Skip to main content
Log in

Twenty years of progress in biogerontology research

  • Review article
  • Published:
AGE Aims and scope Submit manuscript

Abstract

The first 10 years of NIA's existence were characterized by funding for descriptive and discovery research, as the field had not yet come of age. As Couzin expressed it in the July 1, 2005 issue of Science, “Just 2 or 3 decades ago, research on aging was a backwater” (Couzin J 2005 How much can human life span be extended. Science 309: 83). With the isolation of long-lived animal mutants and the application of the tools of molecular biology and transgenic technology to biogerontology research, the situation has changed dramatically since then, and aging research has become increasingly mechanistic and respectable. This transition has been aided by some well-thought out research initiatives by the NIA, and the purpose of this article is to provide a brief summary of the progress made in the past 20 years, and describe the part that NIA initiatives and funding have played in this transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balaban RS, Nemoto S and Finkel T (2005) Mitochondria, oxidants and aging. Cell 120: 473–482

    Article  Google Scholar 

  • Barja G (2004) Free radicals and aging. Trends Neurosci 27: 595–600

    Article  CAS  PubMed  Google Scholar 

  • Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM and DePinho RA et al. (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91: 25–34

    Article  CAS  PubMed  Google Scholar 

  • Bodnar AG, Oullette M, Frolkis M, Holt SE, Chiu CP and Morin GB et al. (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279: 349–352

    Article  CAS  PubMed  Google Scholar 

  • Brown-Borg HM, Borg KE, Meliska CJ and Bartke A (1996) Dwarf mice and the ageing process. Nature 384: 33

    Article  CAS  PubMed  Google Scholar 

  • Campisi J (2002) Cellular senescence and apoptosis: how cellular responses might influence aging phenotypes. Exp Gerontol 38: 5–11

    Google Scholar 

  • Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120: 513– 522

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain JR, Schwarze U, Wang PR, Hirata RK, Hankenson KD and Pace JM et al. (2004) Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science 303: 1198– 1201

    Article  CAS  PubMed  Google Scholar 

  • Chien KR and Karsenty G (2005) Longevity and lineages: toward the integrative biology of degenerative diseases in heart, muscle and bone. Cell 120: 533–544

    Article  CAS  PubMed  Google Scholar 

  • Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H and Hafen E et al. (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292: 104–107

    Article  CAS  PubMed  Google Scholar 

  • Coschigano KT, Clemmons D, Bellush LL and Kopchick JJ (2000) Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141: 2608–2613

    Article  CAS  PubMed  Google Scholar 

  • Couzin J (2005) How much can human life span be extended. Science 309: 83

    CAS  PubMed  Google Scholar 

  • De Boer J, Andressoo JO, de Wit J, Huikmans J, Beems RB and van Steeg H et al. (2002) Premature ageing in mice deficient in DNA repair and transcription. Science 296: 1276–1279

    PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G and Roskelley C et al. (1995) A novel biomarker identifies senescent human cells in culture and aging skin in vivo. Proc Natl Acad Sci USA 92: 9363–9367

    CAS  PubMed  Google Scholar 

  • Eriksson M, Brown TW, Gordon LB, Glynn MW, Singer J and Scott L et al. (2003) Recurrent de novo point mutations in Lamin A cause Hutchison–Gilford progeria syndrome. Nature 423: 293–298

    Article  CAS  PubMed  Google Scholar 

  • Friedman DB and Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118: 75–86

    CAS  PubMed  Google Scholar 

  • Friguet B and Szweda LL (1997) Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein. FEBS Lett 405: 21–25

    Article  CAS  PubMed  Google Scholar 

  • Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE and Gordon LB et al. (2004) Accumulation of mutant lamin A causes progressive changes in nuclear structure in Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci USA 101: 8963–8968

    Article  CAS  PubMed  Google Scholar 

  • Griffith JD, Comeau L, Rosenfeld S, Stansel RM, Bianchi A and Moss H et al. (1999) Mammalian telomeres end in a large duplex loop. Cell 97: 503–514

    Article  CAS  PubMed  Google Scholar 

  • Guarente L and Picard F (2005) Calorie restriction – the SIR2 connection. Cell 120: 473–482

    Article  CAS  PubMed  Google Scholar 

  • Harley CB, Futcher AB and Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345: 458–460

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1956) A theory based on free radical and radiation chemistry. J Gerontol 11: 298–300

    CAS  PubMed  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K and Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1-cyclin dependent kinases. Cell 75: 805–816

    CAS  PubMed  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37: 614–636

    Article  CAS  PubMed  Google Scholar 

  • Herndon LA, Schmeisser PJ, Dudaronek JM, Brown PA, Listner KM and Sakano Y et al. (2002) Stochastic and genetic factors influence tissue decline in ageing C. elegans. Nature 419: 788–794

    Article  Google Scholar 

  • Howitz KI, Bitterman KJ, Cohen HY, Lamming DW, Lavu S and Wood JG et al. (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191–196

    Article  CAS  PubMed  Google Scholar 

  • Ikeno Y, Bronson RT, Hubbard GB, Lee S and Bartke A (2002) Delayed occurrence of fatal neoplastic diseases in Ames dwarf mice: correlation to extended longevity. J Gerontol 58: 291–296

    Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu X and Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277: 942–946

    Article  CAS  PubMed  Google Scholar 

  • Krtolica A and Campisi J (2002) Cancer and aging: a model for the cancer promoting effects of aging stroma. Int J Biochem Cell Biol 34: 1401–1414

    Article  CAS  PubMed  Google Scholar 

  • Krtolica A, Parrinello S, Lockett S, Desprez PY and Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 98: 12072–12077

    Article  CAS  PubMed  Google Scholar 

  • Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K and Wohlgemuth SE et al. (2005) Mitochondrial DNA mutations, oxidative stress and apoptosis in mammalian aging. Science 309: 481–484

    Article  CAS  PubMed  Google Scholar 

  • LaBarge MA and Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111: 589– 601

    Article  CAS  PubMed  Google Scholar 

  • Larsen P (1993) Aging and resistance to oxidative stress in Caenorhabditis elegans. Proc Natl Acad Sci USA 90: 8905–8909

    CAS  PubMed  Google Scholar 

  • Luckinbill L, Arking R and Clare M (1984) Selection for delayed senescence in Drosophila melanogaster. Evolution 38: 996–1003

    Google Scholar 

  • Mattison JA, Lane MA, Roth GS and Ingram DK (2003) Calorie restriction in rhesus monkeys. Exp Gerontol 38: 35–46

    Article  PubMed  Google Scholar 

  • McCay CM, Crowell MF and Maynard LA (1935) The effect of retarded growth upon the length of life span and upon ultimate body size. J Nutr 10: 63–79

    CAS  Google Scholar 

  • Miggliaccio E, Giorgio M, Mele S, Pelicci G, Reholdi P and Pandolfi PP et al. (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402: 309–313

    Google Scholar 

  • Mishkin R and Masos T (1997) Transgenic mice over-expressing urokinase-type plasminogen activator in brain exhibit reduced food consumption, body weight and increased longevity. J Gerontol 52:B118–B124

    Google Scholar 

  • Mitchell JR, Wood E and Collins K (1999) A telomerase component defective in the human disease dyskeratosis congenita. Nature 402: 551–555

    CAS  PubMed  Google Scholar 

  • Morris J, Tissenbaum H and Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382: 536–539

    Article  CAS  PubMed  Google Scholar 

  • Mounkes LC, Kozlov S, Hernandez L, Sullivan T and Stewart CL (2003) A progeroid syndrome in mice is caused by defects in the A-type lamins. Nature 423: 298–301

    Article  CAS  PubMed  Google Scholar 

  • Nishimura EK, Granter SR and Fisher DE (2005) Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307: 720–724

    Article  CAS  PubMed  Google Scholar 

  • Noda A, Yi N, Venable SF, Pereira-Smith OM and Smith JR (1994) Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211: 90– 98

    Article  CAS  PubMed  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I and Quaini F et al. (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98: 10344–10349

    Article  CAS  PubMed  Google Scholar 

  • Rose MR (1984) Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38: 1004–1010

    Google Scholar 

  • Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ and Greider C et al. (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96: 701–712

    Article  CAS  PubMed  Google Scholar 

  • Sampaolesi M, Torrente Y, Innocenzi A, Tontorenzi R, D'Antona G and Pellogrino MA et al. (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301: 487–491

    Article  CAS  PubMed  Google Scholar 

  • Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE and Emond M et al. (2005) Extension of life span by overexpression of catalase targeted to mitochondria. Science 308: 1909–1911

    Article  CAS  PubMed  Google Scholar 

  • Seshadri T and Campisi J (1990) c-fos repression and an altered genetic program in senescent human fibroblasts. Science 247: 205–209

    CAS  PubMed  Google Scholar 

  • Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA and Newmeyer DD et al. (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases -2, -3, -6, -7, -8 and -10 in a caspase-9- dependent manner. J Cell Biol 144: 281–292

    Article  CAS  PubMed  Google Scholar 

  • Staba SL, Escolar ML, Poe M, Kim Y, Martin PL and Szabolcs Pet al. (2004) Cord-blood transplants from unrelated donors in patients with Hurler's syndrome. N Eng J Med 350: 1960– 1969

    CAS  Google Scholar 

  • Tatar M, Kopelmann A, Epstein D, Tu M-P, Yin C-M and Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292: 107–110

    Article  CAS  PubMed  Google Scholar 

  • Tissenbaum HA and Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410: 227–230

    Article  CAS  PubMed  Google Scholar 

  • Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT and Bruder CE et al. (2004) Premature aging in mice expressing defective mitochondrial DNA polymerase. Nature 429: 417–423

    Article  CAS  PubMed  Google Scholar 

  • Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N and Igelmann H et al. (2002) p53 mutant mice that display early age-associated phenotypes. Nature 415: 45–53

    Article  CAS  PubMed  Google Scholar 

  • Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N and Thorpe SR et al. (2003) Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16: 29–37

    PubMed  Google Scholar 

  • van Steensel B, Smogorzewska A and de Lange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92: 401–413

    PubMed  Google Scholar 

  • Vogel H, Lim D-S, Karsenty G, Finegold M and Hasty P (1999) Deletion of ku86 causes early onset of senescence in mice. Proc Natl Acad Sci USA 96: 10770–10775

    CAS  PubMed  Google Scholar 

  • Warner HR (2005) Longevity genes: from primitive organisms to humans. Mech Ageing Dev 126: 235–242

    Article  CAS  PubMed  Google Scholar 

  • Warner HR and Sierra F (2003) Models of accelerated aging can be informative about the molecular mechanisms of ageing and/or age-related pathology. Mech Ageing Dev 124: 581–587

    Article  CAS  PubMed  Google Scholar 

  • Warner HR, Hodes RJ and Pocinki K (1997) What does cell death have to do with aging? J Am Geriatr Soc 45: 1140–1146

    CAS  PubMed  Google Scholar 

  • Warner HR, Ingram D, Miller RA, Nadon NA and Richardson AG (2000) Program for testing biological interventions to promote healthy aging. Mech Ageing Dev 115: 199–207

    Article  CAS  PubMed  Google Scholar 

  • Weindruch R and Walford RL (1988) The Retardation of Aging and Disease by Dietary Restriction. C.C. Thomas, Springfield, Illinois

    Google Scholar 

  • Yan L-J and Sohal RS (1998) Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc Natl Acad Sci USA 95: 12896–12901

    CAS  PubMed  Google Scholar 

  • Yan L-J, Levine RL and Sohal RS (1997) Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci USA 94: 11168–11172

    Article  CAS  PubMed  Google Scholar 

  • Yu BP (1996) Aging and oxidative stress: modulation by dietary restriction. Free Radic Biol Med 21: 651–668

    Article  CAS  PubMed  Google Scholar 

  • Yuan J and Horvitz HR (1990) The Caenorhabditis elegans genes ced-3 and ced-4 act autonomously to cause programmed cell death. Dev Biol 138: 33–41

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Shaham S, Ledoux S, Ellis HM and Horvitz HR (1993) The C. elegans cell death gene ced-3 gene codes for a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75: 641–652

    Article  CAS  PubMed  Google Scholar 

  • Zhang JH, Zhang Y and Herman B (2003) Capases, apoptosis and aging. Ageing Res Rev 2: 357–366

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huber R. Warner.

About this article

Cite this article

Warner, H.R. Twenty years of progress in biogerontology research. AGE 27, 321–328 (2005). https://doi.org/10.1007/s11357-005-4556-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-005-4556-8

Keywords

Navigation