AGE

, Volume 35, Issue 4, pp 1117–1132 | Cite as

A botanical containing freeze dried açai pulp promotes healthy aging and reduces oxidative damage in sod1 knockdown flies

  • Mara Laslo
  • Xiaoping Sun
  • Cheng-Te Hsiao
  • Wells W. Wu
  • Rong-Fong Shen
  • Sige Zou
Article

Abstract

Superoxide dismutase 1 (SOD1), a critical enzyme against oxidative stress, is implicated in aging and degenerative diseases. We previously showed that a nutraceutical containing freeze-dried açai pulp promotes survival of flies fed a high-fat diet or sod1 knockdown flies fed a standard diet. Here, we investigated the effect of açai supplementation initiated at the early or late young adulthood on lifespan, physiological function, and oxidative damage in sod1 knockdown flies. We found that Açai supplementation extended lifespan even when started at the age of 10 days, which is the time shortly before the mortality rate of flies accelerated. Life-long açai supplementation increased lifetime reproductive output in sod1 knockdown flies. Our molecular studies indicate that açai supplementation reduced the protein levels of genes involved in oxidative stress response, cellular growth, and nutrient metabolism. Açai supplementation also affected the protein levels of ribosomal proteins. In addition, açai supplementation decreased the transcript levels of genes involved in oxidative stress response and gluconeogenesis, while increasing the transcript levels of mitochondrial biogenesis genes. Moreover, açai supplementation reduced the level of 4-hydroxynonenal-protein adducts, a lipid peroxidation marker. Our findings suggest that açai supplementation promotes healthy aging in sod1-deficient flies partly through reducing oxidative damage, and modulating nutrient metabolism and oxidative stress response pathways. Our findings provide a foundation to further evaluate the viability of using açai as an effective dietary intervention to promote healthy aging and alleviate symptoms of diseases with a high level of oxidative stress.

Keywords

Aging intervention Açai Superoxide dismutase 1 Lifespan Oxidative stress Reproductive aging Drosophila melanogaster 

Notes

Acknowledgments

We thank Alex Schauss to provide us the açai pulp extract and thank Ed Spangler, Alex Schauss, Don Ingram, Jim Carey, and Pablo Liedo for critical reading of the manuscript. This work was supported by funding from the Intramural Research Program of the National Institute on Aging, NIH to S.Z. and a research grant from the NIH Office of Dietary Supplements to X.P. and S.Z.

References

  1. Alavez S, Vantipalli MC, Zucker DJ, Klang IM, Lithgow GJ (2011) Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature 472(7342):226–229PubMedCrossRefGoogle Scholar
  2. Ang ET, Tai YK, Lo SQ, Seet R, Soong TW (2010) Neurodegenerative diseases: exercising toward neurogenesis and neuroregeneration. Front Ag Neurosci 2:25Google Scholar
  3. Ashburner M (1989) Drosophila: A laboratory handbook. Cold Spring Harbor Laboratory Press, PlainviewGoogle Scholar
  4. Bao Y, Fenwick R (2004) Phytochemicals in health and disease. Oxidative stress and disease 12. Marcel Dekker, New YorkCrossRefGoogle Scholar
  5. Barak Y, Aizenberg D (2010) Is dementia preventable? Focus on Alzheimer's disease. Expert Rev Neurother 10(11):1689–1698PubMedCrossRefGoogle Scholar
  6. Barbieri M, Rizzo MR, Papa M, Boccardi V, Esposito A, White MF, Paolisso G (2010) The IRS2 Gly1057Asp variant is associated with human longevity. J Gerontol A Biol Sci Med Sci 65(3):282–286. doi:10.1093/gerona/glp154 PubMedCrossRefGoogle Scholar
  7. Bass TM, Grandison RC, Wong R, Martinez P, Partridge L, Piper MD (2007) Optimization of dietary restriction protocols in Drosophila. J Gerontol A Biol Sci Med Sci 62(10):1071–1081PubMedCrossRefGoogle Scholar
  8. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117):337–342PubMedCrossRefGoogle Scholar
  9. Boyd O, Weng P, Sun X, Alberico T, Laslo M, Obenland DM, Kern B, Zou S (2011) Nectarine promotes longevity in Drosophila melanogaster. Free Radic Biol Med 50(11):1669–1678PubMedCrossRefGoogle Scholar
  10. Chakravarty K, Cassuto H, Reshef L, Hanson RW (2005) Factors that control the tissue-specific transcription of the gene for phosphoenolpyruvate carboxykinase-C. Crit Rev Biochem Mol Biol 40(3):129–154. doi:10.1080/10409230590935479 PubMedCrossRefGoogle Scholar
  11. Civitarese AE, Smith SR, Ravussin E (2007) Diet, energy metabolism and mitochondrial biogenesis. Curr Opin Clin Nutr Metab Care 10(6):679–687. doi:10.1097/MCO.0b013e3282f0ecd2.00075197-200711000-00005 PubMedCrossRefGoogle Scholar
  12. Feio CA, Izar MC, Ihara SS, Kasmas SH, Martins CM, Feio MN, Maues LA, Borges NC, Moreno RA, Povoa RM, Fonseca FA (2011) Euterpe Oleracea (Acai) Modifies Sterol Metabolism and Attenuates Experimentally-Induced Atherosclerosis. J Atherosclerosis ThrombGoogle Scholar
  13. Ferrara N, Rinaldi B, Corbi G, Conti V, Stiuso P, Boccuti S, Rengo G, Rossi F, Filippelli A (2008) Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res 11(1):139–150PubMedCrossRefGoogle Scholar
  14. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span—from yeast to humans. Sci 328(5976):321–326CrossRefGoogle Scholar
  15. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112. doi:10.1146/annurev.bi.64.070195.000525 PubMedCrossRefGoogle Scholar
  16. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300PubMedCrossRefGoogle Scholar
  17. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460(7253):392–395PubMedGoogle Scholar
  18. Heli H, Mirtorabi S, Karimian K (2011) Advances in iron chelation: an update. Expert Rev Neurother 21(6):819–856Google Scholar
  19. Hung CW, Chen YC, Hsieh WL, Chiou SH, Kao CL (2010) Ageing and neurodegenerative diseases. Ageing Res Rev 9(Suppl 1):S36–46PubMedCrossRefGoogle Scholar
  20. Ja WW, Carvalho GB, Mak EM, de la Rosa NN, Fang AY, Liong JC, Brummel T, Benzer S (2007) Prandiology of Drosophila and the CAFE assay. Proc Natl Acad Sci U S A 104(20):8253–8256PubMedCrossRefGoogle Scholar
  21. Jasper H, Benes V, Schwager C, Sauer S, Clauder-Munster S, Ansorge W, Bohmann D (2001) The genomic response of the Drosophila embryo to JNK signaling. Dev Cell 1(4):579–586PubMedCrossRefGoogle Scholar
  22. Joseph JA, Shukitt-Hale B, Lau FC (2007) Fruit polyphenols and their effects on neuronal signaling and behavior in senescence. Ann N Y Acad Sci 1100:470–485. doi:10.1196/annals.1395.052 PubMedCrossRefGoogle Scholar
  23. Joseph JA, Shukitt-Hale B, Willis LM (2009) Grape juice, berries, and walnuts affect brain aging and behavior. J Nutr 139(9):1813S–1817S. doi:10.3945/jn.109.108266 PubMedCrossRefGoogle Scholar
  24. Karpac J, Jasper H (2009) Insulin and JNK: optimizing metabolic homeostasis and lifespan. Trends Endocrinol Metab 20(3):100–106. doi:10.1016/j.tem.2008.11.004 PubMedCrossRefGoogle Scholar
  25. Kim J, Guan KL (2011) Amino Acid Signaling in TOR Activation. Annu Rev Biochem 80:1001–1032PubMedCrossRefGoogle Scholar
  26. Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30(6):620–650PubMedCrossRefGoogle Scholar
  27. Lee KS, Lee BS, Semnani S, Avanesian A, Um CY, Jeon HJ, Seong KM, Yu K, Min KJ, Jafari M (2010) Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Res 13(5):561–570PubMedCrossRefGoogle Scholar
  28. Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134(12 Suppl):3479S–3485S. doi:134/12/3479S PubMedGoogle Scholar
  29. Magnuson B, Peppard A, Auer Flomenhoft D (2011) Hypocaloric considerations in patients with potentially hypometabolic disease States. Nutr Clin Pract 26(3):253–260PubMedCrossRefGoogle Scholar
  30. Mahapatra CT, Bond J, Rand DM, Rand MD (2010) Identification of methylmercury tolerance gene candidates in Drosophila. Toxicol Sci 116(1):225–238PubMedCrossRefGoogle Scholar
  31. Obrenovich ME, Nair NG, Beyaz A, Aliev G, Reddy VP (2010) The role of polyphenolic antioxidants in health, disease, and aging. Rejuvenation Res 13(6):631–643PubMedCrossRefGoogle Scholar
  32. Okamoto K, Kihira T, Kobashi G, Washio M, Sasaki S, Yokoyama T, Miyake Y, Sakamoto N, Inaba Y, Nagai M (2009) Fruit and vegetable intake and risk of amyotrophic lateral sclerosis in Japan. Neuroepidemiology 32(4):251–256PubMedCrossRefGoogle Scholar
  33. Pan MH, Lai CS, Dushenkov S, Ho CT (2009) Modulation of inflammatory genes by natural dietary bioactive compounds. J Agric Food Chem 57(11):4467–4477. doi:10.1021/jf900612n PubMedCrossRefGoogle Scholar
  34. Peng C, Chan HY, Huang Y, Yu H, Chen ZY (2011) Apple polyphenols extend the mean lifespan of Drosophila melanogaster. J Agric Food Chem 59(5):2097–2106PubMedCrossRefGoogle Scholar
  35. Perez VI, Bokov A, Remmen HV, Mele J, Ran Q, Ikeno Y, Richardson A (2009) Is the oxidative stress theory of aging dead? Biochim Biophys Acta 1790(10):1005–1014. doi:10.1016/j.bbagen.2009.06.003 PubMedCrossRefGoogle Scholar
  36. Phillips JP, Campbell SD, Michaud D, Charbonneau M, Hilliker AJ (1989) Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc Natl Acad Sci U S A 86(8):2761–2765PubMedCrossRefGoogle Scholar
  37. Phillips JP, Tainer JA, Getzoff ED, Boulianne GL, Kirby K, Hilliker AJ (1995) Subunit-destabilizing mutations in Drosophila copper/zinc superoxide dismutase: neuropathology and a model of dimer dysequilibrium. Proc Natl Acad Sci U S A 92(19):8574–8578PubMedCrossRefGoogle Scholar
  38. Poulose SM, Fisher DR, Larson JA, Bielinski DF, Rimando AM, Carey AN, Schauss AG, Shukitt-Hale B (2012) Anthocyanin-rich acai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells. J Agric Food Chem 60(4):1084–1093. doi:10.1021/jf203989k PubMedCrossRefGoogle Scholar
  39. Radyuk SN, Klichko VI, Spinola B, Sohal RS, Orr WC (2001) The peroxiredoxin gene family in Drosophila melanogaster. Free Radic Biol Med 31(9):1090–1100PubMedCrossRefGoogle Scholar
  40. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62PubMedCrossRefGoogle Scholar
  41. Salmon AB, Richardson A, Perez VI (2010) Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 48(5):642–655PubMedCrossRefGoogle Scholar
  42. Schauss AG, Wu X, Prior RL, Ou B, Huang D, Owens J, Agarwal A, Jensen GS, Hart AN, Shanbrom E (2006a) Antioxidant capacity and other bioactivities of the freeze-dried Amazonian palm berry, Euterpe oleraceae Mart. (acai). J Agric Food Chem 54(22):8604–8610. doi:10.1021/jf0609779 PubMedCrossRefGoogle Scholar
  43. Schauss AG, Wu X, Prior RL, Ou B, Patel D, Huang D, Kababick JP (2006b) Phytochemical and nutrient composition of the freeze-dried amazonian palm berry, Euterpe oleraceae Mart. (acai). J Agric Food Chem 54(22):8598–8603. doi:10.1021/jf060976g CrossRefGoogle Scholar
  44. Srivastava RA (2009) Fenofibrate ameliorates diabetic and dyslipidemic profiles in KKAy mice partly via down-regulation of 11beta-HSD1, PEPCK and DGAT2. Comparison of PPARalpha, PPARgamma, and liver x receptor agonists. Eur J Pharmacol 607(1–3):258–263. doi:10.1016/j.ejphar.2009.02.024 PubMedCrossRefGoogle Scholar
  45. Stoner GD, Wang LS, Seguin C, Rocha C, Stoner K, Chiu S, Kinghorn AD (2010) Multiple berry types prevent N-nitrosomethylbenzylamine-induced esophageal cancer in rats. Pharmaceut Res 27(6):1138–1145CrossRefGoogle Scholar
  46. Sun X, Seeberger J, Alberico T, Wang C, Wheeler CT, Schauss AG, Zou S (2010) Açai palm fruit (Euterpe oleracea Mart.) pulp improves survival of flies on a high fat diet. Exp Gerontol 45(3):243–251PubMedCrossRefGoogle Scholar
  47. Toda T, Sunagawa T, Kanda T, Tagashira M, Shirasawa T, Shimizu T (2011) Apple procyanidins suppress amyloid beta-protein aggregation. Biochem Res Int 2011:784698PubMedGoogle Scholar
  48. Udani JK, Singh BB, Singh VJ, Barrett ML (2011) Effects of Açai (Euterpe oleracea Mart.) berry preparation on metabolic parameters in a healthy overweight population: a pilot study. Nutr J 10:45PubMedCrossRefGoogle Scholar
  49. Unno K, Ishikawa Y, Takabayashi F, Sasaki T, Takamori N, Iguchi K, Hoshino M (2008) Daily ingestion of green tea catechins from adulthood suppressed brain dysfunction in aged mice. Biofactors 34(4):263–271PubMedCrossRefGoogle Scholar
  50. Vina J, Lloret A, Giraldo E, Badia MC, Alonso MD (2011) Antioxidant pathways in Alzheimer's disease: possibilities of intervention. Curr Pharm Des 17(35):3861–3864PubMedCrossRefGoogle Scholar
  51. Wang MC, Bohmann D, Jasper H (2003) JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev Cell 5(5):811–816PubMedCrossRefGoogle Scholar
  52. Wang MC, Bohmann D, Jasper H (2005) JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121(1):115–125PubMedCrossRefGoogle Scholar
  53. Wang G, Wu WW, Zeng W, Chou CL, Shen RF (2006) Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: reproducibility, linearity, and application with complex proteomes. J Proteome Res 5(5):1214–1223PubMedCrossRefGoogle Scholar
  54. Whitworth AJ, Theodore DA, Greene JC, Benes H, Wes PD, Pallanck LJ (2005) Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease. Proc Natl Acad Sci U S A 102(22):8024–8029PubMedCrossRefGoogle Scholar
  55. Wood ZA, Poole LB, Karplus PA (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Sci 300(5619):650–653. doi:10.1126/science.1080405.300/5619/650 CrossRefGoogle Scholar
  56. Wu WW, Wang G, Yu MJ, Knepper MA, Shen RF (2007) Identification and quantification of basic and acidic proteins using solution-based two-dimensional protein fractionation and label-free or 18O-labeling mass spectrometry. J Proteome Res 6(7):2447–2459PubMedCrossRefGoogle Scholar
  57. Xie C, Kang J, Burris R, Ferguson ME, Schauss AG, Nagarajan S, Wu X (2011a) Acai juice attenuates atherosclerosis in ApoE deficient mice through antioxidant and anti-inflammatory activities. Atheroscler 216(2):327–333CrossRefGoogle Scholar
  58. Xie C, Kang J, Li Z, Schauss AG, Badger TM, Nagarajan S, Wu T, Wu X (2012) The acai flavonoid velutin is a potent anti-inflammatory agent: blockade of LPS-mediated TNF-alpha and IL-6 production through inhibiting NF-kappaB activation and MAPK pathway. J Nutr Biochem (in press)Google Scholar
  59. Xu J, Marzetti E, Seo AY, Kim JS, Prolla TA, Leeuwenburgh C (2010) The emerging role of iron dyshomeostasis in the mitochondrial decay of aging. Mech Ageing Dev 131(7–8):487–493PubMedCrossRefGoogle Scholar
  60. Zhang J, Marshall KE, Westwood JT, Clark MS, Sinclair BJ (2011) Divergent transcriptomic responses to repeated and single cold exposures in Drosophila melanogaster. J Exp Biol 214(Pt 23):4021–4029PubMedCrossRefGoogle Scholar
  61. Zimniak P (2008) Detoxification reactions: relevance to aging. Ageing Res Rev 7(4):281–300PubMedCrossRefGoogle Scholar
  62. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35PubMedCrossRefGoogle Scholar
  63. Zou S, Carey JR, Liedo P, Ingram DK, Yu B, Ghaedian R (2010) Prolongevity effects of an oregano and cranberry extract are diet dependent in the Mexican fruit fly (Anastrepha ludens). J Gerontol A Biol Sci 65(1):41–50CrossRefGoogle Scholar
  64. Zou S, Carey JR, Liedo P, Ingram DK, Yu B (2011) Prolongevity effects of a botanical with oregano and cranberry extracts in Mexican fruit flies: examining interactions of diet restriction and age. Age (Dordrecht, Netherlands) 34(2):269-279Google Scholar

Copyright information

© American Aging Association (outside the USA) 2012

Authors and Affiliations

  • Mara Laslo
    • 1
  • Xiaoping Sun
    • 1
  • Cheng-Te Hsiao
    • 1
  • Wells W. Wu
    • 2
  • Rong-Fong Shen
    • 3
  • Sige Zou
    • 1
  1. 1.Laboratory of Experimental GerontologyNational Institute on AgingBaltimoreUSA
  2. 2.Laboratory of Clinical InvestigationNational Institute on AgingBaltimoreUSA
  3. 3.Center for Biologics Evaluation and ResearchFood and Drug AdministrationBethesdaUSA

Personalised recommendations