rice JP, Roberts J, Rotimi C, Tucker MA, Vogan KJ, Wacholder S, Wijsman EM, Winn DM, Collins FS (2007) Replicating genotype-phenotype associations. Nature 447(7145):655–660. doi:10.1038/447655a

    PubMed  CAS  Google Scholar 

  • Christensen K, McGue M, Petersen I, Jeune B, Vaupel JW (2008) Exceptional longevity does not result in excessive levels of disability. Proc Natl Acad Sci U S A 105(36):13274–13279. doi:10.1073/pnas.0804931105

    PubMed  CAS  Google Scholar 

  • Collin C, Wade DT, Davies S, Horne V (1988) The Barthel ADL Index: a reliability study. Int Disabil Stud 10(2):61–63

    PubMed  CAS  Google Scholar 

  • Constantin D, McCullough J, Mahajan RP, Greenhaff PL (2011) Novel events in the molecular regulation of muscle mass in critically ill patients. J Physiol 589(Pt 15):3883–3895. doi:10.1113/jphysiol.2011.206193

    PubMed  CAS  Google Scholar 

  • Corsi AM, Ferrucci L, Gozzini A, Tanini A, Brandi ML (2002) Myostatin polymorphisms and age-related sarcopenia in the Italian population. J Am Geriatr Soc 50(8):1463

    PubMed  Google Scholar 

  • Cybulski N, Hall MN (2009) TOR complex 2: a signaling pathway of its own. Trends Biochem Sci 34(12):620–627. doi:10.1016/j.tibs.2009.09.004

    PubMed  CAS  Google Scholar 

  • Dasarathy S, Dodig M, Muc SM, Kalhan SC, McCullough AJ (2004) Skeletal muscle atrophy is associated with an increased expression of myostatin and impaired satellite cell function in the portacaval anastamosis rat. Am J Physiol Gastrointest Liver Physiol 287(6):G1124–1130. doi:10.1152/ajpgi.00202.2004

    PubMed  CAS  Google Scholar 

  • Emanuele E, Fontana JM, Minoretti P, Geroldi D (2010) Preliminary evidence of a genetic association between chromosome 9p21.3 and human longevity. Rejuvenation research 13(1):23–26. doi:10.1089/rej.2009.0970

    PubMed  CAS  Google Scholar 

  • Fenton TR, Gout IT (2011) Functions and regulation of the 70 kDa ribosomal S6 kinases. Int J Biochem Cell Biol 43(1):47–59. doi:10.1016/j.biocel.2010.09.018

    PubMed  CAS  Google Scholar 

  • Ferrell RE, Conte V, Lawrence EC, Roth SM, Hagberg JM, Hurley BF (1999) Frequent sequence variation in the human myostatin (GDF8) gene as a marker for analysis of muscle-related phenotypes. Genomics 62(2):203–207. doi:10.1006/geno.1999.5984

    PubMed  CAS  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    PubMed  CAS  Google Scholar 

  • Fontana L, Partridge L, Longo VD (2010) Extending healthy life span—from yeast to humans. Science 328(5976):321–326. doi:10.1126/science.1172539

    PubMed  CAS  Google Scholar 

  • Garatachea N, Lucía A (2013) Genes and the ageing muscle: a review on genetic association studies. Age (Dordr) 35(1):207–233. doi:10.1007/s11357-011-9327-0

  • Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, Sinha-Hikim I, Ma K, Ezzat S, Shen R, Lalani R, Asa S, Mamita M, Nair G, Arver S, Bhasin S (1998) Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci U S A 95(25):14938–14943

    PubMed  CAS  Google Scholar 

  • Gonzalez-Freire M, Rodriguez-Romo G, Santiago C, Bustamante-Ara N, Yvert T, Gomez-Gallego F, Serra Rexach JA, Ruiz JR, Lucia A (2010) The K153R variant in the myostatin gene and sarcopenia at the end of the human lifespan. Age 32(3):405–409. doi:10.1007/s11357-010-9139-7

    PubMed  CAS  Google Scholar 

  • Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17(1):71–74. doi:10.1038/ng0997-71

    PubMed  CAS  Google Scholar 

  • Huygens W, Thomis MA, Peeters MW, Aerssens J, Janssen R, Vlietinck RF, Beunen G (2004) Linkage of myostatin pathway genes with knee strength in humans. Physiol Genom 17(3):264–270. doi:10.1152/physiolgenomics.00224.2003

    CAS  Google Scholar 

  • Jiang MS, Liang LF, Wang S, Ratovitski T, Holmstrom J, Barker C, Stotish R (2004) Characterization and identification of the inhibitory domain of GDF-8 propeptide. Biochem Biophys Res Commun 315(3):525–531. doi:10.1016/j.bbrc.2004.01.085

    PubMed  CAS  Google Scholar 

  • Kawada S, Tachi C, Ishii N (2001) Content and localization of myostatin in mouse skeletal muscles during aging, mechanical unloading and reloading. J Muscle Res Cell Motil 22(8):627–633

    PubMed  CAS  Google Scholar 

  • Kenyon CJ (2010) The genetics of ageing. Nature 464(7288):504–512. doi:10.1038/nature08980

    PubMed  CAS  Google Scholar 

  • Kostek MA, Angelopoulos TJ, Clarkson PM, Gordon PM, Moyna NM, Visich PS, Zoeller RF, Price TB, Seip RL, Thompson PD, Devaney JM, Gordish-Dressman H, Hoffman EP, Pescatello LS (2009) Myostatin and follistatin polymorphisms interact with muscle phenotypes and ethnicity. Med Sci Sports Exerc 41(5):1063–1071. doi:10.1249/MSS.0b013e3181930337

    PubMed  CAS  Google Scholar 

  • Krivickas LS, Walsh R, Amato AA (2009) Single muscle fiber contractile properties in adults with muscular dystrophy treated with MYO-029. Muscle Nerve 39(1):3–9. doi:10.1002/mus.21200

    PubMed  CAS  Google Scholar 

  • Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277(51):49831–49840. doi:10.1074/jbc.M204291200

    PubMed  CAS  Google Scholar 

  • Lawlor MW, Read BP, Edelstein R, Yang N, Pierson CR, Stein MJ, Wermer-Colan A, Buj-Bello A, Lachey JL, Seehra JS, Beggs AH (2011) Inhibition of activin receptor type IIB increases strength and lifespan in myotubularin-deficient mice. Am J Pathol 178(2):784–793. doi:10.1016/j.ajpath.2010.10.035

    PubMed  CAS  Google Scholar 

  • Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A 98(16):9306–9311. doi:10.1073/pnas.151270098

    PubMed  CAS  Google Scholar 

  • Lee SJ, Reed LA, Davies MV, Girgenrath S, Goad ME, Tomkinson KN, Wright JF, Barker C, Ehrmantraut G, Holmstrom J, Trowell B, Gertz B, Jiang MS, Sebald SM, Matzuk M, Li E, Liang LF, Quattlebaum E, Stotish RL, Wolfman NM (2005) Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc Natl Acad Sci U S A 102(50):18117–18122. doi:10.1073/pnas.0505996102

    PubMed  CAS  Google Scholar 

  • Lipina C, Kendall H, McPherron AC, Taylor PM, Hundal HS (2010) Mechanisms involved in the enhancement of mammalian target of rapamycin signalling and hypertrophy in skeletal muscle of myostatin-deficient mice. FEBS Lett 584(11):2403–2408. doi:10.1016/j.febslet.2010.04.039

    PubMed  CAS  Google Scholar 

  • Liu CM, Yang Z, Liu CW, Wang R, Tien P, Dale R, Sun LQ (2008) Myostatin antisense RNA-mediated muscle growth in normal and cancer cachexia mice. Gene Ther 15(3):155–160. doi:10.1038/sj.gt.3303016

    PubMed  Google Scholar 

  • Mahoney FI, Barthel DW (1965) Functional Evaluation: the Barthel Index. Md State Med J 14:61–65

    PubMed  CAS  Google Scholar 

  • Martin GM, Bergman A, Barzilai N (2007) Genetic determinants of human health span and life span: progress and new opportunities. PLoS Genet 3(7):e125. doi:10.1371/journal.pgen.0030125

    PubMed  Google Scholar 

  • McFarlane C, Plummer E, Thomas M, Hennebry A, Ashby M, Ling N, Smith H, Sharma M, Kambadur R (2006) Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol 209(2):501–514. doi:10.1002/jcp.20757

    PubMed  CAS  Google Scholar 

  • McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A 94(23):12457–12461

    PubMed  CAS  Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387(6628):83–90. doi:10.1038/387083a0

    PubMed  CAS  Google Scholar 

  • Metter EJ, Talbot LA, Schrager M, Conwit RA (2004) Arm-cranking muscle power and arm isometric muscle strength are independent predictors of all-cause mortality in men. J Appl Physiol 96(2):814–821. doi:10.1152/japplphysiol.00370.2003

    PubMed  Google Scholar 

  • Minoretti P, Gazzaruso C, Vito CD, Emanuele E, Bianchi M, Coen E, Reino M, Geroldi D (2006) Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer’s disease. Neurosci Lett 391(3):147–149. doi:10.1016/j.neulet.2005.08.047

    PubMed  CAS  Google Scholar 

  • Morissette MR, Stricker JC, Rosenberg MA, Buranasombati C, Levitan EB, Mittleman MA, Rosenzweig A (2009) Effects of myostatin deletion in aging mice. Aging cell 8(5):573–583. doi:10.1111/j.1474-9726.2009.00508.x

    PubMed  CAS  Google Scholar 

  • Morrison BM, Lachey JL, Warsing LC, Ting BL, Pullen AE, Underwood KW, Kumar R, Sako D, Grinberg A, Wong V, Colantuoni E, Seehra JS, Wagner KR (2009) A soluble activin type IIB receptor improves function in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 217(2):258–268. doi:10.1016/j.expneurol.2009.02.017

    PubMed  CAS  Google Scholar 

  • Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA (2007) A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS genetics 3(5):e79. doi:10.1371/journal.pgen.0030079

    PubMed  Google Scholar 

  • Murphy KT, Ryall JG, Snell SM, Nair L, Koopman R, Krasney PA, Ibebunjo C, Holden KS, Loria PM, Salatto CT, Lynch GS (2010) Antibody-directed myostatin inhibition improves diaphragm pathology in young but not adult dystrophic mdx mice. Am J Pathol 176(5):2425–2434. doi:10.2353/ajpath.2010.090932

    PubMed  CAS  Google Scholar 

  • Neufeld TP (2010) TOR-dependent control of autophagy: biting the hand that feeds. Curr Opin Cell Biol 22(2):157–168. doi:10.1016/j.ceb.2009.11.005

    PubMed  CAS  Google Scholar 

  • Qiao C, Li J, Zheng H, Bogan J, Yuan Z, Zhang C, Bogan D, Kornegay J, Xiao X (2009) Hydrodynamic limb vein injection of adeno-associated virus serotype 8 vector carrying canine myostatin propeptide gene into normal dogs enhances muscle growth. Hum Gene Ther 20(1):1–10. doi:10.1089/hum.2008.135

    PubMed  CAS  Google Scholar 

  • Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90(4):1383–1435. doi:10.1152/physrev.00030.2009

    PubMed  CAS  Google Scholar 

  • Rios R, Fernandez-Nocelos S, Carneiro I, Arce VM, Devesa J (2004) Differential response to exogenous and endogenous myostatin in myoblasts suggests that myostatin acts as an autocrine factor in vivo. Endocrinology 145(6):2795–2803. doi:10.1210/en.2003-1166

    PubMed  CAS  Google Scholar 

  • Rose FF Jr, Mattis VB, Rindt H, Lorson CL (2009) Delivery of recombinant follistatin lessens disease severity in a mouse model of spinal muscular atrophy. Hum Mol Genet 18(6):997–1005. doi:10.1093/hmg/ddn426

    PubMed  CAS  Google Scholar 

  • Ruiz JR, Sui X, Lobelo F, Morrow JR Jr, Jackson AW, Sjostrom M, Blair SN (2008) Association between muscular strength and mortality in men: prospective cohort study. BMJ 337:a439. doi:10.1136/bmj.a439

    PubMed  Google Scholar 

  • Sakuma K, Yamaguchi A (2012) Sarcopenia and age-related endocrine function. Int J Endocrinol 2012:127362. doi:10.1155/2012/127362

    PubMed  Google Scholar 

  • Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R, Sandri M (2009) Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 296(6):C1248–1257. doi:10.1152/ajpcell.00104.2009

    PubMed  CAS  Google Scholar 

  • Saunders MA, Good JM, Lawrence EC, Ferrell RE, Li WH, Nachman MW (2006) Human adaptive evolution at myostatin (GDF8), a regulator of muscle growth. Am J Hum Genet 79(6):1089–1097. doi:10.1086/509707

    PubMed  CAS  Google Scholar 

  • Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40(2):310–322. doi:10.1016/j.molcel.2010.09.026

    PubMed  CAS  Google Scholar 

  • Siriett V, Platt L, Salerno MS, Ling N, Kambadur R, Sharma M (2006) Prolonged absence of myostatin reduces sarcopenia. J Cell Physiol 209(3):866–873. doi:10.1002/jcp.20778

    PubMed  CAS  Google Scholar 

  • Sparks CA, Guertin DA (2010) Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene 29(26):3733–3744. doi:10.1038/onc.2010.139

    PubMed  CAS  Google Scholar 

  • Swan M (2011) Meeting report: American Aging Association 40th Annual Meeting, Raleigh, North Carolina, June 3–6, 2011. Rejuvenation research 14(4):449–455. doi:10.1089/rej.2011.1216

    PubMed  Google Scholar 

  • Terry DF, Sebastiani P, Andersen SL, Perls TT (2008) Disentangling the roles of disability and morbidity in survival to exceptional old age. Arch Intern Med 168(3):277–283. doi:10.1001/archinternmed.2007.75

    PubMed  Google Scholar 

  • Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ (2009) Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol 296(6):C1258–1270. doi:10.1152/ajpcell.00105.2009

    PubMed  CAS  Google Scholar 

  • Tsuchida K (2008) Myostatin inhibition by a follistatin-derived peptide ameliorates the pathophysiology of muscular dystrophy model mice. Acta Myol 27:14–18

    PubMed  CAS  Google Scholar 

  • Wagner KR, Fleckenstein JL, Amato AA, Barohn RJ, Bushby K, Escolar DM, Flanigan KM, Pestronk A, Tawil R, Wolfe GI, Eagle M, Florence JM, King WM, Pandya S, Straub V, Juneau P, Meyers K, Csimma C, Araujo T, Allen R, Parsons SA, Wozney JM, Lavallie ER, Mendell JR (2008) A phase I/IItrial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol 63(5):561–571. doi:10.1002/ana.21338

    PubMed  CAS  Google Scholar 

  • Welle S, Bhatt K, Shah B, Thornton C (2002) Insulin-like growth factor-1 and myostatin mRNA expression in muscle: comparison between 62–77 and 21–31 yr old men. Exp Gerontol 37(6):833–839

    PubMed  CAS  Google Scholar 

  • Yarasheski KE, Bhasin S, Sinha-Hikim I, Pak-Loduca J, Gonzalez-Cadavid NF (2002) Serum myostatin-immunoreactive protein is increased in 60–92 year old women and men with muscle wasting. J Nutr Health Aging 6(5):343–348

    PubMed  CAS  Google Scholar 

  • Zhu J, Li Y, Shen W, Qiao C, Ambrosio F, Lavasani M, Nozaki M, Branca MF, Huard J (2007) Relationships between transforming growth factor-beta1, myostatin, and decorin: implications for skeletal muscle fibrosis. J Biol Chem 282(35):25852–25863. doi:10.1074/jbc.M704146200

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Fondo de Investigaciones Sanitarias (FIS, ref. # PS09/00194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Lucia.

Additional information

Antoni L. Andreu and Alejandro Lucia share senior authorship.

About this article

Cite this article

Garatachea, N., Pinós, T., Cámara, Y. et al. Association of the K153R polymorphism in the myostatin gene and extreme longevity. AGE 35, 2445–2454 (2013). https://doi.org/10.1007/s11357-013-9513-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-013-9513-3

Keywords

Navigation