Skip to main content

Advertisement

Log in

Influence of aerobic fitness on age-related lymphocyte DNA damage in humans: relationship with mitochondria respiratory chain and hydrogen peroxide production

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The aim of this study was to analyze the influence of aerobic fitness (AF) on age-related lymphocyte DNA damage in humans, giving special attention to the role of the mitochondrial respiratory chain and hydrogen peroxide production. Considering age and AF (as assessed by VO2max), 66 males (19–59 years old) were classified as high fitness (HF) or low fitness (LF) and distributed into one of the following groups: young adults (19–29 years old), adults (30–39 years old), and middle-aged adults (over 40 years old). Peripheral lymphocytes obtained at rest were used to assess DNA damage (strand breaks and formamidopyrimidine DNA glycosylase (FPG) sites through the comet assay), activity of mitochondrial complexes I and II (polarographically measured), and the hydrogen peroxide production rate (assayed by fluorescence). Results revealed a significant interaction between age groups and AF for DNA strand breaks (F = 8.415, p = .000), FPG sites (F = 11.766, p = .000), mitochondrial complex I activity (F = 7.555, p = .000), and H2O2 production (F = 7.500, p = .000). Except for mitochondrial complex II activity, the age variation of the remaining parameters was significantly attenuated by HF. Considering each AF level, an increase in DNA strand breaks and FPG sites with age (r = 0.655, p = 0.000, and r = 0.738, p = 0.000, respectively) was only observed in LF. Moreover, decreased mitochondrial complex I activity with age (r = −.470, p = .009) was reported in LF. These results allow the conclusion that high AF seems to play a key role in attenuating the biological aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ACSM (American College of Sports Medicine Position Stand) (1998) Exercise and physical activity for older adults. Med Sci Sports Exerc 30(6):992–1008

    Article  Google Scholar 

  • Agarwal S, Sohal RS (1994) DNA oxidative damage and life expectancy in houseflies. Proc Natl Acad Sci USA 91(25):12332–12335

    Article  CAS  PubMed  Google Scholar 

  • Ascensão A, Magalhaes J, Soares JM, Ferreira R, Neuparth MJ, Marques F et al (2005) Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis. Am J Physiol Heart Circ Physiol 289(2):H722–H731

    Article  PubMed  Google Scholar 

  • Ascensão A, Ferreira R, Magalhaes J (2007) Exercise-induced cardioprotection: biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. Int J Cardiol 117(1):16–30

    Article  PubMed  Google Scholar 

  • Beckman KB, Ames BN (1998a) The free radical theory of aging matures. Physiol Rev 78(2):547–581

    CAS  PubMed  Google Scholar 

  • Beckman KB, Ames BN (1998b) Mitochondrial aging: open questions. Ann N Y Acad Sci 854:118–127

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Brierley EJ, Johnson MA, Lightowlers RN, James OF, Turnbull DM (1998) Role of mitochondrial DNA mutations in human aging: implications for the central nervous system and muscle. Ann Neurol 43(2):217–223

    Article  CAS  PubMed  Google Scholar 

  • Bruce RA, Kusumi F, Hosmer D (1973) Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am Heart J 85(4):546–562

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty EF, Hubert HB, Lingala VB, Fries JF (2008) Reduced disability and mortality among aging runners—a 21-year longitudinal study. Arch Intern Med 168(15):1638–1646

    Article  PubMed  Google Scholar 

  • Chen JH, Hales CN, Ozanne SE (2007) DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res 35(22):7417–7428

    Article  CAS  PubMed  Google Scholar 

  • Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26(3):249–261

    Article  CAS  PubMed  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. Faseb J 17(10):1195–1214

    Article  CAS  PubMed  Google Scholar 

  • Courneya KS, Karvinen KH (2007) Exercise, aging, and cancer. Appl Physiol Nutr Metab 32(6):1001–1007

    Article  PubMed  Google Scholar 

  • den Hoed M, Hesselink MKC, van Kranenburg GPJ, Westerterp KR (2008) Habitual physical activity in daily life correlates positively with markers for mitochondrial capacity. J Appl Physiol 105(2):561–568

    Article  Google Scholar 

  • Figueiredo PA, Mota MP, Appell HJ, Duarte JA (2008) The role of mitochondria in aging of skeletal muscle. Biogerontology 9(2):67–84

    Article  CAS  PubMed  Google Scholar 

  • Friedenreich CM (2001) Physical activity and cancer prevention: from observational to intervention research. Cancer Epidemiol Biomarkers Prev 10(4):287–301

    CAS  PubMed  Google Scholar 

  • Friedenreich CM, Orenstein MR (2002) Physical activity and cancer prevention: etiologic evidence and biological mechanisms. J Nutr 132(11 Suppl):3456S–3464S

    CAS  PubMed  Google Scholar 

  • Halliwell B (1999) Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: measurement, mechanism and the effects of nutrition. Mutat Res 443(1–2):37–52

    CAS  PubMed  Google Scholar 

  • Hudson EK, Hogue BA, Souza-Pinto NC, Croteau DL, Anson RM, Bohr VA et al (1998) Age-associated change in mitochondrial DNA damage. Free Radic Res 29(6):573–579

    Article  CAS  PubMed  Google Scholar 

  • Judge S, Leeuwenburgh C (2007) Cardiac mitochondrial bioenergetics, oxidative stress, and aging. Am J Physiol Cell Physiol 292(6):C1983–C1992

    Article  CAS  PubMed  Google Scholar 

  • Kohut ML, Senchina DS (2004) Reversing age-associated immunosenescence via exercise. Exerc Immunol Rev 10:6–41

    PubMed  Google Scholar 

  • Krajcovicova-Kudlackova M, Valachovicova M, Paukova V, Dusinska M (2008) Effects of diet and age on oxidative damage products in healthy subjects. Physiol Res 57(4):647–651

    CAS  PubMed  Google Scholar 

  • Kregel KC, Zhang HJ (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292(1):R18–R36

    CAS  PubMed  Google Scholar 

  • Kruk J (2007) Physical activity in the prevention of the most frequent chronic diseases: an analysis of the recent evidence. Asian Pac J Cancer Prev 8(3):325–338

    PubMed  Google Scholar 

  • Lee HC, Wei YH (2005) Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 37(4):822–834

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, D'Aurelio M, Pich MM, Geneva ML, Ventura B, Bovina C et al (2000) Mitochondrial bioenergetics in aging. Biochim Biophys Acta 1459(2–3):397–404

    CAS  PubMed  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795

    Article  CAS  PubMed  Google Scholar 

  • Menshikova EV, Ritov VB, Fairfull L, Ferrell RE, Kelley DE, Goodpaster BH (2006) Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci 61(6):534–540

    PubMed  Google Scholar 

  • Midgley AW, McNaughton LR, Polman R, Marchant D (2007) Criteria for determination of maximal oxygen uptake: a brief critique and recommendations for future research. Sports Med 37(12):1019–1028

    Article  PubMed  Google Scholar 

  • Miller RA (1996) The aging immune system: primer and prospectus. Science 273(5271):70–74

    Article  CAS  PubMed  Google Scholar 

  • Miro O, Alonso JR, Jarreta D, Casademont J, Urbano-Marquez A, Cardellach F (1999) Smoking disturbs mitochondrial respiratory chain function and enhances lipid peroxidation on human circulating lymphocytes. Carcinogenesis 20(7):1331–1336

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto H, Kaneko T, Tahara S, Hayashi E, Naito H, Radak Z et al (2007) Regular exercise reduces 8-oxodG in the nuclear and mitochondrial DNA and modulates the DNA repair activity in the liver of old rats. Exp Gerontol 42(4):287–295

    Article  CAS  PubMed  Google Scholar 

  • Navarro A, Boveris A (2007) Brain mitochondrial dysfunction in aging: conditions that improve survival, neurological performance and mitochondrial function. Front Biosci 12:1154–1163

    Article  CAS  PubMed  Google Scholar 

  • Nieman DC, Pedersen BK (1999) Exercise and immune function. Recent developments. Sports Med 27(2):73–80

    Article  CAS  PubMed  Google Scholar 

  • Ozawa T (1995) Mitochondrial DNA mutations associated with aging and degenerative diseases. Exp Gerontol 30(3–4):269–290

    Article  CAS  PubMed  Google Scholar 

  • Parise G, Phillips SM, Kaczor JJ, Tarnopolsky MA (2005) Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radic Biol Med 39(2):289–295

    Article  CAS  PubMed  Google Scholar 

  • Pedersen BK, Hoffman-Goetz L (2000) Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev 80(3):1055–1081

    CAS  PubMed  Google Scholar 

  • Radak Z, Naito H, Kaneko T, Tahara S, Nakamoto H, Takahashi R et al (2002) Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle. Pflugers Archiv 445(2):273–278

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Kumagai S, Nakamoto H, Goto S (2007) 8-Oxoguanosine and uracil repair of nuclear and mitochondrial DNA in red and white skeletal muscle of exercise-trained old rats. J Appl Physiol 102(4):1696–1701

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Atalay M, Jakus J, Boldogh I, Davies K, Goto S (2009) Exercise improves import of 8-oxoguanine DNA glycosylase into the mitochondrial matrix of skeletal muscle and enhances the relative activity. Free Radic Biol Med 46(2):238–243

    Article  CAS  PubMed  Google Scholar 

  • Randerath K, Randerath E, Filburn C (1996) Genomic and mitochondrial DNA alterations with aging. In: Schneider EL, Rowe JW (eds) Handbook of the biology of aging, 4th edn. Academic Press, New York, pp 198–209

    Google Scholar 

  • Ross OA, Hyland P, Curran MD, McIlhatton BP, Wikby A, Johansson B et al (2002) Mitochondrial DNA damage in lymphocytes: a role in immunosenescence? Exp Gerontol 37(2–3):329–340

    Article  CAS  PubMed  Google Scholar 

  • Rustin P, Chretien D, Bourgeron T, Gerard B, Rotig A, Saudubray JM et al (1994) Biochemical and molecular investigations in respiratory-chain deficiencies. Clin Chim Acta 228(1):35–51

    Article  CAS  PubMed  Google Scholar 

  • Shvartz E, Reibold RC (1990) Aerobic fitness norms for males and females aged 6 to 75 years: a review. Aviat Space Environ Med 61(1):3–11

    CAS  PubMed  Google Scholar 

  • Starnes JW, Taylor RP (2007) Exercise-induced cardioprotection: endogenous mechanisms. Med Sci Sports Exerc 39(9):1537–1543

    Article  PubMed  Google Scholar 

  • Valletta EA, Berton G (1987) Desensitization of macrophage oxygen-metabolism on immobilized ligands: different effect of immunoglobulin-G and complement. J Immunol 138(12):4366–4373

    CAS  PubMed  Google Scholar 

  • Venditti P, Masullo P, Di Meo S (1999) Effect of training on H(2)O(2) release by mitochondria from rat skeletal muscle. Arch Biochem Biophys 372(2):315–320

    Article  CAS  PubMed  Google Scholar 

  • Ventura B, Genova ML, Bovina C, Formiggini G, Lenaz G (2002) Control of oxidative phosphorylation by complex I in rat liver mitochondria: implications for aging. Biochim Biophys Acta 1553(3):249–260

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC (2005) Mitochondria and cancer: warburg addressed. Cold Spring Harb Symp Quant Biol 70:363–374

    Article  CAS  PubMed  Google Scholar 

  • Wei YH, Lee HC (2002) Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med (Maywood) 227(9):671–682

    CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. Andrew Collins (University of Oslo, Oslo Norway) for providing the comet assay protocol and the enzyme FPG.

Grants

This work was supported by a grant from the Fundação para a Ciência e Tecnologia (POCI/DES/62301/2004, POCI 2010, and FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Paula Mota.

About this article

Cite this article

Mota, M.P., Peixoto, F.M., Soares, J.F. et al. Influence of aerobic fitness on age-related lymphocyte DNA damage in humans: relationship with mitochondria respiratory chain and hydrogen peroxide production. AGE 32, 337–346 (2010). https://doi.org/10.1007/s11357-010-9138-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-010-9138-8

Keywords

Navigation