Skip to main content

Advertisement

Log in

Chronic training increases blood oxidative damage but promotes health in elderly men

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The objective of the present study was to investigate a large panel of oxidative stress biomarkers in long-term trained elderly men to analyse the effects of chronic training on an aged population. We collected blood samples from two groups of male volunteers older than 65 years who maintain a measure of functional independence: one group of sedentary subjects without a history of regular physical activity and the other of subjects who have sustained training, starting during middle age (mean training time = 49 ± 8 years). We studied morbidity and polypharmacy, as well as haematological parameters including red cell count, haemoglobin concentration, haematocrit, mean corpuscular volume, red cell distribution width and several oxidative biomarkers including protein carbonyl content and lipid peroxidation in plasma and erythrocytes, red blood cell H2O2-induced haemolysis test, plasma total antioxidant activity and the main antioxidant enzymes of erythrocytes: superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase. After adjusting for confounding factors, we observed an increase in all oxidative damage biomarkers in the plasma and erythrocytes of the long-term exercise group. However, we reported a decrease in the number of diseases per subject with statistical differences nearly significant (p = 0.061), reduced intake of medications per subject and lower levels of red cell distribution width in the chronic exercise group. These results indicate that chronic exercise from middle age to old age increases oxidative damage; however, chronic exercise appears to be an effective strategy to attenuate the age-related decline in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams S, Green P, Claxton R, Simcox S, Williams MV, Walsh K, Leeuwenburgh C (2001) Reactive carbonyl formation by oxidative and non-oxidative pathways. Front Biosci 6:A17–A24

    Article  PubMed  CAS  Google Scholar 

  • Aizawa K, Shoemaker JK, Overend TJ, Petrella RJ (2009) Effects of lifestyle modification on central artery stiffness in metabolic syndrome subjects with pre-hypertension and/or pre-diabetes. Diabetes Res Clin Pract 83:249–256

    Article  PubMed  CAS  Google Scholar 

  • Aldred S, Rohalu M (2011) A moderate intensity exercise program did not increase the oxidative stress in older adults. Arch Gerontol Geriatr 53:350–353

    Article  PubMed  Google Scholar 

  • Arnao MB, Cano A, Acosta M (2001) The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem 73:239–244

    Article  CAS  Google Scholar 

  • Bar-Shai M, Carmeli E, Ljubuncic P, Reznick AZ (2008) Exercise and immobilization in aging animals: the involvement of oxidative stress and NF-kappaB activation. Free Radic Biol Med 44:202–214

    Article  PubMed  CAS  Google Scholar 

  • Bonanini M, Veronesi L, Colucci ME, Guidotti R, Tanzi ML (2008) Oral health conditions and systemic diseases prevalence in long term institutionalizated elderly. A cross sectional study in Parma province. Ig Sanita Pubbl 64:149–161

    PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brewer GJ (2010) Epigenetic oxidative redox shift (EORS) theory of aging unifies the free radical and insulin signaling theories. Exp Gerontol 45:173–179

    Article  PubMed  CAS  Google Scholar 

  • Buffenstein R, Edrey YH, Yang T, Mele J (2008) The oxidative stress theory of aging: embattled or invincible? Insights from non-traditional model organisms. Age (Dordr) 30:99–109

    Article  CAS  Google Scholar 

  • Byberg L, Melhus H, Gedeborg R, Sundstrom J, Ahlbom A, Zethelius B, Berglund LG, Wolk A, Michaelsson K (2009) Total mortality after changes in leisure time physical activity in 50 year old men: 35 year follow-up of population based cohort. Br J Sports Med 43:482

    PubMed  Google Scholar 

  • Cavusoglu E, Chopra V, Gupta A, Battala VR, Poludasu S, Eng C, Marmur JD (2009) Relation between red blood cell distribution width (RDW) and all-cause mortality at two years in an unselected population referred for coronary angiography. Int J Cardiol 141:141–146

    Article  PubMed  Google Scholar 

  • Cesari M, Kritchevsky SB, Nicklas BJ, Penninx BW, Holvoet P, Koh-Banerjee P, Cummings SR, Harris TB, Newman AB, Pahor M (2005) Lipoprotein peroxidation and mobility limitation: results from the Health, Aging, and Body Composition Study. Arch Intern Med 165:2148–2154

    Article  PubMed  CAS  Google Scholar 

  • Cesari M, Kritchevsky SB, Leeuwenburgh C, Pahor M (2006) Oxidative damage and platelet activation as new predictors of mobility disability and mortality in elders. Antioxid Redox Signal 8:609–619

    Article  PubMed  CAS  Google Scholar 

  • Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ, Skinner JS (2009) American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc 41:1510–1530

    Article  PubMed  Google Scholar 

  • Cimen MY (2008) Free radical metabolism in human erythrocytes. Clin Chim Acta 390:1–11

    Article  PubMed  CAS  Google Scholar 

  • Coto-Montes A, Hardeland R (1999) Antioxidative effects of melatonin in Drosophila melanogaster: antagonization of damage induced by the inhibition of catalase. J Pineal Res 27:154–158

    Article  PubMed  CAS  Google Scholar 

  • Covas MI, Elosua R, Fito M, Alcantara M, Coca L, Marrugat J (2002) Relationship between physical activity and oxidative stress biomarkers in women. Med Sci Sports Exerc 34:814–819

    Article  PubMed  CAS  Google Scholar 

  • Cui L, Hofer T, Rani A, Leeuwenburgh C, Foster TC (2009) Comparison of lifelong and late life exercise on oxidative stress in the cerebellum. Neurobiol Aging 30:903–909

    Article  PubMed  CAS  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38

    Article  PubMed  CAS  Google Scholar 

  • Dayhoff-Brannigan M, Ferrucci L, Sun K, Fried LP, Walston J, Varadhan R, Guralnik JM, Semba RD (2008) Oxidative protein damage is associated with elevated serum interleukin-6 levels among older moderately to severely disabled women living in the community. J Gerontol A Biol Sci Med Sci 63:179–183

    Article  PubMed  Google Scholar 

  • de Gonzalo-Calvo D, Neitzert K, Fernandez M, Vega-Naredo I, Caballero B, Garcia-Macia M, Suarez FM, Rodriguez-Colunga MJ, Solano JJ, Coto-Montes A (2010) Differential inflammatory responses in aging and disease: TNF-alpha and IL-6 as possible biomarkers. Free Radic Biol Med 49:733–737

    Article  PubMed  Google Scholar 

  • de Gonzalo-Calvo D, Fernandez-Garcia B, de Luxan-Delgado B, Rodriguez-Gonzalez S, Garcia-Macia M, Suarez FM, Solano JJ, Rodriguez-Colunga MJ, Coto-Montes A (2011a) Long-term training induces a healthy inflammatory and endocrine emergent biomarker profile in elderly men. Age (Dordr). doi:10.1007/s11357-011-9266-9

  • de Gonzalo-Calvo D, Neitzert K, Fernandez M, Vega-Naredo I, Caballero B, Garcia-Macia M, Suarez FM, Rodriguez-Colunga MJ, Solano JJ, Coto-Montes A (2011b) Defective adaption of erythrocytes during acute hypoxia injury in an elderly population. J Gerontol A Biol Sci Med Sci 66:376–384

    Article  PubMed  Google Scholar 

  • Dickinson BC, Chang CJ (2011) Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 7:504–511

    Article  PubMed  CAS  Google Scholar 

  • Dodge JT, Mitchell C, Hanahan DJ (1963) The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 100:119–130

    Article  PubMed  CAS  Google Scholar 

  • Dourado VZ, Tanni SE, Vale SA, Faganello MM, Sanchez FF, Godoy I (2006) Systemic manifestations in chronic obstructive pulmonary disease. J Bras Pneumol 32:161–171

    Article  PubMed  Google Scholar 

  • Eskurza I, Monahan KD, Robinson JA, Seals DR (2004) Effect of acute and chronic ascorbic acid on flow-mediated dilatation with sedentary and physically active human ageing. J Physiol 556:315–324

    Article  PubMed  CAS  Google Scholar 

  • Farrell PM, Bieri JG, Fratantoni JF, Wood RE, di Sant’Agnese PA (1977) The occurrence and effects of human vitamin E deficiency. A study in patients with cystic fibrosis. J Clin Invest 60:233–241

    Article  PubMed  CAS  Google Scholar 

  • Gil L, Siems W, Mazurek B, Gross J, Schroeder P, Voss P, Grune T (2006) Age-associated analysis of oxidative stress parameters in human plasma and erythrocytes. Free Radic Res 40:495–505

    Article  PubMed  CAS  Google Scholar 

  • Goto S, Radák Z (2010) Hormetic effects of reactive oxygen species by exercise: a view from animal studies for successful aging in human. Dose-Response 8:68–72

    Article  CAS  Google Scholar 

  • Greilberger J, Fuchs D, Leblhuber F, Greilberger M, Wintersteiger R, Tafeit E (2010) Carbonyl proteins as a clinical marker in Alzheimer’s disease and its relation to tryptophan degradation and immune activation. Clin Lab 56:441–448

    PubMed  CAS  Google Scholar 

  • Guadalupe-Grau A, Fuentes T, Guerra B, Calbet JA (2009) Exercise and bone mass in adults. Sports Med 39:439–468

    Article  PubMed  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  • Howard C, Ferrucci L, Sun K, Fried LP, Walston J, Varadhan R, Guralnik JM, Semba RD (2007) Oxidative protein damage is associated with poor grip strength among older women living in the community. J Appl Physiol 103:17–20

    Article  PubMed  CAS  Google Scholar 

  • Ji LL (1993) Antioxidant enzyme response to exercise and aging. Med Sci Sports Exerc 25:225–231

    Article  PubMed  CAS  Google Scholar 

  • Ji LL (2001) Exercise at old age: does it increase or alleviate oxidative stress? Ann N Y Acad Sci 928:236–247

    Article  PubMed  CAS  Google Scholar 

  • Ji LL (2008) Modulation of skeletal muscle antioxidant defense by exercise: role of redox signaling. Free Radic Biol Med 44:142–152

    Article  PubMed  CAS  Google Scholar 

  • Ji LL, Dickman JR, Kang C, Koenig R (2010) Exercise-induced hormesis may help healthy aging. Dose-Response 8:73–79

    Article  PubMed  CAS  Google Scholar 

  • Johnson RM, Goyette G Jr, Ravindranath Y, Ho YS (2005) Hemoglobin autoxidation and regulation of endogenous H2O2 levels in erythrocytes. Free Radic Biol Med 39:1407–1417

    Article  PubMed  CAS  Google Scholar 

  • Kaliman P, Parrizas M, Lalanza JF, Camins A, Escorihuela RM, Pallas M (2011) Neurophysiological and epigenetic effects of physical exercise on the aging process. Ageing Res Rev 10:475–486

    Article  PubMed  Google Scholar 

  • Lamprecht M, Greilberger J, Oettl K (2004) Analytical aspects of oxidatively modified substances in sports and exercises. Nutrition 20:728–730

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  • Lubinsky S, Bewley GC (1979) Genetics of catalase in Drosophila melanogaster: rates of synthesis and degradation of the enzyme in flies aneuploid and euploid for the structural gene. Genetics 91:723–742

    PubMed  CAS  Google Scholar 

  • Mahoney FI, Barthel DW (1965) Functional evaluation: the Barthel Index. Md State Med J 14:61–65

    PubMed  CAS  Google Scholar 

  • Martin JP Jr, Dailey M, Sugarman E (1987) Negative and positive assays of superoxide dismutase based on hematoxylin autoxidation. Arch Biochem Biophys 255:329–336

    Article  PubMed  CAS  Google Scholar 

  • McNeely ML, Campbell K, Ospina M, Rowe BH, Dabbs K, Klassen TP, Mackey J, Courneya K (2010) Exercise interventions for upper-limb dysfunction due to breast cancer treatment. Cochrane Database Syst Rev 6:CD005211

    PubMed  Google Scholar 

  • Meijer EP, Coolen SA, Bast A, Westerterp KR (2001) Exercise training and oxidative stress in the elderly as measured by antipyrine hydroxylation products. Free Radic Res 35:435–443

    Article  PubMed  CAS  Google Scholar 

  • Meijer EP, Goris AH, van Dongen JL, Bast A, Westerterp KR (2002) Exercise-induced oxidative stress in older adults as a function of habitual activity level. J Am Geriatr Soc 50:349–353

    Article  PubMed  Google Scholar 

  • Mergener M, Martins MR, Antunes MV, da Silva CC, Lazzaretti C, Fontanive TO, Suyenaga ES, Ardenghi PG, Maluf SW, Gamaro GD (2009) Oxidative stress and DNA damage in older adults that do exercises regularly. Clin Biochem 42:1648–1653

    Article  PubMed  CAS  Google Scholar 

  • Mohandas N, Gallagher PG (2008) Red cell membrane: past, present, and future. Blood 112:3939–3948

    Article  PubMed  CAS  Google Scholar 

  • Nakamoto H, Kaneko T, Tahara S, Hayashi E, Naito H, Radák Z, Goto S (2007) Regular exercise reduces 8-oxodG in the nuclear and mitochondrial DNA and modulates the DNA repair activity in the liver of old rats. Exp Gerontol 42:287–295

    Article  PubMed  CAS  Google Scholar 

  • Nicklas BJ, Brinkley TE (2009) Exercise training as a treatment for chronic inflammation in the elderly. Exerc Sport Sci Rev 37:165–170

    PubMed  Google Scholar 

  • Nikolaidis MG, Jamurtas AZ (2009) Blood as a reactive species generator and redox status regulator during exercise. Arch Biochem Biophys 490:77–84

    Article  PubMed  CAS  Google Scholar 

  • Parise G, Phillips SM, Kaczor JJ, Tarnopolsky MA (2005) Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radic Biol Med 39:289–295

    Article  PubMed  CAS  Google Scholar 

  • Patel KV, Ferrucci L, Ershler WB, Longo DL, Guralnik JM (2009) Red blood cell distribution width and the risk of death in middle-aged and older adults. Arch Intern Med 169:515–523

    Article  PubMed  Google Scholar 

  • Patel KV, Semba RD, Ferrucci L, Newman AB, Fried LP, Wallace RB, Bandinelli S, Phillips CS, Yu B, Connelly S, Shlipak MG, Chaves PH, Launer LJ, Ershler WB, Harris TB, Longo DL, Guralnik JM (2010) Red cell distribution width and mortality in older adults: a meta-analysis. J Gerontol A Biol Sci Med Sci 65:258–265

    Article  PubMed  Google Scholar 

  • Powers SK, Lennon SL (1999) Analysis of cellular responses to free radicals: focus on exercise and skeletal muscle. Proc Nutr Soc 58:1025–1033

    Article  PubMed  CAS  Google Scholar 

  • Radák Z, Kaneko T, Tahara S, Nakamoto H, Ohno H, Sasvari M, Nyakas C, Goto S (1999) The effect of exercise training on oxidative damage of lipids, proteins, and DNA in rat skeletal muscle: evidence for beneficial outcomes. Free Radic Biol Med 27:69–74

    Article  PubMed  Google Scholar 

  • Radák Z, Kaneko T, Tahara S, Nakamoto H, Pucsok J, Sasvari M, Nyakas C, Goto S (2001) Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Int 38:17–23

    Article  PubMed  Google Scholar 

  • Radák Z, Chung HY, Naito H, Takahashi R, Jung KJ, Kim HJ, Goto S (2004) Age-associated increase in oxidative stress and nuclear factor kappaB activation are attenuated in rat liver by regular exercise. FASEB J 18:749–750

    PubMed  Google Scholar 

  • Radák Z, Chung HY, Koltai E, Taylor AW, Goto S (2008) Exercise, oxidative stress and hormesis. Ageing Res Rev 7:34–42

    Article  PubMed  Google Scholar 

  • Radák Z, Atalay M, Jakus J, Boldogh I, Davies K, Goto S (2009) Exercise improves import of 8-oxoguanine DNA glycosylase into the mitochondrial matrix of skeletal muscle and enhances the relative activity. Free Radic Biol Med 46:238–243

    Article  PubMed  Google Scholar 

  • Ristow M, Schmeisser S (2011) Extending life span by increasing oxidative stress. Free Radic Biol Med

  • Romeu M, Nogues R, Marcas L, Sanchez-Martos V, Mulero M, Martinez-Vea A, Mallol J, Giralt M (2010) Evaluation of oxidative stress biomarkers in patients with chronic renal failure: a case control study. BMC Res Notes 3:20

    Article  PubMed  Google Scholar 

  • Rousseau AS, Margaritis I, Arnaud J, Faure H, Roussel AM (2006) Physical activity alters antioxidant status in exercising elderly subjects. J Nutr Biochem 17:463–470

    Article  PubMed  CAS  Google Scholar 

  • Scheele C, Nielsen S, Pedersen BK (2009) ROS and myokines promote muscle adaptation to exercise. Trends Endocrinol Metab 20:95–99

    Article  PubMed  CAS  Google Scholar 

  • Seals DR, Desouza CA, Donato AJ, Tanaka H (2008) Habitual exercise and arterial aging. J Appl Physiol 105:1323–1332

    Article  PubMed  Google Scholar 

  • Semba RD, Ferrucci L, Sun K, Walston J, Varadhan R, Guralnik JM, Fried LP (2007a) Oxidative stress and severe walking disability among older women. Am J Med 120:1084–1089

    Article  PubMed  CAS  Google Scholar 

  • Semba RD, Ferrucci L, Sun K, Walston J, Varadhan R, Guralnik JM, Fried LP (2007b) Oxidative stress is associated with greater mortality in older women living in the community. J Am Geriatr Soc 55:1421–1425

    Article  PubMed  Google Scholar 

  • Semba RD, Patel KV, Ferrucci L, Sun K, Roy CN, Guralnik JM, Fried LP (2010) Serum antioxidants and inflammation predict red cell distribution width in older women: The Women’s Health and Aging Study I. Clin Nutr 29:600–604

    Article  PubMed  CAS  Google Scholar 

  • Senturk UK, Gunduz F, Kuru O, Kocer G, Ozkaya YG, Yesilkaya A, Bor-Kucukatay M, Uyuklu M, Yalcin O, Baskurt OK (2005) Exercise-induced oxidative stress leads hemolysis in sedentary but not trained humans. J Appl Physiol 99:1434–1441

    Article  PubMed  CAS  Google Scholar 

  • Seo AY, Hofer T, Sung B, Judge S, Chung HY, Leeuwenburgh C (2006) Hepatic oxidative stress during aging: effects of 8% long-term calorie restriction and lifelong exercise. Antioxid Redox Signal 8:529–538

    Article  PubMed  CAS  Google Scholar 

  • Sharma R, Nakamura A, Takahashi R, Nakamoto H, Goto S (2006) Carbonyl modification in rat liver histones: decrease with age and increase by dietary restriction. Free Radic Biol Med 40:1179–1184

    Article  PubMed  CAS  Google Scholar 

  • Smith JA (1995) Exercise, training and red blood cell turnover. Sports Med 19:9–31

    Article  PubMed  CAS  Google Scholar 

  • Thomas MM, Khan W, Betik AC, Wright KJ, Hepple RT (2010a) Initiating exercise training in late middle age minimally protects muscle contractile function and increases myocyte oxidative damage in senescent rats. Exp Gerontol 45:856–867

    Article  PubMed  CAS  Google Scholar 

  • Thomas MM, Vigna C, Betik AC, Tupling AR, Hepple RT (2010b) Initiating treadmill training in late middle age offers modest adaptations in Ca2+ handling but enhances oxidative damage in senescent rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 298:R1269–R1278

    Article  PubMed  CAS  Google Scholar 

  • Tiainen K, Hurme M, Hervonen A, Luukkaala T, Jylha M (2010) Inflammatory markers and physical performance among nonagenarians. J Gerontol A Biol Sci Med Sci 65:658–663

    Article  PubMed  Google Scholar 

  • Traustadóttir T, Davies SS, Su Y, Choi L, Brown-Borg HM, Roberts LJ, 2nd, Harman SM (2011) Oxidative stress in older adults: effects of physical fitness. Age (Dordr) (in press)

  • Urso ML, Pierce JR, Alemany JA, Harman EA, Nindl BC (2009) Effects of exercise training on the matrix metalloprotease response to acute exercise. Eur J Appl Physiol 106:655–663

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  • Viña J, Gómez-Cabrera MC, Borrás C, Froio T, Sanchis-Gomar F, Martinez-Bello VE, Pallardo FV (2009) Mitochondrial biogenesis in exercise and in ageing. Adv Drug Deliv Rev 61:1369–1374

    Article  PubMed  Google Scholar 

  • Westerterp KR, Meijer EP (2001) Physical activity and parameters of aging: a physiological perspective. J Gerontol A Biol Sci Med Sci 56(2):7–12

    Article  PubMed  Google Scholar 

  • Wheeler CR, Salzman JA, Elsayed NM, Omaye ST, Korte DW Jr (1990) Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal Biochem 184:193–199

    Article  PubMed  CAS  Google Scholar 

  • Willekens FL, Werre JM, Groenen-Dopp YA, Roerdinkholder-Stoelwinder B, de Pauw B, Bosman GJ (2008) Erythrocyte vesiculation: a self-protective mechanism? Br J Haematol 141:549–556

    Article  PubMed  CAS  Google Scholar 

  • Wray DW, Nishiyama SK, Donato AJ, Carlier P, Bailey DM, Uberoi A, Richardson RS (2011) The paradox of oxidative stress and exercise with advancing age. Exerc Sport Sci Rev 39:68–76

    Article  PubMed  Google Scholar 

  • Yu BP, Chung HY (2006) Adaptive mechanisms to oxidative stress during aging. Mech Ageing Dev 127:436–443

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Residencia Santa Teresa personnel for their excellent work. We also want to thank the Hospital Monte Naranco. We are part of the INPROTEOLYS group and the national net RETICEF for the study of aging. This work was partly supported by the grants: FISS-06-RD06/0013/0011 from the Instituto Carlos III, INIA-070RTA2007-00087-C02-02 from the Ministerio de Agricultura and FEDER funds and FICYT IB09-134 from Gobierno del Principado de Asturias. David de Gonzalo Calvo is a FICYT pre-doctoral fellow from the Gobierno del Principado de Asturias.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David de Gonzalo-Calvo or Ana Coto-Montes.

About this article

Cite this article

de Gonzalo-Calvo, D., Fernández-García, B., de Luxán-Delgado, B. et al. Chronic training increases blood oxidative damage but promotes health in elderly men. AGE 35, 407–417 (2013). https://doi.org/10.1007/s11357-011-9358-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9358-6

Keywords

Navigation