Skip to main content

Advertisement

Log in

You don't need a weatherman: famines, evolution, and intervention into aging

  • Original Paper
  • Published:
AGE Aims and scope Submit manuscript

Abstract

Calorie restriction (CR) is the most robust available intervention into biological aging. Efforts are underway to develop pharmaceuticals that would replicate CR's anti-aging effects in humans (“CR mimetics”), on the assumption that the life- and healthspan-extending effects of CR in lower organisms will be proportionally extrapolable to humans (the “proportionality principle” (PP)). A recent argument from evolutionary theory (the “weather hypothesis” (WH)) suggests that CR (or its mimetics) will only provide 2–3 years of extended healthy lifespan in humans. The extension of healthy human lifespan that would be afforded by intervention into aging makes it crucial that resources for therapeutic development be optimally allocated; CR mimetics being the main direction being pursued for interventive biogerontology, this paper evaluates the challenge to the potential efficacy of CR mimetics posed by the WH, on a theoretical level and by reference to the available interspecies data on CR. Rodent data suggest that the anti-aging effects of CR continue to increase in inverse proportion to the degree of energy restriction imposed, well below the level that would be expected to be survivable under the conditions under which the mechanisms of CR evolved and are maintained in the wild. Moreover, the same increase in anti-aging effects continues well below the point at which it interferes with reproductive function. Both of these facts are in accordance with the predictions of evolutionary theory. Granted these facts, the interspecies data—including data available in humans—are consistent with the predictions of PP rather than those of the WH. This suggests that humans will respond to a high degree of CR (or its pharmaceutical simulation) with a proportional deceleration of aging, so that CR mimetics should be as effective in humans as CR itself is in the rodent model. Despite this fact, CR mimetics should not be the focus of biomedical gerontology, as strategies based on the direct targeting of the molecular lesions of aging are likely to lead to more rapidly developable and far more effective anti-aging biomedicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AL:

ad libitum

CR:

calorie restriction

LS:

lifespan

PP:

proportionality principle

WH:

weather hypothesis

References

  • Akisaka M, Asato L, Chan YC, Suzuki M, Uezato T, Yamamoto S (1996) Energy and nutrient intakes of Okinawan centenarians. J Nutr Sci Vitaminol (Tokyo) 42(3):241–248

    CAS  Google Scholar 

  • Altman PL, Dittmer DS (1972) Life spans: animals. Biology data book, 2nd edn. Federation of American Societies for Experimental Biology, Bethesda, MD, pp 229–230

    Google Scholar 

  • Anderson DE (1959) The influence of environment on cancer eye in cattle. J Anim Sci 18:1461. Cited by Pinney et al. 1972

    Google Scholar 

  • Armed Forces Institute of Pathology (2001) The laboratory mouse. Last updated 2001-10-22. Retrieved from http://www.afip.org/vetpath/POLA/99/Mus-normal.htm, March 8, 2005

  • Barger JL, Walford RL, Weindruch R (2003) The retardation of aging by caloric restriction: its significance in the transgenic era. Exp Gerontol 38(11–12): 1343–1351

    Article  PubMed  Google Scholar 

  • Bartke A, Wright JC, Mattison JA, Ingram DK, Miller RA, Roth GS (2001) Extending the lifespan of long-lived mice. Nature 414(6862):412

    Article  PubMed  CAS  Google Scholar 

  • Berry RJ, Scriven PN (2005) The house mouse: a model and motor for evolutionary understanding. Biol J Linn Soc Lond 84(3):335–347; and personal communication, RJ Berry

    Article  Google Scholar 

  • Black A, Tilmont EM, Handy AM, Ingram DK, Roth GS, Lane MA (2000) Calorie restriction reduces the incidence of proliferative disease: preliminary data from the NIA CR in nonhuman primate study. Gerontologist 40:5

    Google Scholar 

  • Bodkin NL, Alexander TM, Ortmeyer HK, Johnson E, Hansen BC (2003) Mortality and morbidity in laboratory-maintained Rhesus monkeys and effects of long-term dietary restriction. J Gerontol A Biol Sci Med Sci 58(3):212–219

    PubMed  Google Scholar 

  • Boyar RM, Katz J, Finkelstein JW, Kapen S, Weiner H, Weitzman ED, Hellman L (1974) Anorexia nervosa. Immaturity of the 24-hour luteinizing hormone secretory pattern. N Engl J Med 291(17):861–865

    Article  PubMed  CAS  Google Scholar 

  • Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83(4):1153–1181

    PubMed  CAS  Google Scholar 

  • Cockerham WC, Yamori Y (2001) Okinawa: an exception to the social gradient of life expectancy in Japan. Asia Pac J Clin Nutr 10(2):154–158

    Article  PubMed  CAS  Google Scholar 

  • Coles LS (2004) Demography of human supercentenarians. J Gerontol A Biol Sci Med Sci 59(6):B579–B586

    PubMed  Google Scholar 

  • Davis TA, Bales CW, Beauchene RE (1983) Differential effects of dietary caloric and protein restriction in the aging rat. Exp Gerontol 18(6):427–435

    Article  PubMed  CAS  Google Scholar 

  • de Grey AD (2003) Challenging but essential targets for genuine anti-ageing drugs. Expert Opin Ther Targets 7(1):1–5

    Article  PubMed  Google Scholar 

  • de Grey AD (2005a) The unfortunate influence of the weather on the rate of ageing: why human caloric restriction or its emulation may only extend life expectancy by 2–3 years. Gerontology 51(2):73–82

    Article  PubMed  Google Scholar 

  • de Grey AD (2005b) Foreseeable pharmaceutical repair of age-related extracellular damage. Curr Drug Targets (in press)

  • de Grey AD, Ames BN, Andersen JK, Bartke A, Campisi J, Heward CB, McCarter RJ, Stock G (2002) Time to talk SENS: critiquing the immutability of human aging. Ann NY Acad Sci 959:452–462

    Article  PubMed  Google Scholar 

  • de Grey AD, Campbell FC, Dokal I, Fairbairn LJ, Graham GJ, Jahoda CA, Porter AC (2004) Total deletion of in vivo telomere elongation capacity: an ambitious but possibly ultimate cure for all age-related human cancers. Ann NY Acad Sci 1019:147–170

    Article  PubMed  CAS  Google Scholar 

  • de Grey AD, Alvarez PJ, Brady RO, Cuervo AM, Jerome WG, McCarty PL, Nixon RA, Rittmann BE, Sparrow JR (2005) Medical bioremediation: prospects for the application of microbial catabolic diversity to aging and several major age-related diseases. Ageing Res Rev 4(3):315–338

    Article  PubMed  CAS  Google Scholar 

  • Dhahbi JM, Kim HJ, Mote PL, Beaver RJ, Spindler SR (2004) Temporal linkage between the phenotypic and genomic responses to caloric restriction. PNAS 101(15):5524–5529

    Article  PubMed  CAS  Google Scholar 

  • Edney EB, Gill RW (1968) Evolution of senescence and specific longevity. Nature 220(164):281–282

    Article  PubMed  CAS  Google Scholar 

  • Fischer-Piette E (1939) Sur la croissance et la longevité de Patella vulgata L. en fonction du milieu. J Conchyliol 83:303. Cited by Weindruch and Walford (1988)

    Google Scholar 

  • Fontana L, Meyer TE, Klein S, Holloszy JO (2004) Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. PNAS 101(17):6659–6663

    Article  PubMed  CAS  Google Scholar 

  • Harrison DE, Archer JR (1989) Natural selection for extended longevity from food restriction. Growth Dev Aging 53(1–2):3–6

    PubMed  CAS  Google Scholar 

  • Harrison DE, Archer JR, Astle CM (1984) Effects of food restriction on aging: separation of food intake and adiposity. PNAS 81(6):1835–1838

    Article  PubMed  CAS  Google Scholar 

  • Heilbronn LK, Ravussin E (2003) Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr 78(3):361–369

    PubMed  CAS  Google Scholar 

  • Hill JM (2005) Patella vulgata. Common limpet. Marine Life Information Network: Biology and Sensitivity Key Information Sub-programme Plymouth: Marine Biological Association of the United Kingdom. Retrieved from http://www.marlin.ac.uk/species/Patellavulgata.htm, March 7, 2005

  • Holehan AM, Merry BJ (1985) Lifetime breeding studies in fully fed and dietary restricted female CFY Sprague-Dawley rats. 1. Effect of age, housing conditions and diet on fecundity. Mech Ageing Dev 33(1):19–28

    Article  PubMed  CAS  Google Scholar 

  • Holliday R (1989) Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation? Bioessays 10(4):125–127

    Article  PubMed  CAS  Google Scholar 

  • Hopkin K (2003) Dietary drawbacks. Sci Aging Knowledge Environ 2003(8):NS4

    Article  PubMed  Google Scholar 

  • Hursting SD, Lavigne JA, Berrigan D, Perkins SN, Barrett JC (2003) Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu Rev Med 54:131–152

    Article  PubMed  CAS  Google Scholar 

  • Kagawa Y (1978) Impact of Westernization on the nutrition of Japanese: changes in physique, cancer, longevity and centenarians. Prev Med 7(2):205–217

    Article  PubMed  CAS  Google Scholar 

  • Kealy RD (1999) Factors influencing lean body mass in aging dogs. Proceedings of the 1998 Purina Nutrition Forum. Compend Contin Educ Pract Vet 21(11(K)): 34–37

    Google Scholar 

  • Kealy RD, Lawler DF, Ballam JM, Mantz SL, Biery DN, Greeley EH, Lust G, Segre M, Smith GK, Stowe HD (2002) Effects of diet restriction on life span and age-related changes in dogs. J Am Vet Med Assoc 220(9):1315–1320

    Article  PubMed  Google Scholar 

  • Kemi M, Keenan KP, McCoy C, Hoe CM, Soper KA, Ballam GC, van Zwieten MJ (2000) The relative protective effects of moderate dietary restriction versus dietary modification on spontaneous cardiomyopathy in male Sprague-Dawley rats. Toxicol Pathol 28(2):285–296

    Article  PubMed  CAS  Google Scholar 

  • King JT, Visscher MB (1950) Longevity as a function of diet in the C3H mouse. Fed Proc 9(1):70–71

    Google Scholar 

  • Kirkwood TB, Austad SN (2000) Why do we age? Nature 408(6809):233–238

    Article  PubMed  CAS  Google Scholar 

  • Lane MA, Black A, Handy A, Tilmont EM, Ingram DK, Roth GS (2001) Caloric restriction in primates. Ann NY Acad Sci 928:287–295

    Article  PubMed  CAS  Google Scholar 

  • Lane MA, Black A, Handy AM, Shapses SA, Tilmont EM, Kiefer TL, Ingram DK, Roth GS (2001) Energy restriction does not alter bone mineral metabolism or reproductive cycling and hormones in female rhesus monkeys. J Nutr 131(3):820–827

    PubMed  CAS  Google Scholar 

  • Lane MA, Mattison J, Ingram DK, Roth GS (2002) Caloric restriction and aging in primates: Relevance to humans and possible CR mimetics. Microsc Res Tech 59(4):335–338

    Article  PubMed  Google Scholar 

  • Lane MA, Mattison JA, Roth GS, Brant LJ, Ingram DK (2004) Effects of long-term diet restriction on aging and longevity in primates remain uncertain. J Gerontol A Biol Sci Med Sci 59(5):B405–B407

    Google Scholar 

  • Lawler DF, Johnston SD, Keltner DG, Ballam JM, Kealy RD, Bunte T, Lust G, Mantz SL, Nie RC (1999) Influence of restricted food intake on estrous cycles and pseudopregnancies in dogs. Am J Vet Res 60(7): 820–825

    PubMed  CAS  Google Scholar 

  • Longo VD, Finch CE (2003) Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 299(5611):1342–1346

    Article  PubMed  CAS  Google Scholar 

  • Lyman CP, O'Brien RC, Greene GC, Papafrangos ED (1981) Hibernation and longevity in the Turkish hamster Mesocricetus brandti. Science 212(4495): 668–670

    Article  PubMed  CAS  Google Scholar 

  • Masoro E (2002) Caloric restriction: a key to understanding and modulating aging. Elsevier, Amsterdam

    Google Scholar 

  • Masternak MM, Al-Regaiey K, Bonkowski MS, Panici J, Sun L, Wang J, Przybylski GK, Bartke A (2004) Divergent effects of caloric restriction on gene expression in normal and long-lived mice. J Gerontol A Biol Sci Med Sci 59(8):784–788

    PubMed  Google Scholar 

  • Miller RA (2002) Extending life: scientific prospects and political obstacles. Milbank Q 80(1):155–174

    Article  PubMed  Google Scholar 

  • Miller RA, Chang Y, Galecki AT, Al-Regaiey K, Kopchick JJ, Bartke A (2002) Gene expression patterns in calorically restricted mice: partial overlap with long-lived mutant mice. Mol Endocrinol 16(11):2657–2666

    Article  PubMed  CAS  Google Scholar 

  • Miller KK, Grinspoon SK, Ciampa J, Hier J, Herzog D, Klibanski A (2005) Medical findings in outpatients with anorexia nervosa. Arch Intern Med 165(5):561–566

    Article  PubMed  Google Scholar 

  • Mimura G, Murakami K, Gushiken M (1992) Nutritional factors for longevity in Okinawa—present and future. Nutr Health 8(2–3):159–163

    PubMed  CAS  Google Scholar 

  • Moriguchi Y (1999) Japanese centenarians living outside Japan. In: Tauchi H, Sato T, Watanabe T (eds) Japanese centenarians: medical research for the final stages of human aging. Institute for Medical Science of Aging, Aichi, Japan, pp 85–94

    Google Scholar 

  • Nelson JF, Gosden RG, Felicio LS (1985) Effect of dietary restriction on estrous cyclicity and follicular reserves in aging C57BL/6J mice. Biol Reprod 32(3):515–522

    Article  PubMed  CAS  Google Scholar 

  • Perls T (2002) Genetic and environmental influences on exceptional longevity and the AGE nomogram. Ann NY Acad Sci 959:1–13

    Article  PubMed  CAS  Google Scholar 

  • Phelan JP, Austad SN (1989) Natural selection, dietary restriction, and extended longevity. Growth Dev Aging 53(1–2):4–6, Spring-Summer

    PubMed  CAS  Google Scholar 

  • Pickrell J (2002) Dogged dieting: low-cal canines enjoy longer life. Science News Online. 2002 May 11;161 1(19):291. Retrieved from http://www.sciencenews.org/articles/20020511/fob2.asp, March 10, 2005

  • Pinney DO, Stephens DF, Pope LS (1972) Lifetime effects of winter supplemental feed level and age at first parturition on range beef cows. J Anim Sci 34(6): 1067–1074

    PubMed  CAS  Google Scholar 

  • Pugh TD, Oberley TD, Weindruch R (1999, April 1) Dietary intervention at middle age: caloric restriction but not dehydroepiandrosterone sulfate increases lifespan and lifetime cancer incidence in mice. Cancer Res 59(7):1642–1648

    PubMed  CAS  Google Scholar 

  • Rae MJ (2003) CR Society List. Re: Monkey study. Retrieved from http://lists.calorierestriction.org/cgi-bin/wa?A2=ind0304andL=crsocietyandP=R9258, October 24, 2005

  • Rae MJ (2004) It's never too late: calorie restriction is effective in older mammals. Rejuvenation Res 7(1):3–8

    Article  PubMed  Google Scholar 

  • Rockstein M, Chesky JA, Sussman ML (1977) The comparative biology and evolution of aging. In: Finch CE, Hayflick L (eds) Handbook of the Biology of aging. Van Nostrand Reinhold, New York, pp 3–34

    Google Scholar 

  • Ross MH, Bras G (1973) Influence of protein under- and overnutrition on spontaneous tumor prevalence in the rat. J Nutr 103(7):944–963

    PubMed  CAS  Google Scholar 

  • Shibata H (2004, July) Implications of research findings obtained from centenarians. JMAJ 47(7):338–343

    Google Scholar 

  • Shibata H, Nagai H, Haga H, Yasumura S, Suzuki T, Suyama Y (1992) Nutrition for the Japanese elderly. Nutr Health 8(2–3):165–175

    PubMed  CAS  Google Scholar 

  • Shimokawa I, Higami Y, Tsuchiya T, Otani H, Komatsu T, Chiba T, Yamaza H (2003) Life span extension by reduction of the growth hormone-insulin-like growth factor-1 axis: relation to caloric restriction. FASEB J 17(9):1108–1109

    PubMed  CAS  Google Scholar 

  • Sho H (2001) History and characteristics of Okinawan longevity food. Asia Pac J Clin Nutr 10(2):159–164

    Article  PubMed  CAS  Google Scholar 

  • Snyder DL, Pollard M, Wostmann BS, Luckert P (1990) Life span, morphology, and pathology of diet-restricted germ-free and conventional Lobund-Wistar rats. J Gerontol 45(2):B52–B58

    PubMed  CAS  Google Scholar 

  • Suzuki M, Willcox BJ, Willcox CD (2001) Implications from and for food cultures for cardiovascular disease: longevity. Asia Pac J Clin Nutr 10(2):165–171

    Article  PubMed  CAS  Google Scholar 

  • Tapp DC, Kobayashi S, Fernandes G, Venkatachalam MA (1989) Protein restriction or calorie restriction? A critical assessment of the influence of selective calorie restriction on the progression of experimental renal disease. Semin Nephrol 9(4):343–353

    PubMed  CAS  Google Scholar 

  • Todoriki H, Willcox DC, Willcox BJ (2004) The effects of post-war dietary change on longevity and health in Okinawa. Okinawan J Am Stud 1:55–64

    Google Scholar 

  • Tsuchiya T, Dhahbi JM, Cui X, Mote PL, Bartke A, Spindler SR (2004) Additive regulation of hepatic gene expression by dwarfism and caloric restriction. Physiol Genomics 17(3):307–315

    Article  PubMed  CAS  Google Scholar 

  • Vallejo EA (1957) La dieta de hambre a dias alternos in la alimentacion de los viejos. [A fasting diet on alternate days in the feeding of the elderly]. Rev Clin Esp 63(1):25–27, Spanish

    Google Scholar 

  • Velthuis-te Wierik EJ, van den Berg H, Schaafsma G, Hendriks HF, Brouwer A (1994) Energy restriction, a useful intervention to retard human ageing? Results of a feasibility study. Eur J Clin Nutr 48(2):138–148

    PubMed  CAS  Google Scholar 

  • Walford RL, Mock D, Verdery R, MacCallum T (2002) Calorie restriction in Biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period. J Gerontol A Biol Sci Med Sci 57(6):B211–B224

    PubMed  Google Scholar 

  • Weindruch R, Walford RL (1982) Dietary restriction in mice beginning at 1 year of age: effect on life-span and spontaneous cancer incidence. Science 215(4538): 1415–1418

    Article  PubMed  CAS  Google Scholar 

  • Weindruch R, Walford RL (1988) The retardation of aging and disease by dietary restriction. Charles C. Thomas, Springfield IL

    Google Scholar 

  • Willcox BJ (2005, June 3-6) Diet, health, and longevity in Okinawa. 34th Annual Meeting of the American Aging Association. Marriott City Center, Oakland, California

  • Willcox BJ, Willcox DC, Suzuki M (2001) The Okinawa program: how the world's longest-lived people achieve everlasting health-and how you can too. Crown Publishers, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Rae.

About this article

Cite this article

Rae, M.J. You don't need a weatherman: famines, evolution, and intervention into aging. AGE 28, 93–109 (2006). https://doi.org/10.1007/s11357-006-9002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-006-9002-z

Key words

Navigation