Skip to main content

Antioxidant enzyme activities are not broadly correlated with longevity in 14 vertebrate endotherm species

Abstract

The free radical theory of ageing posits that accrual of oxidative damage underlies the increased cellular, tissue and organ dysfunction and failure associated with advanced age. In support of this theory, cellular resistance to oxidative stress is highly correlated with life span, suggesting that prevention or repair of oxidative damage might indeed be essential for longevity. To test the hypothesis that the prevention of oxidative damage underlies longevity, we measured the activities of the five major intracellular antioxidant enzymes in brain, heart and liver tissue of 14 mammalian and avian species with maximum life spans (MLSPs) ranging from 3 years to over 100 years. Our data set included Snell dwarf mice in which life span is increased by ∼50% compared to their normal littermates. We found that CuZn superoxide dismutase, the major cytosolic superoxide dismutase, showed no correlation with MLSP in any of the three organs. Similarly, neither glutathione peroxidase nor glutathione reductase activities correlated with MLSP. MnSOD, the sole mitochondrial superoxide dismutase in mammals and birds, was positively correlated with MLSP only for brain tissue. This same trend was observed for catalase. For all correlational data, effects of body mass and phylogenetic relatedness were removed using residual analysis and Felsenstein’s phylogenetically independent contrasts. Our results are not consistent with a causal role for intracellular antioxidant enzymes in longevity, similar to recent reports from studies utilising genetic modifications of mice (Pérez et al., Biochim Biophys Acta 1790:1005–1014, 2009). However, our results indicate a specific augmentation of reactive oxygen species neutralising activities in brain associated with longevity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Andziak B, O’Connor TP, Buffenstein R (2005) Antioxidants do not explain the disparate longevity between mice and the longest-living rodent, the naked mole-rat. Mech Ageing Dev 126:1206–1212

    Article  CAS  PubMed  Google Scholar 

  2. Bokov AF, Lindsey ML, Khodr C, Sabia MR, Richardson A (2009) Long-lived Ames dwarf mice are resistant to chemical stressors. J Gerontol A Biol Sci Med Sci 64:819–827

    PubMed  Google Scholar 

  3. Brown MF, Stuart JA (2007) Correlation of mitochondrial superoxide dismutase and DNA polymerase beta in mammalian dermal fibroblasts with species maximal lifespan. Mech Ageing Dev 128:696–705

    Article  CAS  PubMed  Google Scholar 

  4. Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the ageing process. Nature 384:33

    Article  CAS  PubMed  Google Scholar 

  5. Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181

    CAS  PubMed  Google Scholar 

  6. Costantini D (2008) Oxidative stress in ecology and evolution: lessons from avian studies. Ecol Lett 11:1238

    PubMed  Google Scholar 

  7. Curtis C, Landis GN, Folk D, Wehr NB, Hoe N, Waskar M, Abdueva D, Skvortsov D, Ford D, Luu A, Badrinath A, Levine RL, Bradley TJ, Tavaré S, Tower J (2007) Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes. Genome Biol 8:R262

    Article  PubMed  Google Scholar 

  8. Cutler RG (1991) Antioxidants and aging. Am J Clin Nutr 53:3S–9S

    Google Scholar 

  9. Dabkowski ER, Williamson CL, Hollander JM (2008) Mitochondria-specific transgenic overexpression of phospholipid hydroperoxide glutathione peroxidase (GPx4) attenuates ischemia/reperfusion-associated cardiac dysfunction. Free Radic Biol Med 45:855–865

    Article  CAS  PubMed  Google Scholar 

  10. Dave KR, Prado R, Raval AP, Drew KL, Perez-Pinzon MA (2006) The Arctic ground squirrel brain is resistant to injury from cardiac arrest during euthermia. Stroke 37:1261–1265

    Article  PubMed  Google Scholar 

  11. De Magalhaes JP, Costa J, Toussaint O (2005) HAGR: the human ageing genomic resources. Nucleic Acids Res 33:D537–D543

    Article  PubMed  Google Scholar 

  12. Dumont M, Wille E, Stack C, Calingasan NY, Beal MF, Lin MT (2009) Reduction of oxidative stress, amyloid deposition, and memory deficit by manganese superoxide dismutase overexpression in a transgenic mouse model of Alzheimer’s disease. FASEB J 23:2459–2466

    Article  CAS  PubMed  Google Scholar 

  13. Elchuri S, Oberley TD, Qi W, Eisenstein RS, Roberts LJ, Van Remmen H, Epstein CJ, Huang T-T (2005) CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24:367–380

    Article  CAS  PubMed  Google Scholar 

  14. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  15. Flurkey K, Papaconstantinou J, Miller RA, Harrison DE (2001) Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci USA 98:6736–6741

    Article  CAS  PubMed  Google Scholar 

  16. Fujii M, Ishii N, Joguchi A, Yasuda K, Ayusawa D (1998) A novel superoxide dismutase gene encoding membrane-bound and extracellular isoforms by alternative splicing in Caenorhabditis elegans. DNA Res 5:25–30

    Article  CAS  PubMed  Google Scholar 

  17. Garland T Jr, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32

    Google Scholar 

  18. Garland T Jr, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292

    Google Scholar 

  19. Garland T Jr, Bennett AF, Rezende EL (2005) Phylogenetic approaches in comparative physiology. J Exp Biol 208:3015–3035

    Article  PubMed  Google Scholar 

  20. Giglio AM, Hunter T, Bannister JV, Bannister WH, Hunter GJ (1994) The cooper/zinc superoxide dismutase gene of Caenorhabditis elegans. Biochem Mol Biol Int 33:41–44

    CAS  PubMed  Google Scholar 

  21. Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han K-L, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768

    Article  CAS  PubMed  Google Scholar 

  22. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    CAS  PubMed  Google Scholar 

  23. Harper JM, Salmon AB, Leiser SF, Galecki AT, Miller RA (2007) Skin-derived fibroblasts from long-lived species are resistant to some, but not all, lethal stresses and to the mitochondrial inhibitor rotenone. Aging Cell 6:1–13

    Article  CAS  PubMed  Google Scholar 

  24. Hu D, Cao P, Thiels E, Chu CT, Wu G, Oury TD, Klann E (2007) Hippocampal long-term potentiation, memory, and longevity in mice that overexpress mitochondrial superoxide dismutase. Neurobiol Learn Mem 87:372–384

    Article  CAS  PubMed  Google Scholar 

  25. Huang T-T, Carlson EJ, Gillespie AM, Shi Y, Epstein CJ (2000) Ubiquitous overexpression of CuZn superoxide dismutase does not extend life span in mice. J Gerontol 55A:B5–B9

    CAS  Google Scholar 

  26. Hunter T, Bannister WH, Hunter GJ (2007) Cloning, expression, and characterization of two manganese superoxide dismutases from Caenorhabditis elegans. J Biol Chem 272:28652–28659

    Article  Google Scholar 

  27. Jang YC, Pérez VI, Song W, Lustgarten MS, Salmon AB, Mele J, Qi W, Liu Y, Liang H, Chaudhuri A, Ikeno Y, Epstein CJ, Van Remmen H, Richardson A (2009) Overexpression of Mn superoxide dismutase does not increase life span in mice. J Gerontol A Biol Sci Med Sci 64:1114–1125

    PubMed  Google Scholar 

  28. Jensen LT, Culotta VC (2005) Activation of CuZn superoxide dismutases from Caenorhabditis does not require the copper chaperone CCS. J Biol Chem 280:41373–41379

    Article  CAS  PubMed  Google Scholar 

  29. Judge S, Leeuwenburgh C (2007) Cardiac mitochondrial bioenergetics, oxidative stress, and aging. Am J Physiol Cell Physiol 292:C1983–C1992

    Article  CAS  PubMed  Google Scholar 

  30. Kapahi P, Boulton ME, Kirkwood TBL (1999) Positive correlation between mammalian life span and cellular resistance to stress. Free Radic Biol Med 26:495–500

    Article  CAS  PubMed  Google Scholar 

  31. Keller JN, Kindy MS, Holtsberg FW, St. Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, Mattson MP (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18:687–697

    CAS  PubMed  Google Scholar 

  32. Kurtz CC, Lindell SL, Mangino MJ, Carey HV (2006) Hibernation confers resistance to intestinal ischemia–reperfusion injury. Am J Physiol 291:G895–G901

    CAS  Google Scholar 

  33. Labinskyy N, Csiszar A, Orosz Z, Smith K, Rivera A, Buffenstein R, Ungvari Z (2006) Comparison of endothelial function, O 2 · and H2O2 production, and vascular oxidative stress resistance between the longest-living rodent, the naked mole rat, and mice. Am J Physiol Heart Circ Physiol 291:H2698–H2704

    Article  CAS  PubMed  Google Scholar 

  34. Lambert AJ, Boysen HM, Buckingham JA, Yang T, Podlutsky A, Austad SN, Kunz TH, Buffenstein R, Brand MD (2007) Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell 6:607–618

    Article  CAS  PubMed  Google Scholar 

  35. Lei XG, Cheng WH (2005) New roles for an old selenoenzyme: evidence from glutathione peroxidase-1 null and overexpressing mice. J Nutr 135:2295–2298

    CAS  PubMed  Google Scholar 

  36. Lindell SL, Klahn SL, Piazza TM, Mangino MJ, Torrealba JR, Southard JH, Carey HV (2005) Natural resistance to liver cold ischemia–reperfusion injury associated with the hibernation phenotype. Am J Physiol 288:G473–G480

    CAS  Google Scholar 

  37. López-Torres M, Pérez-Campo R, Rojas C, Cadenas S, Barja G (1993) Maximum life span in vertebrates: relationship with liver antioxidant enzymes, glutathione system, ascorbate, urate, sensitivity to peroxidation, true malondialdehyde in vivo H2O2, and basal maximum aerobic capacity. Mech Aging Develop 70:177–199

    Article  Google Scholar 

  38. Ma YL, Zhu X, Rivera PM, Tøien Ø, Barnes BM, LaManna JC, Smith MA, Drew KL (2005) Absence of cellular stress in brain of hypoxia induced by arousal from hibernation in Artic ground squirrels. Am J Physiol Regul Integr Comp Physiol 289:R1297–R1306

    CAS  PubMed  Google Scholar 

  39. Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci 827:65–75

    Article  CAS  PubMed  Google Scholar 

  40. Martins EP, Garland T Jr (1991) Phylogenetic analyses of the correlated evolution of continuous characters: a simulation study. Evolution 45:534–557

    Article  Google Scholar 

  41. Monaghan P, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol Lett 12:75

    Article  PubMed  Google Scholar 

  42. Moosmann B, Behl C (2008) Mitochondrially encoded cysteine predicts animal lifespan. Aging Cell 7:32–46

    Article  CAS  PubMed  Google Scholar 

  43. Ono T, Okada S (1984) Unique increase of superoxide dismutase level in brains of long living mammals. Exp Gerontol 19:349–354

    Article  CAS  PubMed  Google Scholar 

  44. Orr WC, Sohal RS (2003) Does overexpression of Cu, Zn-SOD extend life span in Drosophila melanogaster? Exp Gerontol 38:227–230

    Article  CAS  PubMed  Google Scholar 

  45. Page MM, Peters CW, Staples JF, Stuart JA (2009a) Intracellular antioxidant enzymes are not globally upregulated during hibernation in the major oxidative tissues of the 13-lined ground squirrel Spermophilus tridecemlineatus. Comp Biochem Physiol A Mol Integr Physiol 152:115–122

    Article  PubMed  Google Scholar 

  46. Page MM, Salmon AB, Leiser SF, Robb EL, Brown MF, Miller RA, Stuart JA (2009b) Mechanisms of stress resistance in Snell dwarf mouse fibroblasts: enhanced antioxidant and DNA base excision repair capacity, but no differences in mitochondrial metabolism. Free Radic Biol Med 46:1109–1118

    Article  CAS  PubMed  Google Scholar 

  47. Parkes TL, Elia AJ, Dickson D, Hilliker AJ, Phillips JP, Boulianne GL (1998) Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet 19:171–174

    Article  CAS  PubMed  Google Scholar 

  48. Pérez-Campo R, López-Torres M, Rojas C, Cadenas S, Barja G (1994) Longevity and antioxidant enzymes, non-enzymatic antioxidants and oxidative stress in the vertebrate lung: a comparative study. J Comp Physiol B 163:682–689

    Article  PubMed  Google Scholar 

  49. Pérez VI, Bokov A, Van Remmen H, Mele J, Ran Q, Ikeno Y, Richardson A (2009) Is the oxidative stress theory of aging dead? Biochim Biophys Acta 1790:1005–1014

    Google Scholar 

  50. Porter RK (2001) Allometry of mammalian cellular oxygen consumption. Cell Mol Life Sci 58:815–822

    Article  CAS  PubMed  Google Scholar 

  51. Prasad AB, Allard MW, Comparative Sequencing Program NISC, Green ED (2008) Confirming the phylogeny of mammals by use of large comparative sequence data sets. Mol Biol Evol 25:1795–1808

    Article  CAS  PubMed  Google Scholar 

  52. Price T (1997) Correlated evolution and independent contrasts. Philos Trans R Soc Lond B 352:519–529

    Article  CAS  Google Scholar 

  53. Ran Q, Liang H, Gu M, Qi W, Walter CA, Roberts LJ 2nd, Herman B, Richardson A, Van Remmen H (2004) Transgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis. J Biol Chem 279:55137–55146

    Article  CAS  PubMed  Google Scholar 

  54. Ran Q, Gu M, Van Remmen H, Strong R, Roberts JL, Richardson A (2006) Glutathione peroxidase 4 protects cortical neurons from oxidative injury and amyloid toxicity. J Neurosci Res 84:202–208

    Article  CAS  PubMed  Google Scholar 

  55. Rorabacher DB (1991) Statistical treatment for rejection of deviant values: critical values of Dixon’s “Q” parameter and related subrange ratios at the 95% confidence level. Anal Chem 63:139–146

    Article  CAS  Google Scholar 

  56. Salmon AB, Murakami S, Bartke A, Kopchick J, Yasumura K, Miller RA (2005) Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am J Physiol Endocrinol Metab 289:E23–E29

    Article  CAS  PubMed  Google Scholar 

  57. Salmon AB, Sadighi Akha AA, Buffenstein R, Miller RA (2008) Fibroblasts from naked mole-rats are resistant to multiple forms of cell injury, but sensitive to peroxide, ultraviolet light, and endoplasmic reticulum stress. J Gerontol A Biol Sci Med Sci 63:232–241

    PubMed  Google Scholar 

  58. Sohal RS, Sohal BS, Brunk UT (1990) Relationship between antioxidant defenses and longevity in different mammalian species. Mech Aging Develop 53:217–227

    Article  CAS  Google Scholar 

  59. Speakman JR (2005) Correlations between physiology and lifespan—two widely ignored problems with comparative studies. Aging Cell 4:167–175

    Article  CAS  PubMed  Google Scholar 

  60. Springer MS, Murphy WJ (2007) Mammalian evolution and biomedicine: new views from phylogeny. Biol Rev 82:375–392

    Article  PubMed  Google Scholar 

  61. Stuart GW, Moffett K, Leader JJ (2002) A comprehensive vertebrate phylogeny using vector representations of protein sequences from whole genomes. Mol Biol Evol 19:554–562

    CAS  PubMed  Google Scholar 

  62. Sun J, Folk D, Bradley TJ, Tower J (2002) Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 161:661–672

    CAS  PubMed  Google Scholar 

  63. Tolmasoff JM, Ono T, Cutler RG (1980) Superoxide dismutase: correlation with life-span and specific metabolic rate in primate species. Proc Natl Acad Sci USA 77:2777–2781

    Article  CAS  PubMed  Google Scholar 

  64. Van Raamsdonk JM, Hekimi S (2009) Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet 5:e1000361

    Article  PubMed  Google Scholar 

  65. Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR, Alderson NL, Baynes JW, Epstein CJ, Huang T-T, Nelson J, Strong R, Richardson A (2003) Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16:29–37

    Article  PubMed  Google Scholar 

  66. Yang W, Li J, Hekimi S (2007) A measurable increase in oxidative damage due to reduction in superoxide detoxification fails to shorten the life span of long-lived mitochondrial mutants of Caenorhabditis elegans. Genetics 177:2063–2074

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MMP was supported by an Ontario Graduate Scholarship. Work at Brock University was supported by the Natural Sciences and Engineering Research Council (NSERC), the Canada Foundation for Innovation (CFI) and an Early Researcher Award from the Ontario Ministry of Research and Innovation (OMRI) to JAS. The bat colony at McMaster University is supported by NSERC, CFI and OMRI grants to PAF. The bird colonies at Trent University have been supported by NSERC.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Stuart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1

(DOC 28 kb)

Fig. S1

Correlations between MnSOD activity and species MLSP. a Residual analysis of liver MnSOD activity with the inclusion of the human data point (t value significant at the 0.025 level). b FIC analysis of liver MnSOD with the inclusion of the human data point. c Residual analysis of liver MnSOD activity following the removal of the human data point. d FIC analysis of liver MnSOD activity following the removal of the human data point. All values are natural log-transformed and each data point consists of measurements from three to eight individuals of each species (PPT 122 kb)

Fig. S2

Activity of brain and heart CAT. a Brain CAT activity is not significantly correlated with species body mass. b FIC analysis of heart CAT activity and species MLSP. All values are natural log-transformed and each data point consists of measurements from three to eight individuals of each species (PPT 94 kb)

About this article

Cite this article

Page, M.M., Richardson, J., Wiens, B.E. et al. Antioxidant enzyme activities are not broadly correlated with longevity in 14 vertebrate endotherm species. AGE 32, 255–270 (2010). https://doi.org/10.1007/s11357-010-9131-2

Download citation

Keywords

  • Antioxidant enzyme
  • Life span
  • MLSP
  • Mammals
  • Birds
  • MnSOD
  • CuZnSOD
  • Catalase
  • Glutathione peroxidise
  • Glutathione reductase