Skip to main content

Advertisement

Log in

Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise: Effect of age and 12-week exercise training

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Chronic reductions in cerebral blood flow (CBF) and cerebrovascular reactivity to CO2 are risk factors for cerebrovascular disease. Higher aerobic fitness is associated with higher CBF at any age; however, whether CBF or reactivity can be elevated following an exercise training intervention in healthy individuals is unknown. The aim of this study was to assess the effect of exercise training on CBF and cerebrovascular reactivity at rest and during exercise in young and older individuals. Ten young (23 ± 5 years; body mass index (BMI), 26 ± 3 kg m−2; \( {\mathop{V}\limits^{ \cdot }{_{\text{O2}}}}\max \), 35 ± 5 ml kg−1 min−1) and 10 older (63 ± 5 years; BMI, 25 ± 3.0 kg m−2; \( {\mathop{V}\limits^{ \cdot }{_{\text{O2}}}}\max \), 26 ± 4 ml kg-1 min−1) previously sedentary individuals breathed 5 % CO2 for 3 min at rest and during steady-state cycling exercise (30 and 70 % heart rate range (HRR)) prior to and following a 12-week aerobic exercise intervention. Effects of training on middle cerebral artery blood velocity (MCAv) at rest were unclear in both age groups. The absolute MCAv response to exercise was greater in the young (9 and 9 cm s−1 (30 and 70 % HRR, respectively) vs. 5 and 4 cm s−1 (older), P < 0.05) and was similar following training. Cerebrovascular reactivity was elevated following the 12-week training at rest (2.87 ± 0.76 vs. 2.54 ± 1.12 cm s−1 mm Hg−1, P = 0.01) and during exercise, irrespective of age. The finding of a training-induced elevation in cerebrovascular reactivity provides further support for exercise as a preventative tool in cerebrovascular and neurological disease with ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ainslie PN, Duffin J (2009) Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol 296(5):R1473–95

    Article  CAS  PubMed  Google Scholar 

  • Ainslie PN et al (2005) Differential responses to CO2 and sympathetic stimulation in the cerebral and femoral circulations in humans. J Physiol 566(2):613–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ainslie PN et al (2007) Early morning impairment in cerebral autoregulation and cerebrovascular CO2 reactivity in healthy humans: relation to endothelial function. Exp Physiol 92(4):769–77

    Article  PubMed  Google Scholar 

  • Ainslie PN et al (2008) Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J Physiol 586(16):4005–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Black JE et al (1990) Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci U S A 87(14):5568–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boutcher SH, Stein P (1995) Association between heart rate variability and training response in sedentary middle-aged men. Eur J Appl Physiol Occup Physiol 70(1):75–80

    Article  CAS  PubMed  Google Scholar 

  • Buijs PC et al (1998) Effect of age on cerebral blood flow: measurement with ungated two-dimensional phase-contrast MR angiography in 250 adults. Radiology 209(3):667–74

    CAS  PubMed  Google Scholar 

  • Clarkson P et al (1999) Exercise training enhances endothelial function in young men. J Am Coll Cardiol 33(5):1379–85

    Article  CAS  PubMed  Google Scholar 

  • Colcombe SJ et al (2003) Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci 58(2):M176–180

    Article  Google Scholar 

  • Colcombe SJ et al (2006) Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci 61(11):1166–70

    Article  PubMed  Google Scholar 

  • Davis SM et al (1983) Cerebral blood flow and cerebrovascular CO2 reactivity in stroke-age normal controls. Neurology 33(4):391–9

    Article  CAS  PubMed  Google Scholar 

  • de la Torre JC (2010) Vascular risk factor detection and control may prevent Alzheimer's disease. Ageing Res Rev 9(3):218–25

    Article  CAS  PubMed  Google Scholar 

  • Demirkaya S et al (2008) Normal blood flow velocities of basal cerebral arteries decrease with advancing age: a transcranial Doppler sonography study. Tohoku J Exp Med 214(2):145–9

    Article  PubMed  Google Scholar 

  • Ding YH et al (2006) Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr Neurovas Res 3(1):15–23

    Article  CAS  Google Scholar 

  • Endres M et al (2003) Mechanisms of stroke protection by physical activity. Ann Neurol 54(5):582–90

    Article  PubMed  Google Scholar 

  • Fisher JP et al (2008) Regulation of middle cerebral artery blood velocity during dynamic exercise in humans: influence of aging. J Appl Physiol 105(1):266–73

    Article  PubMed  Google Scholar 

  • Galvin SD et al (2010) Effects of age and coronary artery disease on cerebrovascular reactivity to carbon dioxide in humans. Anaesth Intensive Care 38(4):710–7

    CAS  PubMed  Google Scholar 

  • Gertz K et al (2006) Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow. Circ Res 99(10):1132–40

    Article  CAS  PubMed  Google Scholar 

  • Green DJ et al (2004) Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol 561(Pt 1):1–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grolimund P, Seiler RW (1988) Age dependence of the flow velocity in the basal cerebral arteries—a transcranial Doppler ultrasound study. Ultrasound Med Biol 14(3):191–8

    Article  CAS  PubMed  Google Scholar 

  • Gur AY, Bova I, Bornstein NM (1996) Is impaired cerebral vasomotor reactivity a predictive factor of stroke in asymptomatic patients? Stroke 27(12):2188–90

    Article  CAS  PubMed  Google Scholar 

  • Heckmann JG et al (2003) Delayed cerebrovascular autoregulatory response to ergometer exercise in normotensive elderly humans. Cerebrovas Dis 16(4):423–9

    Article  Google Scholar 

  • Hellstrom G et al (1996) Carotid artery blood flow and middle cerebral artery blood flow velocity during physical exercise. J Appl Physiol 81(1):413–8

    CAS  PubMed  Google Scholar 

  • Hooker SP et al (2008) Cardiorespiratory fitness as a predictor of fatal and nonfatal stroke in asymptomatic women and men. Stroke 39(11):2950–7

    Article  PubMed  Google Scholar 

  • Hopkins WG (2000) Measures of reliability in sports medicine and science. Sports Med 30(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Ito H et al (2002) Effect of aging on cerebral vascular response to PaCO2 changes in humans as measured by positron emission tomography. J Cereb Blood Flow Metab 22(8):997–1003

    Article  PubMed  Google Scholar 

  • Ivey FM et al (2011) Improved cerebral vasomotor reactivity after exercise training in hemiparetic stroke survivors. Stroke 42(7):1994–2000

    Article  PubMed  Google Scholar 

  • Jorgensen LG et al (1992) Middle cerebral artery flow velocity and blood flow during exercise and muscle ischemia in humans. J Appl Physiol 72(3):1123–32

    CAS  PubMed  Google Scholar 

  • Kastrup A et al (1998) Changes of cerebrovascular CO2 reactivity during normal aging. Stroke 29(7):1311–4

    Article  CAS  PubMed  Google Scholar 

  • Kingwell BA et al (1997) Four weeks of cycle training increases basal production of nitric oxide from the forearm. Am J Physiol Heart Circ Physiol 272(3 Pt 2):H1070–7

    CAS  Google Scholar 

  • Krejza J et al (1999) Transcranial color Doppler sonography of basal cerebral arteries in 182 healthy subjects: age and sex variability and normal reference values for blood flow parameters. AJR Am J Roentgenol 172(1):213–8

    Article  CAS  PubMed  Google Scholar 

  • Lavi S et al (2006) Impaired cerebral CO2 vasoreactivity: association with endothelial dysfunction. Am J Physiol Heart Circ Physiol 291(4):H1856–61

    Article  CAS  PubMed  Google Scholar 

  • Lee IM, Paffenbarger RS Jr (1998) Physical activity and stroke incidence: the Harvard Alumni Health Study. Stroke 29(10):2049–54

    Article  CAS  PubMed  Google Scholar 

  • Linkis P et al (1995) Dynamic exercise enhances regional cerebral artery mean flow velocity. J Appl Physiol 78(1):12–6

    CAS  PubMed  Google Scholar 

  • Liu Y et al. (2011) Arterial spin labeling MRI study of age and gender effects on brain perfusion hemodynamics. Magn Reson Med

  • Llorens-Martin M, Torres-Aleman I, Trejo JL (2010) Exercise modulates insulin-like growth factor 1-dependent and -independent effects on adult hippocampal neurogenesis and behaviour. Mol Cell Neurosci 44(2):109–17

    Article  CAS  PubMed  Google Scholar 

  • Markus HS (2004) Cerebral perfusion and stroke. J Neurol Neurosurg Psychiatry 75(3):353–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Markus H, Cullinane M (2001) Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain 124(Pt 3):457–67

    Article  CAS  PubMed  Google Scholar 

  • Marsden KR et al. (2011) Aging blunts hyperventilation-induced hypocapnia and reduction in cerebral blood flow velocity during maximal exercise. Age (Dordr)

  • Moraine JJ et al (1993) Relationship of middle cerebral artery blood flow velocity to intensity during dynamic exercise in normal subjects. Eur J Appl Physiol Occup Physiol 67(1):35–8

    Article  CAS  PubMed  Google Scholar 

  • Ogoh S, Ainslie PN (2009) Cerebral blood flow during exercise: mechanisms of regulation. J Appl Physiol 107(5):1370–80

    Article  CAS  PubMed  Google Scholar 

  • Ogoh S et al (2005) Middle cerebral artery flow velocity and pulse pressure during dynamic exercise in humans. Am J Physiol Heart Circ Physiol 288(4):H1526–31

    Article  CAS  PubMed  Google Scholar 

  • Ogoh S et al (2008) Interaction between the ventilatory and cerebrovascular responses to hypo- and hypercapnia at rest and during exercise. J Physiol 586(Pt 17):4327–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ogoh S, Ainslie PN, Miyamoto T (2009) Onset responses of ventilation and cerebral blood flow to hypercapnia in humans: rest and exercise. J Appl Physiol 106(3):880–6

    Article  PubMed Central  PubMed  Google Scholar 

  • Peebles K et al (2007) Human cerebrovascular and ventilatory CO2 reactivity to end-tidal, arterial and internal jugular vein PCO2. J Physiol 584(1):347–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Querido JS, Sheel AW (2007) Regulation of cerebral blood flow during exercise. Sports Med 37(9):765–82

    Article  PubMed  Google Scholar 

  • Rasmussen P et al (2006) Enhanced cerebral CO2 reactivity during strenuous exercise in man. Eur J Appl Physiol 96(3):299–304

    Article  CAS  PubMed  Google Scholar 

  • Reich T, Rusinek H (1989) Cerebral cortical and white matter reactivity to carbon dioxide. Stroke 20(4):453–7

    Article  CAS  PubMed  Google Scholar 

  • Rhyu IJ et al (2010) Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. Neuroscience 167(4):1239–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwertfeger N et al (2006) Cerebrovascular reactivity over time course in healthy subjects. J Neurol Sci 249(2):135–9

    Article  CAS  PubMed  Google Scholar 

  • Seifert T et al (2010) Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol 298(2):R372–7

    Article  CAS  PubMed  Google Scholar 

  • Silvestrini M et al (2000) Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis. JAMA 283(16):2122–7

    Article  CAS  PubMed  Google Scholar 

  • Swain RA et al (2003) Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 117(4):1037–46

    Article  CAS  PubMed  Google Scholar 

  • Thomas KN et al (2009) Initial orthostatic hypotension is unrelated to orthostatic tolerance in healthy young subjects. J Appl Physiol 107(2):506–17

    Article  PubMed  Google Scholar 

  • Thompson PD et al (2001) The acute versus the chronic response to exercise. Med Sci Sports Exerc 33(6 Suppl):S438–45, discussion S452-3

    Article  CAS  PubMed  Google Scholar 

  • Tinken TM et al (2008) Time course of change in vasodilator function and capacity in response to exercise training in humans. J Physiol 586(Pt 20):5003–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuda Y, Hartmann A (1989) Changes in hyperfrontality of cerebral blood flow and carbon dioxide reactivity with age. Stroke 20(12):1667–73

    Article  CAS  PubMed  Google Scholar 

  • Wuyam B et al (1995) Imagination of dynamic exercise produced ventilatory responses which were more apparent in competitive sportsmen. J Physiol 482(Pt 3):713–24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi F et al (1979) Normal human aging and cerebral vasoconstrictive responses to hypocapnia. J Neurol Sci 44(1):87–94

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M et al (1980) Aging and cerebral vasodilator responses to hypercarbia: responses in normal aging and in persons with risk factors for stroke. Arch Neurol 37(8):489–96

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip N. Ainslie.

About this article

Cite this article

Murrell, C.J., Cotter, J.D., Thomas, K.N. et al. Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise: Effect of age and 12-week exercise training. AGE 35, 905–920 (2013). https://doi.org/10.1007/s11357-012-9414-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-012-9414-x

Keywords

Navigation