, Volume 34, Issue 2, pp 281–293 | Cite as

Dose-dependent effects of R-sulforaphane isothiocyanate on the biology of human mesenchymal stem cells, at dietary amounts, it promotes cell proliferation and reduces senescence and apoptosis, while at anti-cancer drug doses, it has a cytotoxic effect

  • Fulvia Zanichelli
  • Stefania Capasso
  • Marilena Cipollaro
  • Eleonora Pagnotta
  • Maria Cartenì
  • Fiorina Casale
  • Renato Iori
  • Umberto GalderisiEmail author


Brassica vegetables are attracting a great deal of attention as healthy foods because of the fact that they contain substantial amounts of secondary metabolite glucosinolates that are converted into isothiocyanates, such as sulforaphane [(−)1-isothiocyanato-4R-(methylsulfinyl)-butane] (R-SFN), through the actions of chopping or chewing the vegetables. Several studies have analyzed the biological and molecular mechanisms of the anti-cancer activity of synthetic R,S-sulforaphane, which is thought to be a result of its antioxidant properties and its ability to inhibit histone deacetylase enzymes (HDAC). Few studies have addressed the possible antioxidant effects of R-SFN, which could protect cells from the free radical damage that strongly contribute to aging. Moreover, little is known about the effect of R-SFN on stem cells whose longevity is implicated in human aging. We evaluated the effects of R-SFN on the biology on human mesenchymal stem cells (MSCs), which, in addition to their ability to differentiate into mesenchymal tissues, support hematopoiesis, and contribute to the homeostatic maintenance of many organs and tissues. Our investigation found evidence that low doses of R-SFN promote MSCs proliferation and protect them from apoptosis and senescence, while higher doses have a cytotoxic effect, leading to the induction of cell cycle arrest, programmed cell death and senescence. The beneficial effects of R-SFN may be ascribed to its antioxidant properties, which were observed when MSC cultures were incubated with low doses of R-SFN. Its cytotoxic effects, which were observed after treating MSCs with high doses of R-SFN, could be attributed to its HDAC inhibitory activity. In summary, we found that R-SFN, like many other dietary supplements, exhibits a hormetic behavior; it is able to induce biologically opposite effects at different doses.


Isothiocyanate Marrow stromal stem cells Differentiation Apoptosis Senescence Cell cycle Histone deacetylase 


  1. Abdull Razis AF, Bagatta M, De Nicola GR et al (2010a) Up-regulation of cytochrome P450 and phase II enzyme systems in rat precision-cut rat lung slices by the intact glucosinolates, glucoraphanin and glucoerucin. Lung Cancer 71(3):298–305. doi: 10.1016/j.lungcan.2010.06.015 CrossRefGoogle Scholar
  2. Abdull Razis AF, Iori R, Ioannides C (2010b) The natural chemopreventive phytochemical R-sulforaphane is a far more potent inducer of the carcinogen-detoxifying enzyme systems in rat liver and lung than the S-isomer. Int J Cancer. doi: 10.1002/ijc.25620
  3. Ahn YH, Hwang Y, Liu H et al (2010) Electrophilic tuning of the chemoprotective natural product sulforaphane. Proc Natl Acad Sci U S A 107(21):9590–9595. doi: 10.1073/pnas.1004104107 PubMedCrossRefGoogle Scholar
  4. Alexanian AR, Kurpad SN (2005) Quiescent neural cells regain multipotent stem cell characteristics influenced by adult neural stem cells in co-culture. Exp Neurol 191(1):193–197. doi: 10.1016/j.expneurol.2004.10.006 PubMedCrossRefGoogle Scholar
  5. Beausejour C (2007) Bone marrow-derived cells: the influence of aging and cellular senescence. Handb Exp Pharmacol 180:67–88. doi: 10.1007/978-3-540-68976-8_4 PubMedCrossRefGoogle Scholar
  6. Beyer Nardi N, da Silva ML (2006) Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb Exp Pharmacol 174:249–282PubMedGoogle Scholar
  7. Bianco P, Riminucci M, Gronthos S, Gehron Robey P (2001) Bone marrow stromal stem cells: nature, biology and potential applications. Stem Cells 19:180–192PubMedCrossRefGoogle Scholar
  8. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740PubMedCrossRefGoogle Scholar
  9. Choi S, Singh SV (2005) Bax and Bak are required for apoptosis induction by sulforaphane, a cruciferous vegetable-derived cancer chemopreventive agent. Cancer Res 65(5):2035–2043. doi: 10.1158/0008-5472.CAN-04-3616 PubMedCrossRefGoogle Scholar
  10. Conaway CC, Wang CX, Pittman B, Yang YM, Schwartz JE, Tian D, McIntee EJ, Hecht SS, Chung FL (2005) Phenethyl isothiocyanate and sulforaphane and their N-acetylcysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in A/J mice. Cancer Res 65(18):8548–8557. doi: 10.1158/0008-5472.CAN-05-0237 PubMedCrossRefGoogle Scholar
  11. Cornblatt BS, Ye L, Dinkova-Kostova AT, Erb M, Fahey JW, Singh NK, Chen MS, Stierer T, Garrett-Mayer E, Argani P, Davidson NE, Talalay P, Kensler TW, Visvanathan K (2007) Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis 28(7):1485–1490. doi: 10.1093/carcin/bgm049 PubMedCrossRefGoogle Scholar
  12. Di Bernardo G, Squillaro T, Dell’Aversana C, Miceli M, Cipollaro M, Cascino A, Altucci L, Galderisi U (2009) Histone deacetylase inhibitors promote apoptosis and senescence in human mesenchymal stem cells. Stem Cells Dev 18(4):573–581. doi: 10.1089/scd.2008.0172 PubMedCrossRefGoogle Scholar
  13. Di Bernardo G, Alessio N, Dell’Aversana C et al (2010) Impact of histone deacetylase inhibitors SAHA and MS-275 on DNA repair pathways in human mesenchymal stem cells. J Cell Physiol 225(2):537–544. doi: 10.1002/jcp.22236 PubMedCrossRefGoogle Scholar
  14. Dinkova-Kostova AT, Jenkins SN, Fahey JW, Ye L, Wehage SL, Liby KT, Stephenson KK, Wade KL, Talalay P (2006) Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer Lett 240(2):243–252. doi: 10.1016/j.canlet.2005.09.012 PubMedCrossRefGoogle Scholar
  15. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, and Horwitz E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315–7.Google Scholar
  16. Fimognari C, Nusse M, Cesari R, Iori R, Cantelli-Forti G, Hrelia P (2002) Growth inhibition, cell-cycle arrest and apoptosis in human T-cell leukemia by the isothiocyanate sulforaphane. Carcinogenesis 23(4):581–586PubMedCrossRefGoogle Scholar
  17. Fimognari C, Nusse M, Berti F, Iori R, Cantelli-Forti G, Hrelia P (2003) Sulforaphane modulates cell cycle and apoptosis in transformed and non-transformed human T lymphocytes. Ann NY Acad Sci 1010:393–398PubMedCrossRefGoogle Scholar
  18. Foijer F, te Riele H (2006) Check, double check: the G2 barrier to cancer. Cell Cycle 5(8):831–836PubMedCrossRefGoogle Scholar
  19. Galderisi U, Di Bernardo G, Cipollaro M, Jori FP, Piegari E, Cascino A, Peluso G and Melone MAB (1999). Induction of apoptosis and differentiation in neuroblastoma and astrocytoma cells by the overexpression of Bin1, a novel Myc interacting protein. J Cell Biochem 74, 313–22PubMedCrossRefGoogle Scholar
  20. Galderisi U, Cipollaro M, Giordano A (2006) The retinoblastoma gene is involved in multiple aspects of stem cell biology. Oncogene 25(38):5250–5256PubMedCrossRefGoogle Scholar
  21. Gingras D, Gendron M, Boivin D, Moghrabi A, Theoret Y, Beliveau R (2004) Induction of medulloblastoma cell apoptosis by sulforaphane, a dietary anticarcinogen from Brassica vegetables. Cancer Lett 203(1):35–43PubMedCrossRefGoogle Scholar
  22. Haack M, Lowinger M, Lippmann D et al (2010) Breakdown products of neoglucobrassicin inhibit activation of Nrf2 target genes mediated by myrosinase-derived glucoraphanin hydrolysis products. Biol Chem 391(11):1281–1293. doi: 10.1515/BC.2010.134 PubMedCrossRefGoogle Scholar
  23. Haferkamp S, Scurr LL, Becker TM, Frausto M, Kefford RF, Rizos H (2009) Oncogene-induced senescence does not require the p16(INK4a) or p14ARF melanoma tumor suppressors. J Invest Dermatol 129(8):1983–1991. doi: 10.1038/jid.2009.5 PubMedCrossRefGoogle Scholar
  24. Hanlon N, Coldham N, Gielbert A, Sauer MJ, Ioannides C (2009) Repeated intake of broccoli does not lead to higher plasma levels of sulforaphane in human volunteers. Cancer Lett 284(1):15–20. doi: 10.1016/j.canlet.2009.04.004 PubMedCrossRefGoogle Scholar
  25. Ho E, Clarke JD, Dashwood RH (2009) Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention. J Nutr 139(12):2393–2396. doi: 10.3945/jn.109.113332 PubMedCrossRefGoogle Scholar
  26. Karmakar S, Weinberg MS, Banik NL, Patel SJ, Ray SK (2006) Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane. Neuroscience 141(3):1265–1280. doi: 10.1016/j.neuroscience.2006.04.075 PubMedCrossRefGoogle Scholar
  27. Keum YS, Jeong WS, Kong AN (2004) Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat Res 555(1–2):191–202. doi: 10.1016/j.mrfmmm.2004.05.024 PubMedGoogle Scholar
  28. Kim KS, Kang KW, Seu YB, Baek SH, Kim JR (2009) Interferon-gamma induces cellular senescence through p53-dependent DNA damage signaling in human endothelial cells. Mech Ageing Dev 130(3):179–188. doi: 10.1016/j.mad.2008.11.004 PubMedCrossRefGoogle Scholar
  29. Klimova TA, Bell EL, Shroff EH, Weinberg FD, Snyder CM, Dimri GP, Schumacker PT, Budinger GR, Chandel NS (2009) Hyperoxia-induced premature senescence requires p53 and pRb, but not mitochondrial matrix ROS. FASEB J 23(3):783–794. doi: 10.1096/fj.08-114256 PubMedCrossRefGoogle Scholar
  30. Maison C, Almouzni G (2004) HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol 5(4):296–304. doi: 10.1038/nrm1355nrm1355 PubMedCrossRefGoogle Scholar
  31. Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov AA, Ko MS, Niwa H (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9(6):625–635. doi: 10.1038/ncb1589 PubMedCrossRefGoogle Scholar
  32. Matoba R, Niwa H, Masui S, Ohtsuka S, Carter MG, Sharov AA, Ko MS (2006) Dissecting Oct3/4-regulated gene networks in embryonic stem cells by expression profiling. PLoS ONE 1:e26. doi: 10.1371/journal.pone.0000026 PubMedCrossRefGoogle Scholar
  33. Mi L, Wang X, Govind S, Hood BL, Veenstra TD, Conrads TP, Saha DT, Goldman R, Chung FL (2007) The role of protein binding in induction of apoptosis by phenethyl isothiocyanate and sulforaphane in human non-small lung cancer cells. Cancer Res 67(13):6409–6416. doi: 10.1158/0008-5472.CAN-07-0340 PubMedCrossRefGoogle Scholar
  34. Mi L, Xiao Z, Hood BL, Dakshanamurthy S, Wang X, Govind S, Conrads TP, Veenstra TD, Chung FL (2008) Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. J Biol Chem 283(32):22136–22146. doi: 10.1074/jbc.M802330200 PubMedCrossRefGoogle Scholar
  35. Mikkers H, Frisen J (2005) Deconstructing stemness. EMBO J 24(15):2715–2719PubMedCrossRefGoogle Scholar
  36. Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51PubMedCrossRefGoogle Scholar
  37. Muller-Sieburg CE, Deryugina E (1995) The stromal cells’ guide to the stem cell universe. Stem Cells 13(5):477–486PubMedCrossRefGoogle Scholar
  38. Myzak MC, Dashwood RH (2006) Histone deacetylases as targets for dietary cancer preventive agents: lessons learned with butyrate, diallyl disulfide, and sulforaphane. Curr Drug Targets 7(4):443–452PubMedCrossRefGoogle Scholar
  39. Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH (2006a) Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice. FASEB J 20(3):506–508. doi: 10.1096/fj.05-4785fje PubMedGoogle Scholar
  40. Myzak MC, Ho E, Dashwood RH (2006b) Dietary agents as histone deacetylase inhibitors. Mol Carcinog 45(6):443–446. doi: 10.1002/mc.20224 PubMedCrossRefGoogle Scholar
  41. Oberdoerffer P, Sinclair DA (2007) The role of nuclear architecture in genomic instability and ageing. Nat Rev Mol Cell Biol 8(9):692–702PubMedCrossRefGoogle Scholar
  42. Pelicci PG (2004) Do tumor-suppressive mechanisms contribute to organism aging by inducing stem cell senescence? J Clin Invest 113(1):4–7. doi: 10.1172/JCI20750 PubMedGoogle Scholar
  43. Pessina A, Thomas RM, Palmieri S, Luisi PL (1990) An improved method for the purification of myrosinase and its physicochemical characterization. Arch Biochem Biophys 280(2):383–389PubMedCrossRefGoogle Scholar
  44. Pledgie-Tracy A, Sobolewski MD, Davidson NE (2007) Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol Cancer Ther 6(3):1013–1021. doi: 10.1158/1535-7163.MCT-06-0494 PubMedCrossRefGoogle Scholar
  45. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71–74PubMedCrossRefGoogle Scholar
  46. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) "Stemness": transcriptional profiling of embryonic and adult stem cells. Science 298(5593):597–600. doi: 10.1126/science.10725301072530 PubMedCrossRefGoogle Scholar
  47. Sethe S, Scutt A, Stolzing A (2006) Aging of mesenchymal stem cells. Ageing Res Rev 5(1):91–116PubMedCrossRefGoogle Scholar
  48. Sharpless NE, DePinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8(9):703–713PubMedCrossRefGoogle Scholar
  49. Sheng JG, Mrak RE, Griffin WS (1998) Enlarged and phagocytic, but not primed, interleukin-1 alpha-immunoreactive microglia increase with age in normal human brain. Acta Neuropathol 95(3):229–234PubMedCrossRefGoogle Scholar
  50. Son TG, Camandola S, Mattson MP (2008) Hormetic dietary phytochemicals. Neuromolecular Med 10(4):236–246. doi: 10.1007/s12017-008-8037-y PubMedCrossRefGoogle Scholar
  51. Spotswood HT, Turner BM (2002) An increasingly complex code. J Clin Invest 110(5):577–582. doi: 10.1172/JCI16547 PubMedGoogle Scholar
  52. Squillaro T, Alessio N, Cipollaro M, Renieri A, Giordano A, Galderisi U (2010) Partial silencing of methyl cytosine protein binding 2 (MECP2) in mesenchymal stem cells induces senescence with an increase in damaged DNA. FASEB J 24(5):1593–1603. doi: 10.1096/fj.09-143057 PubMedCrossRefGoogle Scholar
  53. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  54. Talalay P, Fahey JW, Healy ZR, Wehage SL, Benedict AL, Min C, Dinkova-Kostova AT (2007) Sulforaphane mobilizes cellular defenses that protect skin against damage by UV radiation. Proc Natl Acad Sci USA 104(44):17500–17505. doi: 10.1073/pnas.0708710104 PubMedCrossRefGoogle Scholar
  55. Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20(15):1803–1815. doi: 10.1038/sj.onc.1204252 PubMedCrossRefGoogle Scholar
  56. Valgimigli L, Iori R (2009) Antioxidant and pro-oxidant capacities of ITCs. Environ Mol Mutagen 50(3):222–237. doi: 10.1002/em.20468 PubMedCrossRefGoogle Scholar
  57. Yu AL, Fuchshofer R, Kook D, Kampik A, Bloemendal H, Welge-Lussen U (2009) Subtoxic oxidative stress induces senescence in retinal pigment epithelial cells via TGF-beta release. Investig Ophthalmol Vis Sci 50(2):926–935. doi: 10.1167/iovs.07-1003 CrossRefGoogle Scholar

Copyright information

© American Aging Association 2011

Authors and Affiliations

  • Fulvia Zanichelli
    • 2
  • Stefania Capasso
    • 2
  • Marilena Cipollaro
    • 2
  • Eleonora Pagnotta
    • 4
  • Maria Cartenì
    • 2
  • Fiorina Casale
    • 5
  • Renato Iori
    • 4
  • Umberto Galderisi
    • 1
    • 2
    • 3
    Email author
  1. 1.Sbarro Institute for Cancer Research and Molecular Medicine, Center for BiotechnologyTemple UniversityPhiladelphiaUSA
  2. 2.Department of Experimental Medicine, Biotechnology and Molecular Biology SectionSecond University of NaplesNaplesItaly
  3. 3.Human Health FoundationSpoletoItaly
  4. 4.Consiglio per la Ricerca e la Sperimentazione in Agricoltura (C.R.A.)Industrial Crop Research CentreBolognaItaly
  5. 5.Department of Pediatrics “F. Fede”Second University of NaplesNaplesItaly

Personalised recommendations