, Volume 34, Issue 5, pp 1133–1143 | Cite as

Skeletal effects of long-term caloric restriction in rhesus monkeys

  • Ricki J. Colman
  • T. Mark Beasley
  • David B. Allison
  • Richard Weindruch


Age-related bone loss is well established in humans and is known to occur in nonhuman primates. There is little information, however, on the effect of dietary interventions, such as caloric restriction (CR), on age-related bone loss. This study examined the effects of long-term, moderate CR on skeletal parameters in rhesus monkeys. Thirty adult male rhesus monkeys were subjected to either a restricted (R, n = 15) or control (C, n = 15) diet for 20 years and examined throughout for body composition and biochemical markers of bone turnover. Total body, spine, and radius bone mass and density were assessed by dual-energy X-ray absorptiometry. Assessment of biochemical markers of bone turnover included circulating serum levels of osteocalcin, carboxyterminal telopeptide of type I collagen, cross-linked aminoterminal telopeptide of type I collagen, parathyroid hormone, and 25(OH)vitamin D. Overall, we found that bone mass and density declined over time with generally higher levels in C compared to R animals. Circulating serum markers of bone turnover were not different between C and R with nonsignficant diet-by-time interactions. We believe the lower bone mass in R animals reflects the smaller body size and not pathological osteopenia.


Caloric restriction Bone Aging Osteoporosis Dietary restriction Dual-energy x-ray absorptiometry 


  1. Amin S (2010) Mechanical factors and bone health: effects of weightlessness and neurologic injury. Curr Rheumatol Rep 12(3):170–176. doi:10.1007/s11926-010-0096-z PubMedCrossRefGoogle Scholar
  2. Barrett-Connor E, Siris ES, Wehren LE, Miller PD, Abbott TA, Berger ML, Santora AC, Sherwood LM (2005) Osteoporosis and fracture risk in women of different ethnic groups. J Bone Miner Res 20(2):185–194. doi:10.1359/JBMR.041007 PubMedCrossRefGoogle Scholar
  3. Berrigan D, Lavigne JA, Perkins SN, Nagy TR, Barrett JC, Hursting SD (2005) Phenotypic effects of calorie restriction and insulin-like growth factor-1 treatment on body composition and bone mineral density of C57BL/6 mice: implications for cancer prevention. In Vivo 19(4):667–674PubMedGoogle Scholar
  4. Binkley N, Kimmel D, Bruner J, Haffa A, Davidowitz B, Meng C, Schaffer V, Green J (1998) Zoledronate prevents the development of absolute osteopenia following ovariectomy in adult rhesus monkeys. J Bone Miner Res 13(11):1775–1782. doi:10.1359/jbmr.1998.13.11.1775 PubMedCrossRefGoogle Scholar
  5. Black A, Allison DB, Shapses SA, Tilmont EM, Handy AM, Ingram DK, Roth GS, Lane MA (2001) Calorie restriction and skeletal mass in rhesus monkeys (Macaca mulatta): evidence for an effect mediated through changes in body size. J Gerontol Biol Sci 56A:B98–B107CrossRefGoogle Scholar
  6. Blain H, Vuillemin A, Teissier A, Hanesse B, Guillemin F, Jeandel C (2001) Influence of muscle strength and body weight and composition on regional bone mineral density in healthy women aged 60 years and over. Gerontology 47:207–212PubMedCrossRefGoogle Scholar
  7. Bowden DM, Teets C, Witkin J, Young DM (1979) Long bone calcification and morphology. In: Bowden DM (ed) Aging in nonhuman primates, chapter 27. Van Nostrand Reinhold, New York, pp 335–355Google Scholar
  8. Brommage R (2001) Perspectives on using nonhuman primates to understand the etiology and treatment of postmenopausal osteoporosis. J Musculoskelet Neuronal Interact 1(4):307–325PubMedGoogle Scholar
  9. Calbet JA, Moysi JS, Dorado C, Rodriguez LP (1998) Bone mineral content and density in professional tennis players. Calcif Tissue Int 62:491–496PubMedCrossRefGoogle Scholar
  10. Carro E, Senaris R, Considine RV, Casanueva FF, Dieguez C (1997) Regulation of in vivo growth hormone secretion by leptin. Endocrinol 138(5):2203–2206CrossRefGoogle Scholar
  11. Cauley JA (2011) Defining ethnic and racial differences in osteoporosis and fragility fractures. Clin Orthop Relat Res 469:1891–1899. doi:10.1007/s11999-011-1863-5 PubMedCrossRefGoogle Scholar
  12. Champ JE, Binkley N, Havighurst T, Colman RJ, Kemnitz JW, Roecker EB (1996) The effect of advancing age on bone mineral content of the female rhesus monkey. Bone 19(5):485–492PubMedCrossRefGoogle Scholar
  13. Colman RJ, Roecker EB, Ramsey JJ, Kemnitz JW (1998) The effect of dietary restriction on body composition in adult male and female rhesus macaques. Aging Clin Exp Res 10(2):83–92Google Scholar
  14. Colman RJ, Binkley N, Lane MA, Abbott DH, Kemnitz JW (1999a) Skeletal effects of aging and menopausal status in female rhesus macaques. J Clin Endocrinol Metab 84(11):4144–4148PubMedCrossRefGoogle Scholar
  15. Colman RJ, Lane MA, Binkley N, Wegner FH, Kemnitz JW (1999b) Skeletal effects of aging in male rhesus monkeys. Bone 24(1):17–23PubMedCrossRefGoogle Scholar
  16. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325(5937):201–204. doi:10.1126/science.1173635 PubMedCrossRefGoogle Scholar
  17. DeRousseau CJ (1985) Aging in the musculoskeletal system of rhesus monkeys: III. Bone loss. Am J Phys Anthropol 68:157–167PubMedCrossRefGoogle Scholar
  18. DiGiovanna AG (1994) Skeletal system. Human aging: biological perspectives. McGraw-Hill, New York, pp 165–183Google Scholar
  19. Duncan AE, Colman RJ, Kramer PA (2011) Longitudinal study of radiographic spinal osteoarthritis in a macaque model. J Orthop Res 29:1152–1160. doi:10.1002/jor.21390 PubMedCrossRefGoogle Scholar
  20. Edelstein SL, Barrett-Connor E (1993) Relation between body size and bone mineral density in elderly men and women. Am J Epidemiol 138(3):160–169PubMedGoogle Scholar
  21. Eisman JA, Sambrook PN, Kelly PJ, Pocock NA (1991) Exercise and its interaction with genetic influences in the determination of bone mineral density. Am J Med 91:5S–9SPubMedCrossRefGoogle Scholar
  22. Fox J, Miller MA, Newman MK, Turner CH, Recker RR, Smith SY (2007) Treatment of skeletally mature ovariectomized rhesus monkeys with PTH(1-84) for 16 months increases bone formation and density and improves trabecular architecture and biomechanical properties at the lumbar spine. J Bone Miner Res 22(2):260–273. doi:10.1359/jbmr.061101 PubMedCrossRefGoogle Scholar
  23. Frost H (1993) Suggested fundamental concepts in skeletal physiology. Calcif Tissue Int 52:1–4PubMedCrossRefGoogle Scholar
  24. Garn SM (1975) Bone-loss and aging. In: Goldman R, Rockstein M (eds) The physiology and pathology of human aging. Academic, New York, pp 39–57Google Scholar
  25. Grynpas MD, Huckell B, Protzker KPH, Hancock RGV, Kessler MJ (1989) Bone mineral and osteoporosis in aging rhesus monkeys. PR Health Sci J 8(1):197–204Google Scholar
  26. Grynpas MD, Huckell CB, Reichs KJ, DeRousseau CJ, Greenwood C, Kessler MJ (1993) Effect of age and osteoarthritis on bone mineral in rhesus monkey vertebrae. J Bone Miner Res 8(8):909–917PubMedCrossRefGoogle Scholar
  27. Haapasalo H, Kannus P, Sievanen H, Pasanen M, Uusi-Rasi K, Heinonen A, Oja P, Vuori I (1998) Effect of long-term unilateral activity on bone mineral density of female junior tennis players. J Bone Miner Res 13:310–319PubMedCrossRefGoogle Scholar
  28. Habold C, Momken I, Ouadi A, Bekaert V, Brasse D (2011) Effect of prior treatment with resveratrol on density and structure of rat long bones under tail-suspension. J Bone Miner Metab 29(1):15–22. doi:10.1007/s00774-010-0187-y PubMedCrossRefGoogle Scholar
  29. Haffner SM, Bauer RL (1992) Excess androgenicity only partially explains the relationship between obesity and bone density in premenopausal women. Int J Obes 16:869–874Google Scholar
  30. Holloway WR, Collier FM, Aitken CJ, Myers DE, Hodge JM, Malakellis M, Gough TJ, Collier GR, Nicholson GC (2002) Leptin inhibits osteoclast generation. J Bone Miner Res 17(2):200–209. doi:10.1359/jbmr.2002.17.2.200 PubMedCrossRefGoogle Scholar
  31. Horowitz MC (1993) Cytokines and estrogen in bone: anti-osteoporotic effects. Science 260:626–627PubMedCrossRefGoogle Scholar
  32. Hyldstrup L, Andersen T, McNair P, Breum L, Transbol I (1993) Bone metabolism in obesity: changes related to severe overweight and dietary weight reduction. Acta Endocrinol 129:393–398PubMedGoogle Scholar
  33. Ingram DK, Cutler RG, Wendruch R, Renquist DM, Knapka JJ, April M, Belcher CT, Clark MA, Hatcherson CD, Marriott BM, Roth GS (1990) Dietary restriction and aging: the initiation of a primate study. J Gerontol Biol Sci 45(5):B148–B163Google Scholar
  34. Kalu DN, Hardin RH, Cockerham R, Yu BP (1984a) Aging and dietary modulation of rat skeleton and parathyroid hormone. Endocrinol 115(4):1239–1247CrossRefGoogle Scholar
  35. Kalu DN, Hardin RR, Cockerham R, Yu BP, Norling BK, Egan JW (1984b) Lifelong food restriction prevents senile osteopenia and hyperparathyroidism in F344 rats. Mech Age Dev 26:103–112CrossRefGoogle Scholar
  36. Kalu DN, Masoro EJ, Yu BP, Hardin RR, Hollis BW (1988) Modulation of age-related hyperparathyroidism and senile bone loss in fischer rats by soy protein and food restriction. Endocrinol 122(5):1847–1854CrossRefGoogle Scholar
  37. Karsenty G, Oury F (2010) The central regulation of bone mass, the first link between bone remodeling and energy metabolism. J Clin Endocrinol Metab 95(11):4795–4801. doi:10.1210/jc.2010-1030 PubMedCrossRefGoogle Scholar
  38. Kemnitz JW, Weindruch R, Roecker EB, Crawford K, Kaufman PL, Ershler WB (1993) Dietary restriction of adult male rhesus monkeys: design, methodology, and preliminary findings from the first year of study. J Gerontol Biol Sci 48(1):B17–B26Google Scholar
  39. Kessler MJ, Turnquist JE, Pritzker KPH (1986) Reduction of passive extension and radiographic evidence of degenerative knee joint diseases in cage-raised and free-ranging aged rhesus monkeys (Macaca mulatta). J Med Primatol 15:1–9PubMedGoogle Scholar
  40. Lane MA, Reznick AZ, Tilmont EM, Lanir A, Ball SS, Read V, Ingram DK, Cutler RG, Roth GS (1995) Aging and food restriction alter some indices of bone metabolism in male rhesus monkeys (Macaca mulatta). J Nutr 125:1600–1610PubMedGoogle Scholar
  41. Lane MA, Black A, Handy AM, Shapses SA, Tilmont EM, Kiefer TL, Ingram DK, Roth GS (2001) Energy restriction does not alter bone mineral metabolism or reproductive cycling and hormones in female rhesus monkeys. J Nutr 131:820–827PubMedGoogle Scholar
  42. Lanyon LE, Rubin CT, Baust G (1986) Modulation of bone loss during calcium insufficiency by controlled dynamic loading. Calcif Tissue Int 38:209–216PubMedCrossRefGoogle Scholar
  43. Maimoun L, Coste O, Mariano-Goulart D, Galtier F, Mura T, Philibert P, Briot K, Paris F, Sultan C (2011) In peripubertal girls, artistic gymnastics improves areal bone mineral density and femoral bone geometry without affecting serum OPG/RANKL levels. Osteoporos Int 22:3055–3066. doi:10.1007/s00198-011-1541-1 PubMedCrossRefGoogle Scholar
  44. Markou KB, Theodoropoulou A, Tsekouras A, Vagenakis AG, Georgopoulos NA (2010) Bone acquisition during adolescence in athletes. Ann N Y Acad Sci 1205:12–16. doi:10.1111/j.1749-6632.2010.05675.x PubMedCrossRefGoogle Scholar
  45. Masoro EJ, Austad SN (1996) The evolution of the antiaging action of dietary restriction: a hypothesis. J Gerontol Biol Sci 51A:B387–B397CrossRefGoogle Scholar
  46. Mattison JA, Lane MA, Roth GS, Ingram DK (2003) Calorie restriction in rhesus monkeys. Exp Gerontol 38(1–2):35–46PubMedCrossRefGoogle Scholar
  47. Mazess RB (1982) On aging bone loss. Clin Orthop 165:239–252PubMedGoogle Scholar
  48. McCay CM, Crowell MF, Maynard LA (1935) The effect of retarded growth upon the length of the lifespan and upon ultimate body size. J Nutr 10:63–79Google Scholar
  49. Miller LC, Weaver DS, McAlister JA, Koritnik DR (1986) Effects of ovariectomy on vertebral trabecular bone in the cynomolgus monkey (Macaca fascicularis). Calcif Tissue Int 38(1):62–65PubMedCrossRefGoogle Scholar
  50. Mullender M, El Haj AJ, Yang Y, van Duin MA, Burger EH, Klein-Nulend J (2004) Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med Biol Eng Comput 42(1):14–21PubMedCrossRefGoogle Scholar
  51. Nuti R, Martini G, Gennari C (1995) Age-related changes of whole skeleton and body composition in healthy men. Calcif Tissue Int 57:336–339PubMedCrossRefGoogle Scholar
  52. Pope NS, Gould KG, Anderson DC, Mann DR (1989) Effects of age and sex on bone density in the rhesus monkey. Bone 10:109–112PubMedCrossRefGoogle Scholar
  53. Przybeck TR (1985) Histomorphology of the rib: bone mass and cortical remodeling. In: Davis RT, Leatleus CW (eds) Behavior and pathology of aging in rhesus monkeys. Alan R. Liss, New York, pp 303–326Google Scholar
  54. Qin W, Bauman WA, Cardozo C (2010) Bone and muscle loss after spinal cord injury: organ interactions. Ann N Y Acad Sci 1211:66–84. doi:10.1111/j.1749-6632.2010.05806.x PubMedCrossRefGoogle Scholar
  55. Ramsdale SJ, Bassey EJ (1994) Changes in bone mineral density associated with dietary-induced loss of body mass in young women. Clin Sci 87:343–348PubMedGoogle Scholar
  56. Ramsey JJ, Colman RJ, Binkley NC, Christensen JD, Gresl TA, Kemnitz JW, Weindruch R (2000) Dietary restriction and aging in rhesus monkeys: the University of Wisconsin study. Exp Gerontol 35(9–10):1131–1149PubMedCrossRefGoogle Scholar
  57. Redman LM, Rood J, Anton SD, Champagne C, Smith SR, Ravussin E (2008) Calorie restriction and bone health in young, overweight individuals. Arch Intern Med 168(17):1859–1866. doi:10.1001/archinte.168.17.1859 PubMedCrossRefGoogle Scholar
  58. Sanderson JP, Binkley N, Roecker EB, Champ JE, Pugh TD, Aspnes L, Weindruch R (1997) Influence of fat intake and caloric restriction on bone in aging male rats. J Gerontol Biol Sci 52A(1):B20–B25CrossRefGoogle Scholar
  59. Smith SY, Jolette J, Turner CH (2009) Skeletal health: primate model of postmenopausal osteoporosis. Am J Primatol 71(9):752–765. doi:10.1002/ajp.20715 PubMedCrossRefGoogle Scholar
  60. Syed FA, Hoey KA (2010) Integrative physiology of the aging bone: insights from animal and cellular models. Ann N Y Acad Sci 1211:95–106. doi:10.1111/j.1749-6632.2010.05813.x PubMedCrossRefGoogle Scholar
  61. Talbott SM, Rothkopf MM, Shapses SA (1998) Dietary restriction of energy and calcium alters bone turnover and density in younger and older female rats. J Nutr 128:640–645PubMedGoogle Scholar
  62. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinol 140(4):1630–1638CrossRefGoogle Scholar
  63. Turner CH, Pavalko FM (1998) Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J Orthop Sci 3(6):346–355PubMedCrossRefGoogle Scholar
  64. Vernikos J, Schneider VS (2010) Space, gravity and the physiology of aging: parallel or convergent disciplines? A mini-review. Gerontology 56(2):157–166. doi:10.1159/000252852 PubMedCrossRefGoogle Scholar
  65. Villareal DT, Kotyk JJ, Armamento-Villareal RC, Kenguva V, Seaman P, Shahar A, Wald MJ, Kleerekoper M, Fontana L (2011) Reduced bone mineral density is not associated with significantly reduced bone quality in men and women practicing long-term calorie restriction with adequate nutrition. Aging Cell 10(1):96–102. doi:10.1111/j.1474-9726.2010.00643.x PubMedCrossRefGoogle Scholar
  66. Wardlaw GM (1996) Putting body weight and osteoporosis into perspective. Am J Clin Nutr 63(Supplement):433S–436SPubMedGoogle Scholar
  67. Weindruch R (1996) Caloric restriction and aging. Sci Am 274:46–52Google Scholar
  68. Weindruch R, Walford RL (1988) The retardation of aging and disease by dietary restriction. Charles C. Thomas, SpringfieldGoogle Scholar
  69. Westerbeek ZW, Hepple RT, Zernicke RF (2008) Effects of aging and caloric restriction on bone structure and mechanical properties. J Gerontol A Biol Sci Med Sci 63(11):1131–1136PubMedCrossRefGoogle Scholar
  70. Wheadon GD, Heaney RP (1993) Effects of physical inactivity, paralysis, and weightlessness on bone growth. In: Hall BK (ed) Bone growth, vol 7. CRC, Boca RatonGoogle Scholar

Copyright information

© American Aging Association 2011

Authors and Affiliations

  • Ricki J. Colman
    • 1
  • T. Mark Beasley
    • 2
  • David B. Allison
    • 2
  • Richard Weindruch
    • 3
    • 4
  1. 1.Wisconsin National Primate Research CenterUniversity of WisconsinMadisonUSA
  2. 2.Department of BiostatisticsUniversity of AlabamaBirminghamUSA
  3. 3.Department of Medicine, School of Medicine and Public HealthUniversity of WisconsinMadisonUSA
  4. 4.Geriatric Research, Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonUSA

Personalised recommendations