Advertisement

AGE

, Volume 35, Issue 6, pp 2193–2202 | Cite as

Attenuated mesangial cell proliferation related to store-operated Ca2+ entry in aged rat: the role of STIM 1 and Orai 1

  • Bing ShenEmail author
  • Jinhang Zhu
  • Jin Zhang
  • Feifei Jiang
  • Zhaoyi Wang
  • Yang Zhang
  • Jie Li
  • Dake Huang
  • Daoping Ke
  • Rong Ma
  • Juan DuEmail author
Article

Abstract

Store-operated Ca2+ entry (SOCE) is a common and ubiquitous mechanism regulating Ca2+ influx into cells and participates in numerous biological processes including cell proliferation. Glomerular mesangial cells (GMCs) play a role in the regulation of the glomerular filtration rate. From a clinical point of view, many physiological functions alter with age. In the present study, we used angiotensin II, glucagon, and the sarco/endoplasmic reticulum membrane Ca2+ pump inhibitor thapsigargin to deplete the internal Ca2+ stores for the activation of SOCE. We found that SOCE was significantly attenuated in GMCs from aged (22-month-old) rats. The expression of SOCE-related components, stromal interaction molecule 1 (STIM 1) and Orai 1, in freshly isolated glomeruli notably decreased, and STIM 1 and Orai 1 puncta formation significantly reduced in primary-cultured GMCs in aged rats. Moreover, specific knockdown of STIM 1 and Orai 1 by small interfering RNA markedly suppressed SOCE and cell proliferation of GMCs isolated from young (3-month-old) rats. We conclude that the attenuation of GMCs proliferation can be attributed to the decreased SOCE partially caused by reduced expression of STIM 1 and Orai 1.

Keywords

Aging STIM 1 Orai 1 Glomerular mesangial cell Proliferation 

Notes

Acknowledgments

This work was supported by grants from NSF of China (grant no. 30800384); NSF of Anhui Province Department of Education (grant no. KJ2008B292); Scientific Research of BSKY (grant nos. XJ201106 and XJ200913) and Young Prominent Investigator Supporting Program from Anhui Medical University; Anhui Provincial Natural Science Foundation (11040606M171 and 1108085J11); and National Institutes of Health (NIH) of USA (5RO1DK079968-01A2m Ma).

Supplementary material

11357_2013_9511_MOESM1_ESM.pdf (68 kb)
ESM 1 (PDF 67 kb)

References

  1. Baba Y, Hayashi K, Fujii Y, Mizushima A, Watarai H, Wakamori M, Numaga T, Mori Y, Iino M, Hikida M, Kurosaki T (2006) Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci U S A 103(45):16704–16709PubMedCrossRefGoogle Scholar
  2. Berna-Erro A, Woodard GE, Rosado JA (2012) Orais and STIMs: physiological mechanisms and disease. J Cell Mol Med 16(3):407–424PubMedCrossRefGoogle Scholar
  3. Berra-Romani R, Mazzocco-Spezzia A, Pulina MV, Golovina VA (2008) Ca2+ handling is altered when arterial myocytes progress from a contractile to a proliferative phenotype in culture. Am J Physiol Cell Physiol 295(3):C779–C790PubMedCrossRefGoogle Scholar
  4. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529PubMedCrossRefGoogle Scholar
  5. Braun A, Varga-Szabo D, Kleinschnitz C, Pleines I, Bender M, Austinat M, Bosl M, Stoll G, Nieswandt B (2009) Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood 113(9):2056–2063PubMedCrossRefGoogle Scholar
  6. Christensen M, Bagger JI, Vilsboll T, Knop FK (2011) The alpha-cell as target for type 2 diabetes therapy. Rev Diabet Stud 8(3):369–381PubMedCrossRefGoogle Scholar
  7. Cudna RE, Dickson AJ (2003) Endoplasmic reticulum signaling as a determinant of recombinant protein expression. Biotechnol Bioeng 81(1):56–65PubMedCrossRefGoogle Scholar
  8. Facemire CS, Mohler PJ, Arendshorst WJ (2004) Expression and relative abundance of short transient receptor potential channels in the rat renal microcirculation. Am J Physiol Renal Physiol 286(3):F546–F551PubMedCrossRefGoogle Scholar
  9. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185PubMedCrossRefGoogle Scholar
  10. He H, Lam M, McCormick TS, Distelhorst CW (1997) Maintenance of calcium homeostasis in the endoplasmic reticulum by Bcl-2. J Cell Biol 138(6):1219–1228PubMedCrossRefGoogle Scholar
  11. Jardin I, Lopez JJ, Zbidi H, Bartegi A, Salido GM, Rosado JA (2011) Attenuated store-operated divalent cation entry and association between STIM1, Orai1, hTRPC1 and hTRPC6 in platelets from type 2 diabetic patients. Blood Cells Mol Dis 46(3):252–260PubMedCrossRefGoogle Scholar
  12. Kobori H, Nangaku M, Navar LG, Nishiyama A (2007) The intrarenal renin–angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59(3):251–287PubMedCrossRefGoogle Scholar
  13. Lewis RS (2007) The molecular choreography of a store-operated calcium channel. Nature 446(7133):284–287PubMedCrossRefGoogle Scholar
  14. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15(13):1235–1241PubMedCrossRefGoogle Scholar
  15. Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci U S A 104(22):9301–9306PubMedCrossRefGoogle Scholar
  16. Lu W, Wang J, Peng G, Shimoda LA, Sylvester JT (2009) Knockdown of stromal interaction molecule 1 attenuates store-operated Ca2+ entry and Ca2+ responses to acute hypoxia in pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 297(1):L17–L25PubMedCrossRefGoogle Scholar
  17. Ma R, Smith S, Child A, Carmines PK, Sansom SC (2000) Store-operated Ca(2+) channels in human glomerular mesangial cells. Am J Physiol Renal Physiol 278(6):F954–F961PubMedGoogle Scholar
  18. Ma R, Kudlacek PE, Sansom SC (2002) Protein kinase Calpha participates in activation of storeoperated Ca2+ channels in human glomerular mesangial cells. Am J Physiol Cell Physiol 283(5):C1390–C1398.Google Scholar
  19. Mene P, Teti A, Pugliese F, Cinotti GA (1994) Calcium release-activated calcium influx in cultured human mesangial cells. Kidney Int 46(1):122–128PubMedCrossRefGoogle Scholar
  20. Mene P, Pugliese F, Cinotti GA (1996) Regulation of capacitative calcium influx in cultured human mesangial cells: roles of protein kinase C and calmodulin. J Am Soc Nephrol 7(7):983–990PubMedGoogle Scholar
  21. Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, Soboloff J, Pani B, Gwack Y, Srikanth S, Singh BB, Gill DL, Ambudkar IS (2007) Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282(12):9105–9116PubMedCrossRefGoogle Scholar
  22. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810PubMedCrossRefGoogle Scholar
  23. Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8(7):771–773PubMedCrossRefGoogle Scholar
  24. Potier M, Gonzalez JC, Motiani RK, Abdullaev IF, Bisaillon JM, Singer HA, Trebak M (2009) Evidence for STIM1- and Orai1-dependent store-operated calcium influx through ICRAC in vascular smooth muscle cells: role in proliferation and migration. FASEB J 23(8):2425–2437PubMedCrossRefGoogle Scholar
  25. Putney JW (2011) Origins of the concept of store-operated calcium entry. Front Biosci (Schol Ed) 3:980–984CrossRefGoogle Scholar
  26. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445PubMedCrossRefGoogle Scholar
  27. Shen B, Kwan HY, Ma X, Wong CO, Du J, Huang Y, Yao X (2011) cAMP activates TRPC6 channels via the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB)-mitogen-activated protein kinase kinase (MEK)-ERK1/2 signaling pathway. J Biol Chem 286(22):19439–19445PubMedCrossRefGoogle Scholar
  28. Short AD, Bian J, Ghosh TK, Waldron RT, Rybak SL, Gill DL (1993) Intracellular Ca2+ pool content is linked to control of cell growth. Proc Natl Acad Sci U S A 90(11):4986–4990PubMedCrossRefGoogle Scholar
  29. Singh R, Singh AK, Alavi N, Leehey DJ (2003) Mechanism of increased angiotensin II levels in glomerular mesangial cells cultured in high glucose. J Am Soc Nephrol 14(4):873–880PubMedCrossRefGoogle Scholar
  30. Soboloff J, Spassova MA, Tang XD, Hewavitharana T, Xu W, Gill DL (2006) Orai1 and STIM reconstitute store-operated calcium channel function. J Biol Chem 281(30):20661–20665PubMedCrossRefGoogle Scholar
  31. Soboloff J, Rothberg BS, Madesh M, Gill DL (2012) STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 13(9):549–565PubMedCrossRefGoogle Scholar
  32. Sours-Brothers S, Ding M, Graham S, Ma R (2009) Interaction between TRPC1/TRPC4 assembly and STIM1 contributes to store-operated Ca2+ entry in mesangial cells. Exp Biol Med (Maywood) 234(6):673–682CrossRefGoogle Scholar
  33. Sweeney M, McDaniel SS, Platoshyn O, Zhang S, Yu Y, Lapp BR, Zhao Y, Thistlethwaite PA, Yuan JX (2002) Role of capacitative Ca2+ entry in bronchial contraction and remodeling. J Appl Physiol 92(4):1594–1602PubMedGoogle Scholar
  34. Venkatachalam K, van Rossum DB, Patterson RL, Ma HT, Gill DL (2002) The cellular and molecular basis of store-operated calcium entry. Nat Cell Biol 4(11):E263–E272PubMedCrossRefGoogle Scholar
  35. Wang X, Pluznick JL, Wei P, Padanilam BJ, Sansom SC (2004) TRPC4 forms store-operated Ca2+ channels in mouse mesangial cells. Am J Physiol Cell Physiol 287(2):C357–C364PubMedCrossRefGoogle Scholar
  36. Wang X, Pluznick JL, Settles DC, Sansom SC (2007) Association of VASP with TRPC4 in PKG-mediated inhibition of the store-operated calcium response in mesangial cells. Am J Physiol Renal Physiol 293(6):F1768–F1776PubMedCrossRefGoogle Scholar
  37. Williams RT, Senior PV, Van Stekelenburg L, Layton JE, Smith PJ, Dziadek MA (2002) Stromal interaction molecule 1 (STIM1), a transmembrane protein with growth suppressor activity, contains an extracellular SAM domain modified by N-linked glycosylation. Biochim Biophys Acta 1596(1):131–137PubMedCrossRefGoogle Scholar
  38. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437(7060):902–905PubMedCrossRefGoogle Scholar
  39. Zhang W, Meng H, Li ZH, Shu Z, Ma X, Zhang BX (2007) Regulation of STIM1, store-operated Ca2+ influx, and nitric oxide generation by retinoic acid in rat mesangial cells. Am J Physiol Renal Physiol 292(3):F1054–F1064PubMedCrossRefGoogle Scholar
  40. Zhou Y, Meraner P, Kwon HT, Machnes D, Oh-hora M, Zimmer J, Huang Y, Stura A, Rao A, Hogan PG (2010) STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nat Struct Mol Biol 17(1):112–116PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association 2013

Authors and Affiliations

  • Bing Shen
    • 1
    Email author
  • Jinhang Zhu
    • 1
  • Jin Zhang
    • 1
  • Feifei Jiang
    • 1
  • Zhaoyi Wang
    • 1
  • Yang Zhang
    • 3
  • Jie Li
    • 1
  • Dake Huang
    • 2
  • Daoping Ke
    • 1
  • Rong Ma
    • 4
  • Juan Du
    • 1
    Email author
  1. 1.Department of PhysiologyAnhui Medical UniversityHefeiChina
  2. 2.Comprehensive Laboratory of Basic Medical SchoolAnhui Medical UniversityHefeiChina
  3. 3.Comprehensive SurgeryAnhui Provincial HospitalHefeiChina
  4. 4.Department of Integrative PhysiologyUniversity of North Texas Health Science Center at Fort WorthFort WorthUSA

Personalised recommendations