Skip to main content
Log in

Technological advances and challenges of reclaimed asphalt pavement (RAP) application in road engineering—a bibliometric analysis from 2000 to 2022

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Reclaimed asphalt pavement (RAP) is a valuable material that can be recycled and reused in road engineering to reduce environmental impact, resource utilization, and economic costs. However, the application of RAP in road engineering presents both opportunities and challenges. This study visually analyzes the knowledge background, research status, and latest knowledge structure of literature related to RAP using scientific metric methods such as VOSviewer and Citespace. The Web of Science (WoS) core collection database identified 2963 research publications from 2000 to 2022. Collaborative networks between highly cited references, journals, authors, academic institutions, countries, and funding organizations are analyzed in this study, along with a co-occurrence analysis of keywords for the RAP research publications. Results showed that the USA has long been a leader in RAP research, China surpassed the USA in annual publication output in 2019, increasing from 2 publications in 2002 to 177 publications in 2022, and has made significant investments in technological aspects. Chang’an University ranked first in total publication output (131 publications, 4.4%). Current major research themes include road performance, recycling technology, regeneration mechanisms, and the life cycle assessment of RAP. In addition, based on cluster analysis of keywords, text content analysis, and SWOT analysis, this study also discusses RAP’s challenges and future development directions in road engineering. These findings provide scholars with valuable information to gain insight into technological advances and challenges in the field of RAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

All the data used in this article are in the manuscript.

References

  • Aguirre MA, Hassan MM, Shirzad S, Daly WH, Mohammad LN (2016) Micro-encapsulation of asphalt rejuvenators using melamine-formaldehyde. Constr Build Mater 114:29–39

    Article  CAS  Google Scholar 

  • Ahmadinia E, Zargar M, Karim MR, Abdelaziz M, Ahmadinia E (2012) Performance evaluation of utilization of waste polyethylene terephthalate (PET) in stone mastic asphalt. Constr Build Mater 36:984–989

    Article  Google Scholar 

  • Akbulut H, Gurer C (2007) Use of aggregates produced from marble quarry waste in asphalt pavements. Build Environ 42:1921–1930

    Article  Google Scholar 

  • Andersen MS (2007) An introductory note on the environmental economics of the circular economy. Sustain Sci 2:133–140

    Article  Google Scholar 

  • Androjic I, Kaluder G (2013) Cold recycling of asphalt pavements using foamed bitumen and cement. Gradevinar 65:463–471

    Google Scholar 

  • Antwi-Afari P, Ng ST, Hossain MU (2021) A review of the circularity gap in the construction industry through scientometric analysis. J Clean Prod 298:126870

    Article  Google Scholar 

  • Anuardo RG, Espuny M, Costa ACF, Oliveira OJ (2022) Toward a cleaner and more sustainable world: a framework to develop and improve waste management through organizations, governments and academia. Heliyon 8. https://doi.org/10.1016/j.heliyon.2022.e09225

  • Apeagyei AK, Diefenderfer BK (2013) Evaluation of cold in-place and cold central-plant recycling methods using laboratory testing of field-cored specimens. J Mater Civ Eng 25:1712–1720

    Article  Google Scholar 

  • Aria M, Cuccurullo C (2017) Bibliometrix: an R-tool for comprehensive science mapping analysis. J Informet 11:959–975

    Article  Google Scholar 

  • Arulrajah A, Piratheepan J, Disfani MM, Bo MW (2013) Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications. J Mater Civ Eng 25:1077–1088

    Article  Google Scholar 

  • Arulrajah A, Disfani MM, Horpibulsuk S, Suksiripattanapong C, Prongmanee N (2014) Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications. Constr Build Mater 58:245–257

    Article  Google Scholar 

  • Ashtiani MZ, Mogawer WS, Austerman AJ (2018) A mechanical approach to quantify blending of aged binder from recycled materials in new hot mix asphalt mixtures. Transp Res Rec 2672:107–118

    Article  Google Scholar 

  • Aurangzeb Q, Al-Qadi IL (2014) Asphalt pavements with high reclaimed asphalt pavement content economic and environmental perspectives. Transp Res Rec 2456(1):161–169

    Article  Google Scholar 

  • Baghaee Moghaddam T, Baaj H (2016) The use of rejuvenating agents in production of recycled hot mix asphalt: a systematic review. Constr Build Mater 114:805–816

    Article  CAS  Google Scholar 

  • Balaguera A, Carvajal GI, Alberti J, Fullana-i-Palmer P (2018) Life cycle assessment of road construction alternative materials: a literature review. Resour Conserv Recycl 132:37–48

    Article  Google Scholar 

  • Behnood A (2019) Application of rejuvenators to improve the rheological and mechanical properties of asphalt binders and mixtures: a review. J Clean Prod 231:171–182

    Article  Google Scholar 

  • Bhatt Y, Ghuman K, Dhir A (2020) Sustainable manufacturing. Bibliometrics and content analysis. J Clean Prod:260

  • Bonaquist R (2007) Can I run more RAP? HMAT: hot mix asphalt technology 12

  • Bonoli A, Degli Esposti A, Magrini C (2020) A case study of industrial symbiosis to reduce GHG emissions: performance analysis and LCA of asphalt concretes made with RAP aggregates and steel slags. Front Mater 7:572955

    Article  Google Scholar 

  • Bowers BF, Huang BS, Shu X, Miller BC (2014) Investigation of reclaimed asphalt pavement blending efficiency through GPC and FTIR. Constr Build Mater 50:517–523

    Article  Google Scholar 

  • Brand AS, Roesler JR (2015) Ternary concrete with fractionated reclaimed asphalt pavement. ACI Mater J 112:155–163

    Google Scholar 

  • Brand AS, Roesler JR (2017) Bonding in cementitious materials with asphalt-coated particles: Part I – The interfacial transition zone. Constr Build Mater 130:171–181

    Article  CAS  Google Scholar 

  • Cao ZL, Chen MZ, Han XB, Wang RY, Yu JY, Xu X et al (2020) Influence of characteristics of recycling agent on the early and long-term performance of regenerated SBS modified bitumen. Constr Build Mater 237:12

    Article  Google Scholar 

  • Cavalli MC, Griffa M, Bressi S, Partl MN, Tebaldi G, Poulikakos LD (2016) Multiscale imaging and characterization of the effect of mixing temperature on asphalt concrete containing recycled components. J Microsc 264:22–33

    Article  CAS  Google Scholar 

  • Cavalli MC, Zaumanis M, Mazza E, Partl MN, Poulikakos LD (2018) Effect of ageing on the mechanical and chemical properties of binder from RAP treated with bio-based rejuvenators. Composites Part B-Eng 141:174–181

    Article  CAS  Google Scholar 

  • Chen JS, Wang CH, Huang CC (2009) Engineering properties of bituminous mixtures blended with second reclaimed asphalt pavements (R2AP). Road Mater Pavement Des 10:129–149

    Google Scholar 

  • Chen J, Dan H, Ding Y, Gao Y, Guo M, Guo S et al (2021) New innovations in pavement materials and engineering: a review on pavement engineering research 2021. J Traffic Transp Eng (English Edition) 8:815–999

    Article  Google Scholar 

  • China MoTotPsRo (2012) Guidance of the Ministry of Transportation on accelerating the recycling of highway pavement materials. Highway Bureau

    Google Scholar 

  • Chiu C-T, Lee M-G (2006) Effectiveness of seal rejuvenators for bituminous pavement surfaces. J Test Eval 34(5):390–394

    Article  Google Scholar 

  • Chung SS, Lo CWH (2003) Evaluating sustainability in waste management: the case of construction and demolition, chemical and clinical wastes in Hong Kong. Resour Conserv Recycl 37:119–145

    Article  Google Scholar 

  • Copeland A (2011) Reclaimed asphalt pavement in asphalt mixtures: state of the practice. Office of Research, Development, and Technology

    Google Scholar 

  • Costa JO, Borges PHR, dos Santos FA, Bezerra ACS, Van den bergh W, Blom J. (2020) Cementitious binders and reclaimed asphalt aggregates for sustainable pavement base layers: potential, challenges and research needs. Construct Build Mater 265:120325

    Article  CAS  Google Scholar 

  • Daim TU, Rueda G, Martin H, Gerdsri P (2006) Forecasting emerging technologies: use of bibliometrics and patent analysis. Technol Forecast Soc Chang 73:981–1012

    Article  Google Scholar 

  • Ding YJ, Huang BS, Shu X, Zhang YZ, Woods ME (2016a) Use of molecular dynamics to investigate diffusion between virgin and aged asphalt binders. Fuel 174:267–273

    Article  CAS  Google Scholar 

  • Ding ZK, Wang YF, Zou PXW (2016b) An agent based environmental impact assessment of building demolition waste management: conventional versus green management. J Clean Prod 133:1136–1153

    Article  Google Scholar 

  • Ding L, Wang X, Zhang M, Chen Z, Meng J, Shao X (2021) Morphology and properties changes of virgin and aged asphalt after fusion. Constr Build Mater 291:123284

    Article  Google Scholar 

  • Du XY, Meng CH, Guo ZH, Yan H (2023) An improved approach for measuring the efficiency of low carbon city practice in China. Energy 268

  • EAPA (2022) Asphalt in Figures 2020. European Asphalt Pavement Association, Brussels

    Google Scholar 

  • Farahzadi L, Kioumarsi M (2023) Application of machine learning initiatives and intelligent perspectives for CO2 emissions reduction in construction. J Clean Prod 384:135504

    Article  CAS  Google Scholar 

  • Farina A, Zanetti MC, Santagata E, Blengini GA (2017) Life cycle assessment applied to bituminous mixtures containing recycled materials: crumb rubber and reclaimed asphalt pavement. Resour Conserv Recycl 117:204–212

    Article  Google Scholar 

  • Garcia A, Jelfs J, Austin CJ (2015) Internal asphalt mixture rejuvenation using capsules. Constr Build Mater 101:309–316

    Article  Google Scholar 

  • Garcia-Morales M, Partal P, Navarro FJ, Martinez-Boza F, Gallegos C (2004) Linear viscoelasticity of recycled EVA-modified bitumens. Energy Fuel 18:357–364

    Article  CAS  Google Scholar 

  • García-Morales M, Partal P, Navarro FJ, Gallegos C (2006) Effect of waste polymer addition on the rheology of modified bitumen. Fuel 85:936–943

    Article  Google Scholar 

  • Giani MI, Dotelli G, Brandini N, Zampori L (2015) Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling. Resour Conserv Recycl 104:224–238

    Article  Google Scholar 

  • Grinys A, Sivilevicius H, Dauksys M (2012) tyre rubber additive effect on concrete mixture strength. J Civ Eng Manag 18:393–401

    Article  Google Scholar 

  • Gu J, Liu X, Zhang Z (2023) Road base materials prepared by multi-industrial solid wastes in China: a review. Constr Build Mater 373:130860

    Article  CAS  Google Scholar 

  • Hajj EY, Sebaaly PE, Kandiah P (2010) Evaluation of the use of reclaimed asphalt pavement in airfield HMA pavements. J Transp Eng-Asce 136:181–189

    Article  Google Scholar 

  • Hansen K, Copeland A (2013) 2nd Annual asphalt pavement industry survey on reclaimed asphalt pavement, reclaimed asphalt shingles, and warm-mix Asphalt Usage: 2009–2011. Reclaimed Asphalt Pavements

    Google Scholar 

  • Hasan U, Whyte A, Al JH (2020) Life cycle assessment of roadworks in United Arab Emirates: recycled construction waste, reclaimed asphalt pavement, warm-mix asphalt and blast furnace slag use against traditional approach. J Clean Prod 257:120531

    Article  CAS  Google Scholar 

  • He Q, Wang G, Luo L, Shi Q, Xie J, Meng X (2017) Mapping the managerial areas of Building Information Modeling (BIM) using scientometric analysis. Int J Proj Manag 35:670–685

    Article  Google Scholar 

  • Hou H, Su L, Guo D, Xu H (2023) Resource utilization of solid waste for the collaborative reduction of pollution and carbon emissions: case study of fly ash. J Clean Prod 383:135449

    Article  CAS  Google Scholar 

  • Hoy M, Horpibulsuk S, Arulrajah A (2016) Strength development of recycled asphalt pavement – fly ash geopolymer as a road construction material. Constr Build Mater 117:209–219

    Article  CAS  Google Scholar 

  • Huang SC, Turner TF (2014) Aging characteristics of RAP blend binders: rheological properties. J Mater Civ Eng 26:966–973

    Article  Google Scholar 

  • Huang B, Li G, Vukosavljevic D, Shu X, Egan BK (2005a) Laboratory investigation of mixing hot-mix asphalt with reclaimed asphalt pavement. Transp Res Rec 1929:37–45

    Article  Google Scholar 

  • Huang BS, Li GQ, Vukosavjevic D, Shu X, Egan BK, Trb. (2005b) Laboratory investigation of mixing hot-mix asphalt with reclaimed asphalt pavement. Bituminous Paving Mixtures 2005:37–45

    Google Scholar 

  • Huang BS, Shu X, Li GQ (2005c) Laboratory investigation of portland cement concrete containing recycled asphalt pavements. Cem Concr Res 35:2008–2013

    Article  CAS  Google Scholar 

  • Huang Y, Bird RN, Heidrich O (2007) A review of the use of recycled solid waste materials in asphalt pavements. Resour Conserv Recycl 52:58–73

    Article  Google Scholar 

  • Inti S, Tandon V (2021) Towards precise sustainable road assessments and agreeable decisions. J Clean Prod 323:129167

    Article  Google Scholar 

  • Jahanbakhsh H, Karimi MM, Naseri H, Nejad FM (2020) Sustainable asphalt concrete containing high reclaimed asphalt pavements and recycling agents: performance assessment, cost analysis, and environmental impact. J Clean Prod 244:118837

    Article  Google Scholar 

  • Jia XY, Huang BS, Bowers BF, Zhao S (2014) Infrared spectra and rheological properties of asphalt cement containing waste engine oil residues. Constr Build Mater 50:683–691

    Article  Google Scholar 

  • Jiang W, Huang Y, Sha A (2018) A review of eco-friendly functional road materials. Constr Build Mater 191:1082–1092

    Article  Google Scholar 

  • Jin RY, Chen Q (2019) Overview of concrete recycling legislation and practice in the United States. J Constr Eng Manag 145(4):05019004

    Article  Google Scholar 

  • Kalantar ZN, Karim MR, Mahrez A (2012) A review of using waste and virgin polymer in pavement. Constr Build Mater 33:55–62

    Article  Google Scholar 

  • Kandhal PS, Mallick RB (1998) Pavement recycling guidelines for state and local governments: participant's reference book. ROSA P

    Google Scholar 

  • Karki P, Zhou F (2016) Effect of rejuvenators on rheological, chemical, and aging properties of asphalt binders containing recycled binders. Transp Res Rec 2574:74–82

    Article  Google Scholar 

  • Kirchherr J, van Santen R (2019) Research on the circular economy: a critique of the field. Resour Conserv Recycl 151:104480

    Article  Google Scholar 

  • Kucukvar M, Tatari O (2012) Ecologically based hybrid life cycle analysis of continuously reinforced concrete and hot-mix asphalt pavements. Transp Res Part D-Transp Environ 17:86–90

    Article  Google Scholar 

  • Lee HVWC, Carlson R et al (2015) Development of quality standards for inclusion of high recycled asphalt pavement content in asphalt mixtures-phase II. University of Iowa

    Google Scholar 

  • Lee N, Chou C-P, Chen K-Y (2012) Benefits in energy savings and CO2 reduction by using reclaimed asphalt pavement. TRID

    Google Scholar 

  • Li J, Xiao F, Zhang L, Amirkhanian SN (2019) Life cycle assessment and life cycle cost analysis of recycled solid waste materials in highway pavement: a review. J Clean Prod 233:1182–1206

    Article  Google Scholar 

  • Li HB, Zhang MM, Temitope AA, Guo XY, Sun JM, Yombah M et al (2022) Compound reutilization of waste cooking oil and waste engine oil as asphalt rejuvenator: performance evaluation and application. Environ Sci Pollut Res 29:90463–90478

    Article  CAS  Google Scholar 

  • Li J, Yang L, He L, Guo R, Li X, Chen Y et al (2023) Research progresses of fibers in asphalt and cement materials: a review. J Road Eng 3(1):35–70

    Article  Google Scholar 

  • Liang X, Kurniawan TA, Goh HH, Zhang DD, Dai W, Liu H et al (2022) Conversion of landfilled waste-to-electricity (WTE) for energy efficiency improvement in Shenzhen (China): a strategy to contribute to resource recovery of unused methane for generating renewable energy on-site. J Clean Prod 369:133078

    Article  CAS  Google Scholar 

  • Lin J, Hong J, Huang C, Liu J, Wu S (2014) Effectiveness of rejuvenator seal materials on performance of asphalt pavement. Constr Build Mater 55:63–68

    Article  Google Scholar 

  • Liu K, Da Y, Wang F, Ding W, Xu P, Pang H et al (2022a) An eco-friendly asphalt pavement deicing method by microwave heating and its comprehensive environmental assessments. J Clean Prod 373:133899

    Article  CAS  Google Scholar 

  • Liu N, Wang Y, Bai Q, Liu Y, Wang P, Xue S et al (2022b) Road life-cycle carbon dioxide emissions and emission reduction technologies: a review. J Traffic Transp Eng (English Edition) 9:532–555

    Article  Google Scholar 

  • Liu Y, Ali A, Chen Y, She X (2023) The effect of transport infrastructure (road, rail, and air) investments on economic growth and environmental pollution and testing the validity of EKC in China, India, Japan, and Russia. Environ Sci Pollut Res 30:32585–32599

    Article  Google Scholar 

  • Long HY, Liu HY, Li XW, Chen LJ (2020) An evolutionary game theory study for construction and demolition waste recycling considering green development performance under the Chinese Government's reward-penalty mechanism. Int J Environ Res Public Health 17(17):6303

    Article  Google Scholar 

  • Luan Y, Ma T, Wang S, Ma Y, Xu G, Wu M (2022) Investigating mechanical performance and interface characteristics of cold recycled mixture: promoting sustainable utilization of reclaimed asphalt pavement. J Clean Prod 369:133366

    Article  Google Scholar 

  • Luo Z, Xiao FP, Hu SW, Yang YS (2013) Probabilistic analysis on fatigue life of rubberized asphalt concrete mixtures containing reclaimed asphalt pavement. Constr Build Mater 41:401–410

    Article  Google Scholar 

  • Ma MX, Tam VWY, Le KN, Li WG (2020) Challenges in current construction and demolition waste recycling: a China study. Waste Manag 118:610–625

    Article  Google Scholar 

  • MacLeod D, Ho S, Wirth R, Zanzotto L (2007) Study of crumb rubber materials as paving asphalt modifiers. Can J Civ Eng 34:1276–1288

    Article  Google Scholar 

  • Mannan UA, Islam MR, Tarefder RA (2015) Effects of recycled asphalt pavements on the fatigue life of asphalt under different strain levels and loading frequencies. Int J Fatigue 78:72–80

    Article  Google Scholar 

  • Meyer DE, Li M, Ingwersen WW (2020) Analyzing economy-scale solid waste generation using the United States environmentally-extended input-output model. Resour Conserv Recycl 157:104795

    Article  Google Scholar 

  • Mogawer WS, Austerman AJ, Bonaquist R (2012) Determining the influence of plant type and production parameters on performance of plant-produced reclaimed asphalt pavement mixtures. Transp Res Rec 2268:71–81

    Article  Google Scholar 

  • Mogawer WS, Booshehrian A, Vahidi S, Austerman AJ (2013) Evaluating the effect of rejuvenators on the degree of blending and performance of high RAP, RAS, and RAP/RAS mixtures. Road Mater Pavement Des 14:193–213

    Article  CAS  Google Scholar 

  • Mohamed AS, Cao ZL, Xu XY, Xiao FP, Abdel-Wahed T (2022) Bonding, rheological, and physiochemical characteristics of reclaimed asphalt rejuvenated by crumb rubber modified binder. J Clean Prod 373:133896

    Article  CAS  Google Scholar 

  • Ng CP, Law TH, Wong SV, Kulanthayan S (2017) Relative improvements in road mobility as compared to improvements in road accessibility and economic growth: a cross-country analysis. Transp Policy 60:24–33

    Article  Google Scholar 

  • Norin M, Stromvall AM (2004) Leaching of organic contaminants from storage of reclaimed asphalt pavement. Environ Technol 25:323–340

    Article  CAS  Google Scholar 

  • Offenbacker D, Mehta Y (2022) Assessing the life-cycle costs of pavement rehabilitation strategies used in long-term pavement performance program. J Transp Eng Part B-Pavements 148(1):04022002

    Article  Google Scholar 

  • Oner J, Sengoz B (2015) Utilization of recycled asphalt concrete with warm mix asphalt and cost-benefit analysis. PLoS One 10(1):e116180

    Article  Google Scholar 

  • Oreto C, Veropalumbo R, Viscione N, Biancardo SA, Russo F (2021) Investigating the environmental impacts and engineering performance of road asphalt pavement mixtures made up of jet grouting waste and reclaimed asphalt pavement. Environ Res 198:111277

    Article  CAS  Google Scholar 

  • Ozer H, Al-Qadi IL, Lambros J, El-Khatib A, Singhvi P, Doll B (2016) Development of the fracture-based flexibility index for asphalt concrete cracking potential using modified semi-circle bending test parameters. Constr Build Mater 115:390–401

    Article  CAS  Google Scholar 

  • Pei J, Guo F, Zhang J, Zhou B, Bi Y, Li R (2021) Review and analysis of energy harvesting technologies in roadway transportation. J Clean Prod 288:125338

    Article  Google Scholar 

  • Pompigna A, Mauro R (2022) Smart roads: a state of the art of highways innovations in the Smart Age. Eng Sci Technol Int J 25:100986

    Google Scholar 

  • Pradyumna TA, Mittal A, Jain P (2013) Characterization of reclaimed asphalt pavement (RAP) for use in bituminous road construction. Procedia Soc Behav Sci 104:1149–1157

    Article  Google Scholar 

  • Pranav S, Lahoti M, Shan X, Yang EH, Muthukumar G (2022) Economic input-output LCA of precast corundum-blended ECC overlay pavement. Resour Conserv Recycl 184:106385

    Article  Google Scholar 

  • Puccini M, Leandri P, Tasca AL, Pistonesi L, Losa M (2019) Improving the environmental sustainability of low noise pavements: comparative life cycle assessment of reclaimed asphalt and crumb rubber based warm mix technologies. Coatings 9(5):343

    Article  CAS  Google Scholar 

  • Puppala AJ, Hoyos LR, Potturi AK (2011) Resilient moduli response of moderately cement-treated reclaimed asphalt pavement aggregates. J Mater Civ Eng 23:990–998

    Article  CAS  Google Scholar 

  • Qiao YN, Dave E, Parry T, Valle O, Mi LY, Ni GD et al (2019) Life cycle costs analysis of reclaimed asphalt pavement (RAP) under future climate. Sustainability 11(19):5414

    Article  Google Scholar 

  • Rafiq W, Napiah M, Habib NZ, Sutanto MH, Alaloul WS, Khan MI et al (2021) Modeling and design optimization of reclaimed asphalt pavement containing crude palm oil using response surface methodology. Constr Build Mater 291:123288

    Article  CAS  Google Scholar 

  • Rahman MA, Imteaz MA, Arulrajah A, Piratheepan J, Disfani MM (2015) Recycled construction and demolition materials in permeable pavement systems: geotechnical and hydraulic characteristics. J Clean Prod 90:183–194

    Article  Google Scholar 

  • Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344:1492–1496

    Article  CAS  Google Scholar 

  • Rodríguez-Fernández I, Lastra-González P, Indacoechea-Vega I, Castro-Fresno D (2019) Technical feasibility for the replacement of high rates of natural aggregates in asphalt mixtures. Int J Pavement Eng 22(8):940–949

    Article  Google Scholar 

  • Roja KL, Masad E, Vajipeyajula B, Yiming W, Khalid E, Shunmugasamy VC (2020) Chemical and multi-scale material properties of recycled and blended asphalt binders. Constr Build Mater 261:119689

    Article  Google Scholar 

  • Roja KL, Masad E, Mogawer W (2021) Performance and blending evaluation of asphalt mixtures containing reclaimed asphalt pavement. Road Mater Pavement Des 22:2441–2457

    Article  CAS  Google Scholar 

  • Sabouri M, Kim YR (2014) Development of a failure criterion for asphalt mixtures under different modes of fatigue loading. Transp Res Rec 2447:117–125

    Article  Google Scholar 

  • Sanchez X, Tighe SL (2019) Steps towards the detection of reclaimed asphalt pavement in superpave mixtures. Road Mater Pavement Des 20:1201–1214

    Article  CAS  Google Scholar 

  • Santero NJ, Masanet E, Horvath A (2011) Life-cycle assessment of pavements. Part I: Critical review. Resour Conserv Recycl 55:801–809

    Article  Google Scholar 

  • Sarah Mariam A, Ransinchung GDRN (2020) Laboratory research on reclaimed asphalt pavement-inclusive cementitious mixtures. ACI Mater J 117:193

    Google Scholar 

  • Sha A, Liu Z, Jiang W, Qi L, Hu L, Jiao W et al (2021) Advances and development trends in eco-friendly pavements. J Road Eng 1:1–42

    Article  Google Scholar 

  • Shao-peng W, Xiao-ming H, Yong-li Z (2002) The development of recycling agent for asphalt pavement. J Wuhan Univ Technol-Mater Sci Ed 17:63–65

    Article  Google Scholar 

  • Shen DH, Du JC (2005) Application of gray relational analysis to evaluate HMA with reclaimed building materials. J Mater Civ Eng 17:400–406

    Article  CAS  Google Scholar 

  • Shi C, Meyer C, Behnood A (2008) Utilization of copper slag in cement and concrete. Resour Conserv Recycl 52:1115–1120

    Article  Google Scholar 

  • Shirodkar P, Mehta Y, Nolan A, Sonpal K, Norton A, Tomlinson C et al (2011) A study to determine the degree of partial blending of reclaimed asphalt pavement (RAP) binder for high RAP hot mix asphalt. Constr Build Mater 25:150–155

    Article  Google Scholar 

  • Shu X, Huang BS (2014) Recycling of waste tire rubber in asphalt and portland cement concrete: an overview. Constr Build Mater 67:217–224

    Article  Google Scholar 

  • Shu X, Huang B, Vukosavljevic D (2008) Laboratory evaluation of fatigue characteristics of recycled asphalt mixture. Constr Build Mater 22:1323–1330

    Article  Google Scholar 

  • Shu X, Huang BS, Shrum ED, Jia XY (2012) Laboratory evaluation of moisture susceptibility of foamed warm mix asphalt containing high percentages of RAP. Constr Build Mater 35:125–130

    Article  Google Scholar 

  • Silva H, Oliveira JRM, Jesus CMG (2012) Are totally recycled hot mix asphalts a sustainable alternative for road paving? Resour Conserv Recycl 60:38–48

    Article  Google Scholar 

  • Singh S, Ransinchung GD, Kumar P (2017) An economical processing technique to improve RAP inclusive concrete properties. Constr Build Mater 148:734–747

    Article  Google Scholar 

  • Sivilevicius H, Braziunas J, Prentkovskis O (2017) Technologies and principles of hot recycling and investigation of preheated reclaimed asphalt pavement batching process in an asphalt mixing plant. Applied Sciences-Basel 7:20

    Google Scholar 

  • Song W, Huang B, Shu X (2018) Influence of warm-mix asphalt technology and rejuvenator on performance of asphalt mixtures containing 50% reclaimed asphalt pavement. J Clean Prod 192:191–198

    Article  Google Scholar 

  • Su J-F, Qiu J, Schlangen E (2013) Stability investigation of self-healing microcapsules containing rejuvenator for bitumen. Polym Degrad Stab 98:1205–1215

    Article  CAS  Google Scholar 

  • Sudarsanan N, Kim YR (2022) A critical review of the fatigue life prediction of asphalt mixtures and pavements. J Traffic Transp Eng (English Edition) 9:808–835

    Article  Google Scholar 

  • Sun LC, Wang QW, Zhang JJ (2017) Inter-industrial carbon emission transfers in China: economic effect and optimization strategy. Ecol Econ 132:55–62

    Article  Google Scholar 

  • Sun Y, Zheng L, Cheng Y, Chi F, Liu K, Zhu T (2023) Research on maintenance equipment and maintenance technology of steel fiber modified asphalt pavement with microwave heating. Case Stud Constr Mater 18:e01965

    Google Scholar 

  • Thakur JK, Han J, Pokharel SK, Parsons RL (2012) Performance of geocell-reinforced recycled asphalt pavement (RAP) bases over weak subgrade under cyclic plate loading. Geotext Geomembr 35:14–24

    Article  Google Scholar 

  • Townsend TG, Ingwersen WW, Niblick B, Jain P, Wally J (2019) CDDPath: a method for quantifying the loss and recovery of construction and demolition debris in the United States. Waste Manag 84:302–309

    Article  Google Scholar 

  • Tran NP, Nguyen TN, Ngo TD (2022) The role of organic polymer modifiers in cementitious systems towards durable and resilient infrastructures: a systematic review. Constr Build Mater 360:129562

    Article  CAS  Google Scholar 

  • Umer A, Hewage K, Haider H, Sadiq R (2017) Sustainability evaluation framework for pavement technologies: an integrated life cycle economic and environmental trade-off analysis. Transp Res Part D-Transp Environ 53:88–101

    Article  Google Scholar 

  • Vignisdottir HR, Ebrahimi B, Booto GK, O'Born R, Brattebø H, Wallbaum H et al (2019) A review of environmental impacts of winter road maintenance. Cold Reg Sci Technol 158:143–153

    Article  Google Scholar 

  • Vislavicius K, Sivilevicius H (2013) Effect of reclaimed asphalt pavement gradation variation on the homogeneity of recycled hot-mix asphalt. Arch Civil Mech Eng 13:345–353

    Article  Google Scholar 

  • Waltman L, van Eck NJ, Noyons ECM (2010) A unified approach to mapping and clustering of bibliometric networks. J Informet 4:629–635

    Article  Google Scholar 

  • Wang C, Lim MK, Zhang X, Zhao L, Lee PT-W (2020) Railway and road infrastructure in the Belt and Road Initiative countries: estimating the impact of transport infrastructure on economic growth. Transp Res A Policy Pract 134:288–307

    Article  Google Scholar 

  • Wang FS, Xie J, Wu SP, Li JS, Barbieri DM, Zhang L (2021) Life cycle energy consumption by roads and associated interpretative analysis of sustainable policies. Renew Sustain Energy Rev 141:110823

    Article  Google Scholar 

  • Wang L, Wei J, Wu W, Zhang X, Xu X, Yan X (2022) Technical development and long-term performance observations of long-life asphalt pavement: a case study of Shandong Province. J Road Eng 2:369–389

    Article  CAS  Google Scholar 

  • Wei M, Wu S, Zhu L, Li N, Yang C (2021) Environmental impact on VOCs emission of a recycled asphalt mixture with a high percentage of RAP. Materials 14

  • Williams B, Willis J (2022) Asphalt pavement industry survey on recycled materials and warm-mix asphalt usage 2020 Information Series 138 11th Annual Survey

  • Willis J, Williams B (2022) Asphalt pavement industry survey on recycled materials and warm-mix asphalt usage 2021 Information Series 138 12th Annual Survey

  • Wu SP, Xue YJ, Ye QS, Chen YC (2007) Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures. Build Environ 42:2580–2585

    Article  Google Scholar 

  • Wu M, Xu GJ, Luan YC, Zhu YJ, Ma T, Zhang WG (2022) Molecular dynamics simulation on cohesion and adhesion properties of the emulsified cold recycled mixtures. Constr Build Mater 333:127403

  • Xiang C, Wang Y, Liu H (2017) A scientometrics review on nonpoint source pollution research. Ecol Eng 99:400–408

    Article  Google Scholar 

  • Xiao FP, Amirkhanian S, Juang CH (2007) Rutting resistance of rubberized asphalt concrete pavements containing reclaimed asphalt pavement mixtures. J Mater Civ Eng 19:475–483

    Article  CAS  Google Scholar 

  • Xiao F, Su N, Yao S, Amirkhanian S, Wang J (2019) Performance grades, environmental and economic investigations of reclaimed asphalt pavement materials. J Clean Prod 211:1299–1312

    Article  Google Scholar 

  • Xiao F, Xu L, Zhao Z, Hou X (2023) Recent applications and developments of reclaimed asphalt pavement in China, 2010–2021. Sustain Mater Technol 37:e00697

    CAS  Google Scholar 

  • Xiao FP, Yao SL, Wang JG, Li XH, Amirkhanian S (2018) A literature review on cold recycling technology of asphalt pavement. Constr Build Mater 180:579–604

    Article  Google Scholar 

  • Xie ZX, Tran N, Taylor A, Julian G, West R, Welch J (2017) Evaluation of foamed warm mix asphalt with reclaimed asphalt pavement: field and laboratory experiments. Road Mater Pavement Des 18:328–352

    Article  CAS  Google Scholar 

  • Xing C, Li M, Liu L, Lu R, Liu N, Wu W et al (2023) A comprehensive review on the blending condition between virgin and RAP asphalt binders in hot recycled asphalt mixtures: mechanisms, evaluation methods, and influencing factors. J Clean Prod 398:136515

    Article  Google Scholar 

  • Xu B, Ding R, Yang Z, Sun Y, Zhang J, Lu K et al (2023) Investigation on performance of mineral-oil-based rejuvenating agent for aged high viscosity modified asphalt of porous asphalt pavement. J Clean Prod 395:136285

    Article  Google Scholar 

  • Yao LY, Leng Z, Lan JT, Chen RQ, Jiang JW (2022) Environmental and economic assessment of collective recycling waste plastic and reclaimed asphalt pavement into pavement construction: a case study in Hong Kong. J Clean Prod 336:130405

    Article  CAS  Google Scholar 

  • Yao Y, Yang J, Gao J, Zheng M, Xu J, Zhang W et al (2023) Strategy for improving the effect of hot in-place recycling of asphalt pavement. Constr Build Mater 366:130054

    Article  Google Scholar 

  • Yousefi A, Behnood A, Nowruzi A, Haghshenas H (2021) Performance evaluation of asphalt mixtures containing warm mix asphalt (WMA) additives and reclaimed asphalt pavement (RAP). Constr Build Mater 268:121200

    Article  CAS  Google Scholar 

  • Yu XK, Zaumanis M, dos Santos S, Poulikakos LD (2014) Rheological, microscopic, and chemical characterization of the rejuvenating effect on asphalt binders. Fuel 135:162–171

    Article  CAS  Google Scholar 

  • Yu B, Wang SY, Gu XY (2018) Estimation and uncertainty analysis of energy consumption and CO2 emission of asphalt pavement maintenance. J Clean Prod 189:326–333

    Article  CAS  Google Scholar 

  • Yuan HP (2017) Barriers and countermeasures for managing construction and demolition waste: a case of Shenzhen in China. J Clean Prod 157:84–93

    Article  Google Scholar 

  • Zaumanis M, Mallick RB (2015) Review of very high-content reclaimed asphalt use in plant-produced pavements: state of the art. Int J Pavement Eng 16:39–55

    Article  CAS  Google Scholar 

  • Zaumanis M, Mallick RB, Frank R (2013) Evaluation of rejuvenator's effectiveness with conventional mix testing for 100% reclaimed asphalt pavement mixtures. Transp Res Rec:17–25

  • Zaumanis M, Mallick RB, Frank R (2014a) 100% recycled hot mix asphalt: a review and analysis. Resour Conserv Recycl 92:230–245

    Article  Google Scholar 

  • Zaumanis M, Mallick RB, Poulikakos L, Frank R (2014b) Influence of six rejuvenators on the performance properties of reclaimed asphalt pavement (RAP) binder and 100% recycled asphalt mixtures. Constr Build Mater 71:538–550

  • Zhang J, Guo C, Chen T, Zhang W, Yao K, Fan C et al (2021) Evaluation on the mechanical performance of recycled asphalt mixtures incorporated with high percentage of RAP and self-developed rejuvenators. Constr Build Mater 269:121337

    Article  Google Scholar 

  • Zhang Y, Wang J, Deng H, Zhang D, Wang Y (2023) Developing a multidimensional assessment framework for clean technology transfer potential and its application on the belt and road initiative countries. J Clean Prod 401:136769

    Article  Google Scholar 

  • Zhao S, Huang B, Shu X, Woods M (2013) Comparative evaluation of warm mix asphalt containing high percentages of reclaimed asphalt pavement. Constr Build Mater 44:92–100

    Article  Google Scholar 

  • Zhao S, Huang BS, Shu X, Woods ME (2016) Quantitative evaluation of blending and diffusion in high RAP and RAS mixtures. Mater Des 89:1161–1170

    Article  CAS  Google Scholar 

  • Zheng XW, Xu WY, Xu HP, Wu SX, Cao K (2022) Research on the ability of bio-rejuvenators to disaggregate oxidized asphaltene nanoclusters in aged asphalt. Acs Omega 7:21736–21749

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51778515 and No. 71961137010), the Technological Innovation Major Project of Hubei Province (2019AEE023), the Key R&D Program of Hubei Province (2020BCB064), and the State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology, No. SYSJJ2019-20).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Visualization and supervision were performed by Wei Liu and Shaopeng Wu. Review and editing were performed by Qi Jiang and Wei Liu. Project administration was performed by Shaopeng Wu. The first draft of the manuscript was written by Qi Jiang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qi Jiang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors agreed to participate in this study.

Consent for publication

All authors agree to publish.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Liu, W. & Wu, S. Technological advances and challenges of reclaimed asphalt pavement (RAP) application in road engineering—a bibliometric analysis from 2000 to 2022. Environ Sci Pollut Res (2024). https://doi.org/10.1007/s11356-024-33635-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11356-024-33635-w

Keywords

Navigation