Skip to main content
Log in

Differential effects of age and executive functions on the resolution of the contingent negative variation: a reexamination of the frontal aging theory

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The “frontal aging theory” assumes the deterioration of executive/inhibitory functions as causal factors for the cognitive decline in human aging. The contingent negative variation resolution (CNV-R) is an electroencephalographic potential elicited after the second (informative) stimulus in warned Go/NoGo tasks requiring a response to one type of stimulus (Go) but not to the other (NoGo). Whereas the CNV-R across conditions is a measure of executive functions, the augmented potential in the NoGo condition is a specific measure of inhibitory processes. The aim was to examine the presumed linkage between executive processes and the CNV-R with special regard to inhibition in the NoGo condition, and to test whether any effects of age on this potential can be explained by a failure of (inhibitory) executive functions. Nineteen young and 15 elderly non-demented healthy volunteers were examined in a Go/NoGo CNV-R paradigm and on a test of executive functions focussed on set shifting (Trail Making test). Results showed: (1) Better executive functions are associated with higher amplitudes of the CNV-R across conditions. (2) The CNV-R is higher for elderly than younger subjects; this increment is much stronger in the NoGo condition. In conclusion, the CNV-R across conditions reflects executive processes such as the shift of motor set. A higher CNV-R for elderly subjects (particularly of the inhibition-related NoGo CNV-R) indicates that this group is not impaired in the available amount of executive control but may exert such control for task demands where young subjects do not require it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The CNV-R is therefore also known as Go/NoGo P3 or late positive component (Simson et al. 1977). Despite its similar name, the attentional P300 is not related to inhibitory processes but considered to represent processes of context update, and has a different scalp distribution than either Go and NoGo CNV-R.

  2. The same applies to a TM(B-A)/A ratio; results with this covariate were numerically identical to the results obtained with the TMB/A covariate owing to the linear dependency of the two ratios (Perianez et al. 2007).

References

  • Arbuthnott K, Frank J (2000) Trail Making test part B as a measure of executive control: validation using a set-switching paradigm. J Clin Exp Neuropsychol 22:518–28

    Article  CAS  PubMed  Google Scholar 

  • Braver TS, Barch DM, Keys BA, Carter CS, Cohen JD, Kaye JA, Janowsky JS, Taylor SF, Yesavage JA, Mumenthaler MS, Jagust W, Reed BR (2001) Context processing in older adults: evidence for a theory of relating cognitive control to neurobiology in healthy aging. J Exp Psychol Gen 130:746–763

    Article  CAS  PubMed  Google Scholar 

  • Bruin KJ, Wijers AA (2002) Inhibition, response mode, and stimulus probability: a comparative event-related potential study. Clin Neurophysiol 113:1172–1182

    Article  CAS  PubMed  Google Scholar 

  • Cabeza R, Grady CL, Nyberg L, McIntosh AR, Tulving EK, Jennings J, Houle S, Craik F (1997) Age-related differences in neural activity during memory encoding and retrieval: a positron emission tomography study. J Neurosci 17:391–400

    CAS  PubMed  Google Scholar 

  • Chatrian G, Lettich E, Nelson P (1985) Ten percent electrode system for topographic studies of spontaneous and evoked EEG activities. Am J EEG Technol 25:83–92

    Google Scholar 

  • Christ SE, White DA, Mandernach T, Keys BA (2001) Inhibitory control across the life span. Dev Neuropsychol 20:653–669

    CAS  PubMed  Google Scholar 

  • Crum RM, Anthony JC, Bassett SS, Folstein MF (1993) Population-based norms for the Mini-Mental State Examination by age and educational level. JAMA 269:2386–2391

    Article  CAS  PubMed  Google Scholar 

  • Dirnberger G, Lalouschek W, Lindinger G, Egkher A, Deecke L, Lang W (2000) Reduced activation of midline frontal areas in human elderly subjects: a contingent negative variation study. Neurosci Lett 280:61–64

    Article  CAS  PubMed  Google Scholar 

  • Drane DL, Yuspeh R, Huthwaite J, Klingler L (2002) Demographic characteristics and normative observations for derived Trail Making test indices. Neuropsychiatry Neuropsychol Behav Neurol 15:39–43

    PubMed  Google Scholar 

  • Folstein M, Folstein S, McHugh P (1975) ‘Mini-Mental State’: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  • Fozard J, Vercryssen M, Reynolds S, Hancock P, Quilter R (1994) Age differences and changes in reaction time: the Baltimore longitudinal study of aging. J Gerontol 49:179–189

    Google Scholar 

  • Friedman D, Kazmerski V, Cycowicz Y (1998) Effects of aging on the novelty P3 during attend and ignore oddball tasks. Psychophysiology 35:508–520

    Article  CAS  PubMed  Google Scholar 

  • Friedman D, Nessler D, Johnson R, Ritter W, Bersick M (2008) Age-related changes in executive function: an event-related potential (ERP) investigation of task-switching. Neuropsychol Dev Cogn B Aging 15:95–128

    Article  Google Scholar 

  • Gade M, Koch I (2005) Linking inhibition to activation in the control of task sequences. Psychon Bull Rev 12:530–534

    PubMed  Google Scholar 

  • Gomez CM, Marco J, Grau C (2003) Preparatory visuo-motor cortical network of the contingent negative variation estimated by current density. Neuroimage 20:216–224

    Article  CAS  PubMed  Google Scholar 

  • Goodwin CJ (1998) Research in psychology: methods and design. Wiley, New York

    Google Scholar 

  • Goul WR, Brown M (1970) Effects of age and intelligence on Trail Making test performance and validity. Percept Mot Skills 30:319–326

    CAS  PubMed  Google Scholar 

  • Greenwood P (2000) The frontal ageing hypothesis evaluated. J Int Neuropsychol Soc 6:705–726

    Article  CAS  PubMed  Google Scholar 

  • Hamano T, Lüders H, Ikeda A, Collura T, Comair Y, Shibasaki H (1997) The cortical generators of the contingent negative variation in humans: a study with subdural electrodes. Electroencephalogr Clin Neurophysiol 104:257–268

    Article  CAS  PubMed  Google Scholar 

  • Haug H, Eggers R (1991) Morphometry of the human cortex cerebri and corpus striatum during aging. Neurobiol Aging 12:336–338

    Article  CAS  PubMed  Google Scholar 

  • Hedden T, Gabrieli JD (2004) Insights into the ageing mind. Nat Rev Neurosci 5:87–96

    Article  CAS  PubMed  Google Scholar 

  • Horn J, Cattell R (1967) Age differences in fluid and crystallized intelligence. Acta Psychol 26:107–129

    Article  CAS  Google Scholar 

  • Jackson S, Jackson G, Roberts M (1999) The selection and suppression of action: ERP correlates of executive control in humans. Neuroreport 10:861–865

    Article  CAS  PubMed  Google Scholar 

  • Jodo E, Inoue K (1990) Effects of practice on the P300 in a Go/NoGo task. Electroencephalogr Clin Neurophysiol 76:249–257

    Article  CAS  PubMed  Google Scholar 

  • Johannes S, Kube C, Wieringa B, Matzke M, Munte T (1997) Brain potentials and time estimation in humans. Neurosci Lett 231:63–66

    Article  CAS  PubMed  Google Scholar 

  • Jones CR, Rosenkranz K, Rothwell JC, Jahanshahi M (2004) The right dorsolateral prefrontal cortex is essential in time reproduction: an investigation with repetitive transcranial magnetic stimulation. Exp Brain Res 158:366–372

    Article  PubMed  Google Scholar 

  • Kiefer M, Marzinzik F, Weisbrod M, Scherg M, Spitzer M (1998) The time course of brain activations during response inhibition: evidence from event-related potentials in a go/no go task. Neuroreport 9:765–770

    Article  CAS  PubMed  Google Scholar 

  • Konishi S, Nakajima K, Uchida I, Sekihara K, Miyashita Y (1998) No-go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging. Eur J Neurosci 10:1209–1213

    Article  CAS  PubMed  Google Scholar 

  • Lai C, Ikeda A, Terada K, Nagamine T, Honda M, Xu X, Yoshimura N, Hwong S, Barrett G, Shibasaki H (1997) Event-related potentials associated with judgement: comparison of S1- and S2-choice conditions in a contingent negative variation (CNV) paradigm. J Clin Neurophysiol 14:394–405

    Article  CAS  PubMed  Google Scholar 

  • Lejeune H, Maquet P, Bonnet M, Casini L, Ferrara A, Macar F, Pouthas V, Timsit-Berthier M, Vidal F (1997) The basic pattern of activation in motor and sensory temporal tasks: positron emission tomography data. Neurosci Lett 235:21–24

    Article  CAS  PubMed  Google Scholar 

  • Lezak M (1995) Neuropsychological assessment. Oxford University Press, New York

    Google Scholar 

  • Lindinger G, Svasek P, Urban G, Lang W, Deecke L (1990) Microcomputer-assisted 64-channel EEG amplifier (DC-2 kHz) with digital filter and 16 bit resolution. Biomed Tech (Berl) 35(Suppl 2):88–89

    Article  Google Scholar 

  • Loveless NE, Sanford A (1974) Effects of age on the contingent negative variation and preparatory set in a reaction-time task. J Gerontol 29:52–63

    CAS  PubMed  Google Scholar 

  • Macar F, Vidal F, Casini L (1999) The supplementary motor area in motor and sensory timing: evidence from slow brain potential changes. Exp Brain Res 125:271–280

    Article  CAS  PubMed  Google Scholar 

  • McCallum W, Curry S (1981) Late slow wave components of auditory evoked potentials: their cognitive significance and interaction. Electroencephalogr Clin Neurophysiol 51:123–137

    Article  CAS  PubMed  Google Scholar 

  • Michalewski HJ, Thompson LW, Smith DB, Patterson JV, Bowman TE, Litzelman D, Brent G (1980) Age differences in the contingent negative variation (CNV): reduced frontal activity in the elderly. J Gerontol 35:542–549

    CAS  PubMed  Google Scholar 

  • Moscovitch M, Winocur G (1995) Frontal lobes, memory, and aging. Ann N Y Acad Sci 769:119–150

    Article  CAS  PubMed  Google Scholar 

  • Nichelli P, Vernneri A, Molinari M, Tavani F, Grafman J (1993) Precision and accuracy of subjective time estimation in different memory disorders. Cogn Brain Res 1:87–93

    Article  CAS  Google Scholar 

  • Nichelli P, Clark K, Hollnagel C, Grafman J (1995) Duration processing after frontal lobe lesions. Ann N Y Acad Sci 769:183–190

    Article  CAS  PubMed  Google Scholar 

  • Oddy B, Barry R, Johnstone S, Clarke A (2005) Removal of CNV effects from the N2 and P3 ERP components in a visual Go/NoGo task. J Psychophysiol 19:24–34

    Article  Google Scholar 

  • Passingham R (1993) The frontal lobes and voluntary action. Oxford University Press, Oxford

    Google Scholar 

  • Perianez JA, Rios-Lago M, Rodriguez-Sanchez J, Adrover-Roig D, Sanchez-Cubillo I, Crespo-Facorro B, Quemada J, Barcelo F (2007) Trail Making test in traumatic brain injury, schizophrenia, and normal ageing: sample comparisons and normative data. Arch Clin Neuropsychol 22:433–447

    Article  CAS  PubMed  Google Scholar 

  • Pfefferbaum A, Ford J (1988) ERPs to stimuli requiring response production and inhibition: effects of age, probability and visual noise. Electroencephalogr Clin Neurophysiol 71:55–63

    Article  CAS  PubMed  Google Scholar 

  • Phillips LH, Della Sala S (1999) Aging, intelligence, and anatomical segregation in the frontal lobes. Learn Individ Differ 10:217–243

    Article  Google Scholar 

  • Polich J (1996) Meta-analysis of P300 normative aging studies. Psychophysiology 33:334–353

    Article  CAS  PubMed  Google Scholar 

  • Polich J, Kok A (1995) Cognitive and biological determinants of P300: an integrative review. Biol Psychol 41:103–146

    Article  CAS  PubMed  Google Scholar 

  • Pouthas V, George N, Poline J, Pfeuty M, Vandemoorteele P, Hugueville L, Ferrandez AM, Lehéricy S, Lebihan D, Renault B (2005) Neural network involved in time perception. Hum Brain Mapp 25:433–441

    Article  PubMed  Google Scholar 

  • Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during temporal processing. Nat Neurosci 4:317–323

    Article  CAS  PubMed  Google Scholar 

  • Reitan RM (1958) Validity of the Trail Making test as an indicator of organic brain damage. Percept Mot Skills 8:271–276

    Article  Google Scholar 

  • Reuter-Lorenz P (2002) New visions of the aging mind and brain. Trends Cogn Sci 6:394–400

    Article  PubMed  Google Scholar 

  • Roberts LE, Rau H, Lutzenberger W, Birbaumer N (1994) Mapping P300 waves onto inhibition: Go/NoGo discrimination. Electroencephalogr Clin Neurophysiol 92:44–55

    Article  CAS  PubMed  Google Scholar 

  • Rubia K, Russell T, Overmeyer S, Brammer MJ, Bullmore ET, Sharma T, Simmons A, Williams SC, Giampietro V, Andrew CM, Taylor E (2001) Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks. Neuroimage 13:250–261

    Article  CAS  PubMed  Google Scholar 

  • Rubin DC (1999) Frontal-striatal circuits in cognitive aging: evidence for caudate involvement. Aging Neuropsychol Cognit 6:241–259

    Article  Google Scholar 

  • Salisbury DF, Griggs CB, Shenton ME, McCarley RW (2004) The NoGo P300 ‘anteriorization’ effect and response inhibition. Clin Neurophysiol 115:1550–1558

    Article  PubMed  Google Scholar 

  • Salmaso D, Longoni A (1985) Problems in the assessment of hand preference. Cortex 21:533–549

    CAS  PubMed  Google Scholar 

  • Sanchez-Cubillo I, Perianez J, Adrover D, Rodriguez J, Rios M, Tirapu J, Barcelo F (2009) Construct validity of the Trail Making test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J Int Neuropsychol Soc 15:438–450

    Article  CAS  PubMed  Google Scholar 

  • Schaie JP, Syndulko K (1978) Age differences in cortical activity associated with preparation to respond. Int J Behav Dev 1:255–261

    Google Scholar 

  • Segalowitz SJ, Unsal A, Dywan J (1992) CNV evidence for the distinctiveness of frontal and posterior neural processes in a traumatic brain-injured population. J Clin Exp Neuropsychol 14:545–565

    Article  CAS  PubMed  Google Scholar 

  • Sharp D, Scott S, Mehta M, Wise R (2006) The neural correlates of declining performance with age: evidence for age-related changes in cognitive control. Cereb Cortex 16:1739–1749

    Article  PubMed  Google Scholar 

  • Simson R, Vaughan H, Ritter W (1977) The scalp topography of potentials in auditory and visual Go/NoGo tasks. Electroencephalogr Clin Neurophysiol 43:864–875

    Article  CAS  PubMed  Google Scholar 

  • Smith J, Johnstone S, Barry R (2008) Movement-related potentials in the Go/NoGo task: the P3 reflects both cognitive and motor inhibition. Clin Neurophysiol 119:704–714

    Article  PubMed  Google Scholar 

  • Sweeney J, Rosano C, Berman R, Luna B (2001) Inhibitory control of attention declines more than working memory during normal aging. Neurobiol Aging 22:39–47

    Article  CAS  PubMed  Google Scholar 

  • Tecce JJ, Cattanach L (1993) Contingent negative variation. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography: basic principles, clinical applications, and related fields. William & Wilkins, Baltimore, pp 887–910

    Google Scholar 

  • Terry RD, de Teresa R, Hansen LA (1987) Neocortical cell counts in normal adult aging. Ann Neurol 21:530–539

    Article  CAS  PubMed  Google Scholar 

  • Umegaki H, Roth G, Ingram D (2008) Aging of the striatum: mechanisms and interventions. Age 30:251–261

    Article  PubMed  Google Scholar 

  • Vallesi A, Stuss DT, McIntosh AR, Picton TW (2009) Age-related differences in processing irrelevant information: evidence from event-related potentials. Neuropsychologia 47:577–586

    Article  PubMed  Google Scholar 

  • Velanova K, Lustig C, Jacoby LL, Buckner RL (2007) Evidence for frontally mediated controlled processing differences in older adults. Cereb Cortex 17:1033–1046

    Article  PubMed  Google Scholar 

  • Welford A (1977) Motor performance. In: Birren J, Schaie K (eds) Handbook of the psychology of aging. Van Nostrand Reinhold, New York, pp 450–496

    Google Scholar 

  • West RL (1996) An application of prefrontal cortex function theory to cognitive aging. Psychol Bull 120:272–292

    Article  CAS  PubMed  Google Scholar 

  • Wild-Wall N, Hohnsbein J, Falkenstein M (2007) Effects of ageing on cognitive task preparation as reflected by event-related potentials. Clin Neurophysiol 118:558–569

    Article  PubMed  Google Scholar 

  • Zappoli R, Versari A, Paganini M, Arnetoli G, Roma V, Battaglia A, Porcù S (1988) Age differences in contingent negative variation activity of healthy young adults and presenile subjects. Ital J Neurol Sci 9:219–230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research leading to this manuscript was in part supported by the Austrian Science Fund (Fonds zur Förderung wissenschaftlicher Forschung), grant P13772. The first author is most grateful to M.Sc. Eva Binder for her continuous support during the process of writing the manuscript.

Disclosure statement

The study was approved by the Ethical committee of the Medical University of Vienna in accordance with the Declaration of Helsinki. Written informed consent was obtained from all subjects before the experiment. For all authors, there is no actual or potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Dirnberger.

About this article

Cite this article

Dirnberger, G., Lang, W. & Lindinger, G. Differential effects of age and executive functions on the resolution of the contingent negative variation: a reexamination of the frontal aging theory. AGE 32, 323–335 (2010). https://doi.org/10.1007/s11357-010-9134-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-010-9134-z

Keywords

Navigation