Skip to main content
Log in

Plasma membrane redox and control of sirtuin

  • Review article
  • Published:
AGE Aims and scope Submit manuscript

Abstract

We consider possible contributions of plasma membrane redox systems to Aging control by sirtuin (SIR). Reported changes in plasma membrane redox introduced by calorie restriction (CR) may lead to activation of SIR. The most obvious effect would lie in the increase of NAD+ as a result of NADH oxidation. So the question arises, do the observed changes herald an increase in NADH oxidase under CR? The other possibility is an increase in expression of SIR by activation of plasma membrane oxidase. Previous experiments have shown that activation of the plasma membrane redox system can increase cellular NAD+ concentration. The plasma membrane redox systems are also involved in control of protein kinase activity through oxygen radical generation. This activity may be related to control of SIR expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcain FJ and Low H (1994) Crane FL Iron reverses impermeable chelator inhibition of DNA synthesis in CCL39 cells. Proc Natl Acad Sci USA 91: 7903–7906

    CAS  PubMed  Google Scholar 

  • Alcain FJ, Low H and Crane FL (1995) Iron at the cell surface controls both DNA synthesis and plasma membrane redox systems. Protoplasma 184: 3–7

    Article  Google Scholar 

  • Anderson RM, Bitterman KJ, Wood JG, Medvedik O and Sinclair DA (2003) Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423: 181–185

    Article  CAS  PubMed  Google Scholar 

  • Baker MA, Lane DJR, Ly JD, DePinto V and Lawen A (2004) Voltage dependent anion channel 1 is an NADH ferricyanide reductase. J Biol Chem 279: 4811–4819

    Article  CAS  PubMed  Google Scholar 

  • Bates GW, Workman EF and Schlabach MR (1973) Study of ferric transformation from ferrous iron plus oxygen. Biochem Biophys Res Commun 50: 84–88

    Article  CAS  PubMed  Google Scholar 

  • Berridge MV and Tan AS (2000) High capacity redox control at the plasma membrane of mammalian cells: trans membrane, cell surface, and serum NADH oxidases. Antioxid Redox Signal 2: 231–242

    CAS  PubMed  Google Scholar 

  • Brightman AO, Wang J, Kin-Man Miu R, Sun IL and Barr R et al. (1992) A growth factor and hormone stimulated NADH oxidase from rat liver plasma membrane. Biochim Biophys Acta 1105: 109–117

    CAS  PubMed  Google Scholar 

  • Cohen HY, Miller C, Bitterman KJ, Wall NR and Hekking B et al. (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT 1 deacetylase. Science 305: 390–392

    Article  CAS  PubMed  Google Scholar 

  • Crane FL and Low H (2001) New functions for coenzyme Q, chapt. 5. In: Ebadi M, Marwah J and Chopra R (eds) Mitochondrial Ubiquinone, Vol 1, pp 183–215. Prominent Press, Scottsdale

    Google Scholar 

  • Crane FL, Sun IL, Barr R and Low H (1991) Electron and proton transport accross the plasma membrane. J Bioenerg Biomembranes 23: 773–803

    Article  CAS  Google Scholar 

  • Crowe RA, Taparowsky EJ and Crane FL (1993) Ha ras stimulates the transplasma membrane oxidoreductase activity of C3H10T1/2 cells. Biochem Biophys Res Commun 196: 844–850

    Article  CAS  PubMed  Google Scholar 

  • de Cabo R, Cabello R, Rios M, Lopez-Lluch G and Ingram DK etal. (2004) Calorie restriction attenuates age-related alterations in the plasma membrane antioxidant system in rat liver. Exp Gerontol 39: 297–304

    Article  PubMed  Google Scholar 

  • de Grey ADNJ (2001) A proposed mechanism for the lowering of mitochondrial electron leak by calorie restriction. Mitochondrion 1: 129–139

    Article  PubMed  Google Scholar 

  • del Castillo-Olivares A, Esteban del Valle A, Marquez J, Nunez de Castro I and Medina MA (1995) Ehrlich cell plasma membrane redox system is modulated through signal pathways involving cGMP and Ca2+ as second messengers. J Bioenerg Biomembanes 27: 605–611

    Article  Google Scholar 

  • Diaz-Munoz M, Vazqez-Martinez O, Aguilar Roblero R and Escobar C (2000) Anticipatory changes in liver metabolism and entrainment of insulin, glucagon and corticosterone in food restricted rats. Am J Physiol, Regul Integr Comp Physiol 279: R2048–R2056

    CAS  Google Scholar 

  • Gayda DP, Crane FL, Morre DJ and Low H (1977) Hormone effects on NADH oxidizing enzymes of plasma membranes of rat liver. Proc Indiana Acad Sci 86: 385–390

    CAS  Google Scholar 

  • Goldenberg H, Crane FL and Morre DJ (1978) Influence of hormones on NADH dehydrogenase in mouse liver plasma membrane. Biochem Biophys Res Commun 83: 234–240

    Article  CAS  PubMed  Google Scholar 

  • Hekimi S and Guarente L (2003) Genetics and the specificity of the aging process. Science 299: 1351–1354

    Article  CAS  PubMed  Google Scholar 

  • Herkert O, Djordjevic T, Belaiba RS and Gorlach A (2004) Insights into the redox control of blood coagulation. Antioxid Redox Signal 6: 765–776

    Article  CAS  PubMed  Google Scholar 

  • Hoidal JR, Brar SS, Sturrock HB, Sanders KA and Dinger B et al. (2003) The role of endogenous NADPH oxidases in airway and pulmonary vascular smooth muscle function. Antioxid Redox Signal 5: 751–758

    Article  CAS  PubMed  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW and Lavu S et al. (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191–196

    Article  CAS  PubMed  Google Scholar 

  • Jordan I and Kaplan J (1994) The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity. Biochem J 302: 875–879

    CAS  PubMed  Google Scholar 

  • Kishi T, Morre DM and Morre DJ (1999) The plasma membrane NADH oxidases of He La cells has hydroquinone oxidase activity. Biochim Biophys Acta 1411: 66–77

    Google Scholar 

  • Lambeth JD (2002) Nox/Duox family of nicotinamide adenine dinucleotide phosphate oxidases. Curr Opin Hematol 9: 11–17

    Article  PubMed  Google Scholar 

  • Lin SJ, Defossez PA and Guarente L (2000) Requirement of NAD+ and SIR-2 for life-span-extension by calorie restriction in Saccharomyces cerevisiae. Science 289: 2126–2128

    Article  CAS  PubMed  Google Scholar 

  • Lin SJ, Kaeberlein M, Andalls AA, Sturtz LA and Defossez PA et al. (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418: 344–348

    Article  CAS  PubMed  Google Scholar 

  • Low H, Sun IL, Navas P, Grebing C and Crane FL et al. (1986) Transplasmalemma electron transport from cells is part of a diferric transferrin reductase system. Biochem Biophys Res Commun 139: 1117–1123

    Article  CAS  PubMed  Google Scholar 

  • Low H, Grebing C, Lindgren A, Tally M, Sun IL and Crane FL (1987) Involvement of transferrin the reduction of iron by the transplasma membrane electron transport system. J Bioenerg Biomembranes 19: 535–549

    CAS  Google Scholar 

  • Low H, Lindgren A, Crane FL, Sun IL and Toole-Simms W (1988) Transplasma membrane electron transport functions as a ferric reductase. In: Crane FL, Morre DJ and Low H (eds) Plasma Membrane Oxidoreductases in Control of Animal and Plant Growth, pp 153–159. Plenum, New York

    Google Scholar 

  • McCarter RJ and McGee JR (1989) Transient reduction of metabolic rate by food restriction. Am J Physiol 257: E175–E179

    CAS  PubMed  Google Scholar 

  • Merker MP, Bongard RD, Kettenhofen NJ, Okamoto Y and Dawson CA (2002) Intracellular redox status affects transplasma membrane electron transport in pulmonary arterial endothetral cells. Am J Physiol 282: L36–L43

    CAS  Google Scholar 

  • Moore DJ, Davidson M, Gielen C, Lawrence J and Flesher G et al. (1993) NADH oxidase activity of rat liver plasma membrane activated by guanine nucleotides. Biochem J 292: 647–653

    Google Scholar 

  • Morre DJ (1998) NADH oxidase: a multifunctional ectoprotein of the eukaryotic cell surface. In: Asard H, Berczi A and Caubergs RJ (eds) Plasma Membrane Systems and Their Role in Biological Stress and Disease, pp 121–156. Kluwer, Dordrecht

    Google Scholar 

  • Navarro F, Villalba JM, Crane FL, MacKellar WC and Navas P (1995) A phospholysid dependent NADH coenzyme Q reductase from liver plasma membrane. Biochem Biophys Res Commun 212: 138–143

    Article  CAS  PubMed  Google Scholar 

  • Navas P, Sun IL, Morre DJ and Crane FL (1986) Decrease of NADH in He La cells in the presence of transferrin or ferricyanide. Biochem Biophys Res Commun 135: 110–115

    Article  CAS  PubMed  Google Scholar 

  • Navas P, Sun IL, Morre DJ and Crane FL (1988) Relationship between NAD+/NADH levels and animal cell growth. In: Crane FL, Morre DJ and Low H (eds) Plasma Membrane Oxidoreductasee in Control of Animal Plant Growth, pp 339–348. Plenum, New York

    Google Scholar 

  • Nemoto S and Finkel T (2004) Aging and the mystery of Arles. Nature 429: 149–152

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG, Chang TS, Bae YS, Lee SR and Kang SW (2003) Cellular regulation by hydrogen peroxide. J Am Soc Nephrol 14: S211–S215

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Aguilera JC, Navarro F, Arroyo A, Villalba JM and Navas P (1993) Transplasma membrane redox system of HL60 cells is controlled by c AMP. J Biol Chem 268: 26346–26349

    CAS  PubMed  Google Scholar 

  • Sun IL, Navas P, Crane FL, Morre DJ and Low H (1987) NADH diferric transferrin reductase in liver plasma membrane. J Biol Chem 262: 15915–15921

    CAS  PubMed  Google Scholar 

  • Sun IL, Navas P, Crane FL, Morre DJ and Low H (1987) Diferric transferrin reductase in the plasma membrane is inhibited by adriamicyin. Biochem Int 14: 119–127

    CAS  PubMed  Google Scholar 

  • Sun IL, Crane FL, Morre DJ, Low J and Faulk WP (1991) Lactoferrin activates plasma membrane oxidase and Na+/H+ antiport activity. Biochem Biophys Res Commun 176: 498–504

    Article  CAS  PubMed  Google Scholar 

  • Sun IL, Sun EE, Crane FL, Morre DJ, Lindgren A and Low H (1992) A requirement for coenzyme Q in plasma membrane electron transport. Proc Natl Acad Sci USA 89: 11126–11130

    CAS  PubMed  Google Scholar 

  • Suzuki Y and Griendling K (2003) Redox control of growth factor signaling in heart, lung, and circulation. Antioxid Redox Signal 5: 689–690

    Article  CAS  PubMed  Google Scholar 

  • Thorstensen K and Romslo I (1990) The role of transferrin in the mechanism of cellular iron uptake. Biochem J 271: 1–10

    CAS  PubMed  Google Scholar 

  • Villalba JM, Navarro E, Gomez-Diaz C, Arroyo A, Bello RI and Navas P (1997) Role of cytochrome b 5 reductase on the antioxidant functions of coenzyme Q in the plasma membrane. Mol Aspects Med 18: S7–S13

    Article  CAS  PubMed  Google Scholar 

  • Walford RL, Mock D, Verdery R and Mac Callum T (2002) Calorie restriction in biosphere 2: alternations in physiologic, hematologic, hormonal and biochemical parameters in humans restricted for a 2 year period. J Gerontol 57A: B211–B224

    Google Scholar 

  • Weindruch R and Sohal RS (1997) Calorie intake and aging. N Engl J Med 337: 986–994

    Article  CAS  PubMed  Google Scholar 

  • Wenner CE and Cutry AF (1990) The stimulation of cell growth by extra cellular oxidants. In: Crane FL, Morre DJ and Low H (eds) Oxidoreduction at the Plasma Membrane, Vol 1, pp 131–140. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick L. Crane.

About this article

Cite this article

Crane, F.L., Low, H. Plasma membrane redox and control of sirtuin. AGE 27, 147–152 (2005). https://doi.org/10.1007/s11357-005-1631-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-005-1631-0

Key words

Navigation