Advertisement

AGE

, Volume 35, Issue 6, pp 2125–2136 | Cite as

In vitro tenocyte metabolism in aging and oestrogen deficiency

  • P. TorricelliEmail author
  • F. Veronesi
  • S. Pagani
  • N. Maffulli
  • S. Masiero
  • A. Frizziero
  • M. Fini
Article

Abstract

Little is known about tendons and tenocyte biological behaviour during aging and, especially, oestrogen deficiency. The aim of this study was to evaluate in vitro the proliferation and metabolism of tenocytes isolated from the Achilles tendons of ovariectomised (OVX), middle-aged (OLD) and young (YOUNG) rats. An in vitro model of micro-wound healing was also used to assess age and oestrogen deficiency differences in tendon healing. In standard culture condition, OLD and OVX tenocytes showed a significantly lower proliferation rate, collagen I, aggrecan and elastin than YOUNG ones. In OVX group, fibronectin and elastin significantly decreased in comparison to YOUNG and OLD groups, respectively, whereas vascular endothelial growth factor and metalloproteinases-13 increased than those of both YOUNG and OLD groups. In the micro-wound healing model, tenocytes from both OVX and OLD showed a significantly lower healing rate, proliferation rate, collagen I and nitrix oxide in comparison to YOUNG. OVX elastin value was significantly lower than YOUNG one and OVX healing rate and cell migration speed, proliferation rate and fibronectin results were lower, whereas collagen III and metalloproteinase-13 higher in comparison to both YOUNG and OLD groups. These results highlighted how aging and, more significantly, oestrogen deficiency negatively affect tendon metabolism and healing. Our work improves the body of knowledge on the effects of senescence and oestrogen deficiency on tenocyte behaviour and allows further studies to find solution for the prevention of tendon injuries in aging and menopause.

Keywords

Achilles tendons Tenocytes Aging Oestrogen deficiency Tendon healing 

Notes

Acknowledgments

The research was supported by Rizzoli Orthopaedic Institute, “5 PER MILLE Project” (CUP D31J09000260001).

References

  1. Arnesen SM, Lawson AM (2006) Age-related changes in focal adhesions lead to altered cell behavior in tendon fibroblasts. Mech Ageing Dev 127:726–732. doi: 10.1016/j.mad.2006.05.003 PubMedGoogle Scholar
  2. Birch HL, Worboys S, Eissa S, Jackson B, Strassburg S, Clegg PD (2008) Matrix metabolism rate differs in functionally distinct tendons. Matrix Biol 27(3):182–189. doi: 10.1016/j.matbio.2007.10.004 PubMedGoogle Scholar
  3. Bokhari AR, Murrell GAC (2012) The role of nitric oxide in tendon healing. J Should Elbow Surg 21:238–244. doi: 10.1016/j.jse.2011.11.001 Google Scholar
  4. Bryant AL, Clark RA, Bartold S, Murphy A, Bennell KL, Hohmann E, Marshall-Gradisnik S, Payne C, Crossley KM (2008) Effects of oestrogen on the mechanical behavior of the human Achilles tendon in vivo. J Appl Physiol 105(4):1035–1043. doi: 10.1152/japplphysiol.01281.2007 PubMedGoogle Scholar
  5. Chen H, Yao XF, Emura S, Shoumura S (2006) Morphological changes of skeletal muscle, tendon and periosteum in the senescence-accelerated mouse (SAMP6): A murine model for senile osteoporosis. Tissue Cell 38:325–335. doi: 10.1016/j.tice.2006.08.001 PubMedGoogle Scholar
  6. Circi E, Akpinar S, Akgun RC, Tunkay IC (2009) Biomechanical and histological comparison of the influence of oestrogen deficient state on tendon healing potential in rats. Int Orthop 33:1461–1466. doi: 10.1007/s00264-009-0778-1 PubMedGoogle Scholar
  7. Cook JL, Bass SL, Black JE (2007) Hormone therapy is associated with smaller Achilles tendon diameter in active post-menopausal women. Scand J Med Sci Sports 17(2):128–132. doi: 10.1111/j.1600-0838.2006.00543.x PubMedGoogle Scholar
  8. Couppè C, Hansen P, Kongsgaard M, Kovanen V, Suetta C, Aagaard P et al (2009) Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J Appl Physiol 107:880–886. doi: 10.1152/japplphysiol.00291.2009 PubMedGoogle Scholar
  9. Cretnik A, Frank A (2004) Incidence and outcome of rupture of the Achilles tendon. Wien Klin Wochenschr 116(Suppl 2):33–38PubMedGoogle Scholar
  10. de Jonge S, van den Berg C, de Vos RJ, van der Heide HJ, Weir A, Verhaar JA, Bierma-Zeinstra SM, Tol JL (2011) Incidence of midportion Achilles tendinopathy in the general population. Br J Sports Med 45:1026–1028. doi: 10.1136/bjsports-2011-090342 PubMedGoogle Scholar
  11. Del Buono A, Oliva F, Longo UG, Rodeo SA, Orchard J, Denaro V, Maffulli N (2012) Metalloproteases and rotator cuff disease. J Should Elbow Surg 21(2):200–208. doi: 10.1016/j.jse.2011.10.020 Google Scholar
  12. Dudhia J, Scott CM, Draper ERC, Heinegard D, Pitsillides AA, Smith RK (2007) Aging enhances a mechanically-induced reduction in tendon strength by an active process involving matrix metalloproteinase activity. Aging Cell 6:547–556. doi: 10.1111/j.1474-9726.2007.00307.x PubMedGoogle Scholar
  13. Fini M, Bondioli E, Castagna A, Torricelli P, Giavaresi G, Rotini R, Marinelli A, Guerra E, Orlandi C, Carboni A, Aiti A, Benedettini E, Giardino R, Melandri D (2012) Decellularized human dermis to treat massive rotator cuff tears: in vitro evaluations. Connect Tissue Res. doi: 10.3109/03008207.2011.649929 [Epub ahead of print]
  14. Finni T, Kovanen V, Ronkainen HA, Pollanen E, Bashford GR, Kaprio J, Alèn M, Kujala UM, Sipila S (2009) Combination of hormone replacement therapy and high physical activity is associated with differences in Achilles tendon size in monozygotic female twin pairs. J Appl Physiol 106:1332–1337. doi: 10.1152/japplphysiol.91439.2008 PubMedGoogle Scholar
  15. Hansen M, Kongsgaard M, Holm L, Skovgaard D, Magnusson SP, Qvortrup K et al (2009) Effect of estrogen on tendon collagen synthesis, tendon structural characteristics, and biomechanical properties in postmenopausal women. J Appl Physiol 106:1385–1393. doi: 10.1152/japplphysiol.90935.2008 PubMedGoogle Scholar
  16. Ilic MZ, Carter P, Tyndall A, Dudhia J, Handley CJ (2005) Proteoglycans and catabolic products of proteoglycans present in ligament. Biochem J 385:381–388. doi: 10.1042/BJ20040844 PubMedGoogle Scholar
  17. Irie T, Takahata M, Majima T, Abe Y, Komatsu M, Iwasaki N, Minami A (2010) Effect of selective estrogen receptor modulator/raloxifene analogue on proliferation and collagen metabolism of tendon fibroblast. Connect Tissue Res 51:179–187. doi: 10.3109/03008200903204669 PubMedGoogle Scholar
  18. Lin JH, Wang M-X, Wei A, Ahu W, Murrell GAC (2001) The cell specific temporal expression of nitric oxide synthase isoforms during Achilles tendon healing. Inflamm Res 50:1–8. doi: 10.1007/PL00000228 Google Scholar
  19. Lo IK, Marchuk LL, Hollinshead R, Hart DA, Frank CB (2004) Matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase mRNA levels are specifically altered in torn rotator cuff tendons. Am J Sports Med 32(5):1223–1229. doi: 10.1177/0363546503262200 PubMedGoogle Scholar
  20. Maffulli N, Ewen SWB, Waterston SW, Reaper J, Barrass V (2000) Tenocytes from ruptured and tendinopathic Achilles tendons produce greater quantities of type III collagen than tenocytes from normal Achilles tendons. Am J Sports Med 28(4):499–505PubMedGoogle Scholar
  21. Maffulli N, Wong J, Almekinders LC (2003) Types and epidemiology of tendinopathy. Clin Sports Med 22(4):675–692. doi: 10.1016/S0278-5919 PubMedGoogle Scholar
  22. Murrell GAC (2007) Using nitric oxide to treat tendinopathy. Br J Sports Med 41:227–231. doi: 10.1136/bjsm.2006.034447 PubMedGoogle Scholar
  23. Ritty TM, Ditsios K, Starcher BC (2002) Distribution of the elastic fiber and associated proteins in flexor tendon reflects function. Anat Rec 268(4):430–440. doi: 10.1002/ar.10175 PubMedGoogle Scholar
  24. Samiric T, Ilic MZ, Handley CJ (2004) Large aggregating and small leucine-rich proteoglycans are degraded by different pathways and at different rates in tendon. Eur J Biochem 271:3612–3620. doi: 10.1111/j.0014-2956.2004.04307.x PubMedGoogle Scholar
  25. Savitskaya YA, Izaguirre A, Sierra L, Perez F, Cruz F, Villalobos E, Almazan A, Ibarra C (2011) Effect of angiogenesis-related cytokines on rotator cuff disease: the search for sensitive biomarkers of early tendon degeneration. Clin Med Insights Arthritis Musculoskelet Disord 4:43–53. doi: 10.4137/CMAMD.S7071 PubMedGoogle Scholar
  26. Scott JE (2003) Elasticity in extracellular matrix “shape modules” of tendon, cartilage, etc. A sliding proteoglycan-filament model. J Physiol 553:335–343. doi: 10.1113/jphysiol.2003.050179 PubMedGoogle Scholar
  27. Szomor ZL, Wang MX, Kruller A, Murrell GA, Farmer KM, Kirkham BW et al (2001) Differential expression of cytokines and nitric oxide synthase expression in human rotator cuff bursae. Ann Rheum Dis 60:431–432. doi: 10.1136/ard.60.4.431 PubMedGoogle Scholar
  28. Thorpe CT, Streeter I, Pinchbeck GL, Goodship AE, Clegg PD, Birch HL (2010) Aspartic acid racemization and collagen degradation markers reveal an accumulation of damage in tendon collagen that is enhanced with aging. J Biol Chem 285(21):15674–15681. doi: 10.1074/jbc.M109.077503 PubMedGoogle Scholar
  29. Tsai WC, Chang HN, Yu TY, Chien CH, Fu LF, Liang FC, Pang JH (2011) Decreased proliferation of aging tenocytes is associated with down-regulation of cellular senescence-inhibited gene and up-regulation of p27. J Orthop Res 29(10):1598–1603. doi: 10.1002/jor.21418 PubMedGoogle Scholar
  30. Yao L, Bestwick CS, Bestwick LA, Maffulli N, Aspden RM (2006) Phenotypic drift in human tenocyte culture. Tissue Eng 12(7):1843–1849. doi: 10.1089/ten.2006.12.1843 PubMedGoogle Scholar
  31. Yao L, Bestwick CS, Bestwick LA, Aspden RM, Maffulli N (2011) Non-immortalized human tenocyte cultures as a vehicle for understanding cellular aspects to tendinopathy. Transl Med 1(1):173–194Google Scholar

Copyright information

© American Aging Association 2012

Authors and Affiliations

  • P. Torricelli
    • 1
    • 2
    Email author
  • F. Veronesi
    • 1
  • S. Pagani
    • 1
    • 2
  • N. Maffulli
    • 3
  • S. Masiero
    • 4
  • A. Frizziero
    • 4
  • M. Fini
    • 1
    • 2
  1. 1.Preclinical and Surgical Studies Laboratory, Codivilla Putti Research InstituteRizzoli Orthopaedic InstituteBolognaItaly
  2. 2.Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Department Rizzoli Research, Innovation, and TechnologyRizzoli Orthopaedic InstituteBolognaItaly
  3. 3.Centre for Sports and Exercise Medicine Queen Mary University of London, Barts and The London School of Medicine and DentistryMile End HospitalLondonUK
  4. 4.Department of Orthopaedic RehabilitationUniversity of PadovaPadovaItaly

Personalised recommendations