Skip to main content
Log in

Klotho locus, metabolic traits, and serum hemoglobin in hospitalized older patients: a genetic association analysis

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Klotho (KL) gene has been involved in severe alterations of physiological biochemical parameters leading to premature aging-like phenotypes and strikingly shortening lifespan. KL participates to the regulation of a number of intracellular biochemical pathways, including lipid profile and glucose metabolism. Aim of this study was to investigate the possible association between KL locus and biological parameters commonly accepted as indicators of the clinical status in hospitalized older patients. We genotyped the single-nucleotide polymorphisms (SNPs) rs9536314, rs1207568, and rs564481 at the KL locus in 594 hospitalized older patients (65–99 years), consecutively attending a geriatric ward, and tested the association of these KL variants with biological quantitative traits using analyses of covariance and genetic risk score models. Significant associations of rs9536314 with serum levels of hemoglobin, albumin, and high-density lipoprotein cholesterol (HDL-C) as well as significant associations of rs564481 with serum levels of hemoglobin, fasting insulin, and fasting glucose were observed. Gender-segregated analyses confirmed these associations, and suggested that the associations of KL genotypes with HDL-C, fasting glucose and fasting insulin levels may be driven by the female gender, while the association with serum levels of hemoglobin may be driven by the male gender. The association of KL genotypes with creatinine levels was found only in females, while the association with insulin-like growth factor-1 (IGF-1) and lymphocytes count (LC) was found only in males. The genetic risk score (GRS) models further confirmed significant associations among KL SNPs and hemoglobin, total cholesterol, and HDL-C. Gender-segregated analyses with the GRS-tagged approach confirmed the associations with HDL-C, fasting glucose, and fasting insulin levels in females, and with hemoglobin and LC in males. Our findings suggested that KL locus may influence quantitative traits such as serum levels of lipid, fasting glucose, albumin and hemoglobin in hospitalized older patients, with some gender differences suggested for creatinine, IGF-1 levels, and LC, thus being one of the genetic factors possibly contributing to age-related diseases and longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aiello S, Noris M (2010) Klotho in acute kidney injury: biomarker, therapy, or a bit of both? Kidney Int 78:1208–1210

    Article  PubMed  CAS  Google Scholar 

  • Aizawa H, Saito Y, Nakamura T, Inoue M, Imanari T, Ohyama Y, Matsumura Y, Masuda H, Oba S, Mise N, Kimura K, Hasegawa A, Kurabayashi M, Kuro-o M, Nabeshima Y, Nagai R (1998) Downregulation of the Klotho gene in the kidney under sustained circulatory stress in rats. Biochem Biophys Res Commun 249:865–871

    Article  PubMed  CAS  Google Scholar 

  • Arking DE, Krebsova A, Macek M Sr, Macek M Jr, Arking A, Mian IS, Fried L, Hamosh A, Dey S, McIntosh I, Dietz HC (2002) Association of human aging with a functional variant of klotho. Proc Natl Acad Sci USA 99:856–861

    Article  PubMed  CAS  Google Scholar 

  • Arking DE, Becker DM, Yanek LR, Fallin D, Judge DP, Moy TF, Becker LC, Dietz HC (2003) KLOTHO allele status and the risk of early-onset occult coronary artery disease. Am J Hum Genet 72:1154–1161

    Article  PubMed  CAS  Google Scholar 

  • Arking DE, Atzmon G, Arking A, Barzilai N, Dietz HC (2005) Association between a functional variant of the KLOTHO gene and high-density lipoprotein cholesterol, blood pressure, stroke, and longevity. Circ Res 96:412–418

    Article  PubMed  CAS  Google Scholar 

  • Atzmon G, Rincon M, Schechter CB, Shuldiner AR, Lipton RB, Bergman A, Barzilai N (2006) Lipoprotein genotype and conserved pathway for exceptional longevity in humans. PLoS Biol 4:e113

    Article  PubMed  Google Scholar 

  • Baldwin C, Nolan VG, Wyszynski DF, Ma QL, Sebastiani P, Embury SH, Bisbee A, Farrell J, Farrer L, Steinberg MH (2005) Association of klotho, bone morphogenic protein 6, and annexin A2 polymorphisms with sickle cell osteonecrosis. Blood 106:372–375

    Article  PubMed  CAS  Google Scholar 

  • Barter P (2004) HDL: a recipe for longevity. Atherosclerosis 5:25–31

    Article  PubMed  CAS  Google Scholar 

  • Bartke A (2006) Long-lived Klotho mice: new insights into the roles of IGF-1 and insulin in aging. Trends Endocrinol Metab 17:33–35

    Article  PubMed  CAS  Google Scholar 

  • Barzilai N, Atzmon G, Schechter C, Schaefer EJ, Cupples AL, Lipton R, Cheng S, Shuldiner AR (2003) Unique lipoprotein phenotype and genotype associated with exceptional longevity. JAMA 290:2030–2040

    Article  PubMed  CAS  Google Scholar 

  • Bellino FL (2006) Advances in endocrinology of aging research, 2005–2006. Exp Gerontol 41:1228–1233

    Article  PubMed  CAS  Google Scholar 

  • Bliss MR, McLaren R, Exton-Smith AN (1966) Mattresses for preventing pressure sores in geriatric patients. Mon Bull Minist Health Public Health Lab Serv 25:238–268

    PubMed  CAS  Google Scholar 

  • Christensen K, Johnson TE, Vaupel JW (2006) The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet 7:436–448

    Article  PubMed  CAS  Google Scholar 

  • Deng HW (2001) Population admixture may appear to mask, change or reverse genetic effects of genes underlying complex traits. Genetics 159:1319–1323

    PubMed  CAS  Google Scholar 

  • Ferrara A, Barrett-Connor E, Shan J (1997) Total, LDL, and HDL cholesterol decrease with age in older men and women The Rancho Bernardo Study 1984–1994. Circulation 96:37–43

    Article  PubMed  CAS  Google Scholar 

  • Freathy RM, Weedon MN, Melzer D, Shields B, Hitman GA, Walker M, McCarthy MI, Hattersley AT, Frayling TM (2006) The functional “KL-VS” variant of KLOTHO is not associated with type 2 diabetes in 5028 UK Caucasians. BMC Med Genet 5:51

    Article  Google Scholar 

  • Gerdes LU, Klausen IC, Sihm I, Færgeman O (1992) Apolipoprotein E polymorphism in a Danish population compared to findings in 45 other study populations around the world. Genet Epidemiol 9:155–167

    Article  PubMed  CAS  Google Scholar 

  • Guigoz Y, Vellas B (1999) The Mini Nutritional Assessment (MNA) for grading the nutritional state of elderly patients: presentation of the MNA, history and validation. Nestle Nutr Workshop Ser Clin Perform Programme 1:3–11

    Article  PubMed  CAS  Google Scholar 

  • Hu MC, Shi M, Zhang J, Quiñones H, Kuro-o M, Moe OW (2010) Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney Int 78:1240–1251

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa S, Imel EA, Kreiter ML, Yu X, Mackenzie DS, Sorenson AH, Goetz R, Mohammadi M, White KE, Econs MJ (2007) A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest 117:2684–2691

    Article  PubMed  CAS  Google Scholar 

  • Imamura A, Okumura K, Ogawa Y, Murakami R, Torigoe M, Numaguchi Y, Murohara T (2006) Klotho gene polymorphism may be a genetic risk factor for atherosclerotic coronary artery disease but not for vasospastic angina in Japanese. Clin Chim Acta 371:66–70

    Article  PubMed  CAS  Google Scholar 

  • Imura A, Iwano A, Tohyama O, Tsuji Y, Nozaki K, Hashimoto N, Fujimori T, Nabeshima Y (2004) Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett 565:143–147

    Article  PubMed  CAS  Google Scholar 

  • Invidia L, Salvioli S, Altilia S, Pierini M, Panourgia MP, Monti D, De Rango F, Passarino G, Franceschi C (2010) The frequency of Klotho KL-VS polymorphism in a large Italian population, from young subjects to centenarians, suggests the presence of specific time windows for its effect. Biogerontology 11:67–73

    Article  PubMed  Google Scholar 

  • Jison ML, Munson PJ, Barb JJ, Suffredini AF, Talwar S, Logun C, Raghavachari N, Beigel JH, Shelhamer JH, Danner RL, Gladwin MT (2004) Blood mononuclear cell gene expression profiles characterize the oxidant, hemolytic, and inflammatory stress of sickle cell disease. Blood 104:270–280

    Article  PubMed  CAS  Google Scholar 

  • Katz S, Ford AB, Moskowitz RW, Jackson BA, Jaffe MW (1963) Studies of illness in the aged: the index of ADL—a standardized measure of biological and psychological function. JAMA 185:914–919

    Article  PubMed  CAS  Google Scholar 

  • Kawano K, Ogata N, Chiano M, Molloy H, Kleyn P, Spector TD, Uchida M, Hosoi T, Suzuki T, Orimo H, Inoue S, Nabeshima Y, Nakamura K, Kuro-o M, Kawaguchi H (2002) Klotho gene polymorphisms associated with bone density of aged postmenopausal women. J Bone MinerRes 17:1744–1751

    Article  CAS  Google Scholar 

  • Kim Y, Kim JH, Nam YJ, Kong M, Kim YJ, Yu KH, Lee BC, Lee C (2006) Klotho is a genetic risk factor for ischemic stroke caused by cardioembolism in Korean females. Neurosci Lett 407:189–194

    Article  PubMed  CAS  Google Scholar 

  • Koh N, Fujimori T, Nishiguchi S, Tamori A, Shiomi S, Nakatani T, Sugimura K, Kishimoto T, Kinoshita S, Kuroki T, Nabeshima Y (2001) Severely reduced production of klotho in human chronic renal failure kidney. Biochem Biophys Res Commun 280:1015–1020

    Article  PubMed  CAS  Google Scholar 

  • Koller DL, Peacock M, Lai D, Foroud T, Econs MJ (2004) False positive rates in association studies as a function of degree of stratification. J Bone Miner Res 19:1291–1295

    Article  PubMed  Google Scholar 

  • Kulminski AM, Culminskaya IV, Ukraintseva SV, Arbeev KG, Akushevich I, Land KC, Yashin AI (2010) Polymorphisms in the ACE and ADRB2 genes and risks of aging-associated phenotypes: the case of myocardial infarction. Rejuvenation Res 13:13–21

    Article  PubMed  CAS  Google Scholar 

  • Kuro-o M (2008) Endocrine FGFs and Klothos: emerging concepts. Trends Endocrinol Metab 19:239–245

    Article  PubMed  CAS  Google Scholar 

  • Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:18–19

    Article  Google Scholar 

  • Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuro-o M (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833

    Article  PubMed  CAS  Google Scholar 

  • Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor–23 signaling by klotho. J Biol Chem 281:6120–6123

    Article  PubMed  CAS  Google Scholar 

  • Lawton MP, Brody EM (1969) Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9:179–186

    Article  PubMed  CAS  Google Scholar 

  • Li H, Wang B, Wang Z, Guo Q, Tabuchi K, Hammer RE, Südhof TC, Zheng H (2010) Soluble amyloid precursor protein (APP) regulates transthyretin and Klotho gene expression without rescuing the essential function of APP. Proc Natl Acad Sci USA 107:17362–17367

    Article  PubMed  CAS  Google Scholar 

  • Lorenzi O, Veyrat-Durebex C, Wollheim CB, Villemin P, Rohner-Jeanrenaud F, Zanchi A, Vischer UM (2010) Evidence against a direct role of klotho in insulin resistance. Pflugers Arch 459:465–473

    Article  PubMed  CAS  Google Scholar 

  • Low AF, O'Donnell CJ, Kathiresan S, Everett B, Chae CU, Shaw SY, Ellinor PT, MacRae CA (2005) Aging syndrome genes and premature coronary artery disease. BMC Med Genet 31:38

    Article  Google Scholar 

  • Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y (1998) Identification of the human klotho gene and its two transcripts encoding membrane and secreted Klotho protein. Biochem Biophys Res Commun 242:626–630

    Article  PubMed  CAS  Google Scholar 

  • McCallum CD, Epand R (1995) Insulin receptor autophosphorylation and signaling is altered by modulation of membrane physical properties. Biochemistry 34:1815–1824

    Article  PubMed  CAS  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1998) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  Google Scholar 

  • Mullin BH, Wilson SG, Islam FM, Calautti M, Dick IM, Devine A, Prince RL (2005) Klotho gene polymorphisms are associated with osteocalcin levels but not bone density of aged postmenopausal women. Calcif Tissue Int 77:145–151

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima Y (2006) Toward a better understanding of Klotho. Sci Aging Knowledge Environ 2006(8):e11

    Article  Google Scholar 

  • Nofer JR, Kehrel B, Fobker M, Levkau B, Assmann G, von Eckardstein A (2002) HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis 161:1–16

    Article  PubMed  CAS  Google Scholar 

  • Nolan VG, Baldwin C, Ma Q, Wyszynski DF, Amirault Y, Farrell JJ, Bisbee A, Embury SH, Farrer LA, Steinberg MH (2005) Association of single nucleotide polymorphisms in KLOTHO with priapism in sickle cell anemia. Br J Haematol 128:266–272

    Article  PubMed  CAS  Google Scholar 

  • Nolan VG, Adewoye A, Baldwin C, Wang L, Ma Q, Wyszynski DF, Farrell JJ, Sebastiani P, Farrer LA, Steinberg MH (2006) Sickle cell leg ulcers: associations with haemolysis and SNPs in Klotho, TEK and genes of the TGF-beta/BMP pathway. Br J Haematol 133:570–578

    Article  PubMed  CAS  Google Scholar 

  • Novelli V, Viviani Anselmi C, Roncarati R, Guffanti G, Malovini A, Piluso G, Puca AA (2008) Lack of replication of genetic associations with human longevity. Biogerontology 9:85–92

    Article  PubMed  Google Scholar 

  • Okada S, Yoshida T, Hong Z, Ishii G, Hatano M, Kuro-O M, Nabeshima Y, Nabeshima Y, Tokuhisa T (2000) Impairment of B lymphopoiesis in precocious aging (klotho) mice. Int Immunol 12:861–871

    Article  PubMed  CAS  Google Scholar 

  • Park JW, Park ES, Choi EN, Park HY, Jung SC (2009) Altered brain gene expression profiles associated with the pathogenesis of phenylketonuria in a mouse model. Clin Chim Acta 401:90–99

    Article  PubMed  CAS  Google Scholar 

  • Parmelee PA, Thuras PD, Katz IR, Lawton MP (1995) Validation of the cumulative illness rating scale in a geriatric residential population. J Am Geriatr Soc 43:130–137

    PubMed  CAS  Google Scholar 

  • Pfeiffer E (1975) A short portable mental status questionnaire for the assessment of organic brain deficit in elderly patients. J Am Geriatr Soc 23:433–441

    PubMed  CAS  Google Scholar 

  • Pilotto A, Ferrucci L, Franceschi M, D'Ambrosio LP, Scarcelli C, Cascavilla L, Paris F, Placentino G, Seripa D, Dallapiccola B, Leandro G (2008) Development and validation of a Multidimensional Prognostic Index for 1-year mortality from the comprehensive geriatric assessment in hospitalized older patients. Rejuvenation Res 11:151–161

    Article  PubMed  Google Scholar 

  • Razzaque MS (2009) The FGF23-Klotho axis: endocrine regulation of phosphate homeostasis. Nat Rev Endocrinol 5:611–619

    Article  PubMed  CAS  Google Scholar 

  • Razzaque MS, Sitara D, Taguchi T, St-Arnaud R, Lanske B (2006) Premature aging–like phenotype in fibroblast growth factor 23 null mice is a vitamin D–mediated process. Faseb J 20:720–722

    PubMed  CAS  Google Scholar 

  • Rhee EJ, Oh KW, Yun EJ, Jung CH, Lee WY, Kim SW, Baek KH, Kang MI, Park SW (2006a) Relationship between polymorphisms G395A in promoter and C1818T in exon 4 of the KLOTHO gene with glucose metabolism and cardiovascular risk factors in Korean women. J Endocrinol Invest 29:613–618

    PubMed  CAS  Google Scholar 

  • Rhee EJ, Oh KW, Lee WY, Kim SY, Jung CH, Kim BJ, Sung KC, Kim BS, Kang JH, Lee MH, Kim SW, Park JR (2006b) The differential effects of age on the association of KLOTHO gene polymorphisms with coronary artery disease. Metabolism 55:1344–1351

    Article  PubMed  CAS  Google Scholar 

  • Rohrer L, Hersberger M, von Eckardstein A (2004) High density lipoproteins in the intersection of diabetes mellitus, inflammation and cardiovascular disease. Curr Opin Lipidol 15:269–278

    Article  PubMed  CAS  Google Scholar 

  • Russell SJ, Kahn CR (2007) Endocrine regulation of ageing. Nat Rev Mol Cell Biol 8:681–691

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Nakamura T, Ohyama Y, Suzuki T, Iida A, Shiraki-Iida T, Kuro-o M, Nabeshima Y, Kurabayashi M, Nagai R (2000) In vivo klotho gene delivery protects against endothelial dysfunction in multiple risk factor syndrome. Biochem Biophys Res Commun 276:767–772

    Article  PubMed  CAS  Google Scholar 

  • Sebastiani P, Ramoni MF, Nolan V, Baldwin CT, Steinberg MH (2005) Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. Nat Genet 37:435–440

    Article  PubMed  CAS  Google Scholar 

  • Serjeant GR, Higgs DR, Hambleton IR (2007) Elderly survivors with homozygous sickle cell disease. N Engl J Med 356:642–643

    Article  PubMed  CAS  Google Scholar 

  • Shimoyama Y, Nishio K, Hamajima N, Niwa T (2009a) KLOTHO gene polymorphism G-395A and C1818T are associated with lipid and glucose metabolism, bone mineral density and systolic blood pressure in Japanese healthy subjects. Clin Chim Acta 406:134–138

    Article  PubMed  CAS  Google Scholar 

  • Shimoyama Y, Taki K, Mitsuda Y, Tsuruta Y, Hamajima N, Niwa T (2009b) KLOTHO gene polymorphisms G-395A and C1818T are associated with low-density lipoprotein cholesterol and uric acid in Japanese hemodialysis patients. Am J Nephrol 30:383–388

    Article  PubMed  CAS  Google Scholar 

  • Soroczyńska-Cybula M, Bryl E, Smoleńska Z, Witkowski JM (2011) Varying expression of four genes sharing a common regulatory sequence may differentiate rheumatoid arthritis from ageing effects on the CD4(+) lymphocytes. Immunology 132:78–86

    Article  PubMed  Google Scholar 

  • Steinberg MH, Adewoye AH (2006) Modifier genes and sickle cell anemia. Curr Opin Hematol 13:131–136

    Article  PubMed  CAS  Google Scholar 

  • Sugiura H, Yoshida T, Tsuchiya K, Mitobe M, Nishimura S, Shirota S, Akiba T, Nihei H (2005) Klotho reduces apoptosis in experimental ischaemic acute renal failure. Nephrol Dial Transplant 20:2636–2645

    Article  PubMed  CAS  Google Scholar 

  • Unger RH (2006) Klotho-induced insulin resistance: a blessing in disguise? Nat Med 12:56–57

    Article  PubMed  CAS  Google Scholar 

  • Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    Article  PubMed  CAS  Google Scholar 

  • Utsugi T, Ohno T, Ohyama Y, Uchiyama T, Saito Y, Matsumura Y, Aizawa H, Itoh H, Kurabayashi M, Kawazu S, Tomono S, Oka Y, Suga T, Kuro-o M, Nabeshima Y, Nagai R (2000) Decreased insulin production and increased insulin sensitivity in the klotho mutant mouse, a novel animal model for human aging. Metabolism 49:1118–1123

    Article  PubMed  CAS  Google Scholar 

  • van der Westhuyzen DR, de Beer FC, Webb NR (2007) HDL cholesterol transport during inflammation. Curr Opin Lipidol 18:147–151

    Article  PubMed  Google Scholar 

  • Vaupel JW, Carey JR, Christensen K, Johnson TE, Yashin AI, Holm NV, Iachine IA, Kannisto V, Khazaeli AA, Liedo P, Longo VD, Zeng Y, Manton KG, Curtsinger JW (1998) Biodemographic trajectories of longevity. Science 280:855–860

    Article  PubMed  CAS  Google Scholar 

  • Walter M (2009) Interrelationships among HDL metabolism, aging, and atherosclerosis. Arterioscler Thromb Vasc Biol 29:1244–1250

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Sun Z (2009) Current understanding of klotho. Ageing Res Rev 8:43–51

    Article  PubMed  Google Scholar 

  • Wilson PWF, Anderson KM, Harris T, Kannel WB, Castelli WP (1994) Determinants of change in total cholesterol and HDLC with age: the Framingham study. J Gerontol 49:M252–M257

    PubMed  CAS  Google Scholar 

  • Witkowski JM, Soroczynska-Cybula M, Bryl E, Smolenska Z, Jozwik A (2007) Klotho—a common link in physiological and rheumatoid arthritis-related aging of human CD4+ lymphocytes. J Immunol 178:771–777

    PubMed  CAS  Google Scholar 

  • Yamada Y, Ando F, Niino N, Shimokata H (2005) Association of polymorphisms of the androgen receptor and klotho genes with bone mineral density in Japanese women. J Mol Med 83:50–57

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Zheng F (2008) PPAR-gamma and aging: one link through klotho? Kidney Int 74:702–704

    Article  PubMed  CAS  Google Scholar 

  • Zuo Z, Lei H, Wang X, Wang Y, Sonntag W, Sun Z (2010) Aging-related kidney damage is associated with a decrease in klotho expression and an increase in superoxide production. Age (Dordr). doi:10.1007/s11357-010-9176-2

Download references

Acknowledgments

This work was fully supported by “Ministero della Salute”, IRCCS Research Program, Ricerca Corrente 2009–2011, Linea n. 2 “Malattie complesse”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Pilotto.

Additional information

Giulia Paroni and Davide Seripa contributed equally to the work.

About this article

Cite this article

Paroni, G., Seripa, D., Panza, F. et al. Klotho locus, metabolic traits, and serum hemoglobin in hospitalized older patients: a genetic association analysis. AGE 34, 949–968 (2012). https://doi.org/10.1007/s11357-011-9273-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9273-x

Keywords

Navigation