Skip to main content
Log in

Efficient ozone decomposition in high humidity environments using novel iron-doped OMS-2-loaded activated carbon material

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study effectively addresses the rapid deactivation of manganese-based catalysts in humid environments during ozone decomposition by introducing iron-doped manganese oxide octahedral molecular sieve (Fe-OMS-2) catalysts supported on activated carbon (AC). By optimizing the doping ratio of Fe-OMS-2, the Fe-OMS-20.5/AC catalyst achieves nearly 100% ozone decomposition efficiency across a wide range of relative humidity levels (0 to 60%), even at elevated air flow rates of 800 L·g−1·h−1, outperforming standalone AC, Fe-OMS-2, or a simple mixture of OMS-2 and AC. The Fe-OMS-20.5/AC catalyst features a porous surface and a mesoporous structure, providing a substantial specific surface area that facilitates the uniform distribution of the Fe-OMS-2 active phase on the AC surface. The incorporation of Fe3+ ions enhances electron transfer between valence state transitions of Mn, thereby improving the catalyst’s efficiency in ozone decomposition. Additionally, the AC component protects catalytic sites and enhances the catalyst’s humidity resistance. In conclusion, this research presents a novel strategy for developing highly efficient and cost-effective ozone decomposition catalysts that enhance dehumidification, significantly contributing to industrial ozone treatment technologies and advancing environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [SZ], upon reasonable request.

References

  • Bai B, Li J, Hao J (2015) 1D-MnO2, 2D-MnO2 and 3D-MnO2 for low-temperature oxidation of ethanol. Appl Catal B 164:241–250

    Article  CAS  Google Scholar 

  • Batakliev T, Tyuliev G, Georgiev V, Anachkov M, Eliyas A, Rakovsky S (2015) Ozone decomposition reaction over α-alumina-supported silver catalyst: comparative study of catalytic surface reactivity. Ozone: Sci Eng 37(3):216–220

    Article  CAS  Google Scholar 

  • Brodowska AJ, Nowak A, Śmigielski K (2018) Ozone in the food industry: principles of ozone treatment, mechanisms of action, and applications: an overview. Crit Rev Food Sci Nutr 58(13):2176–2201

    Article  CAS  Google Scholar 

  • Chen H, Stanier CO, Young MA, Grassian VH (2011) A kinetic study of ozone decomposition on illuminated oxide surfaces. J Phys Chem A 115(43):11979–11987

    Article  CAS  Google Scholar 

  • Chen J, Li Y, Fang S, Yang Y, Zhao X (2018) UV–Vis-infrared light-driven thermocatalytic abatement of benzene on Fe doped OMS-2 nanorods enhanced by a novel photoactivation. Chem Eng J 332:205–215

    Article  CAS  Google Scholar 

  • Chen C, Xie J, Chen X, Zhang W, Chen J, Jia A (2023) Cu species-modified OMS-2 materials for enhancing ozone catalytic decomposition under humid conditions. Adv Mater 8(22):19632–19644

    CAS  Google Scholar 

  • D’Amario M, Di Carlo M, Natale SM, Memè L, Marzo G, Matarazzo G, Capogreco M (2022) Application of ozone therapy in paediatric dentistry. Appl Sci 12(21):11100

    Article  Google Scholar 

  • Dai W, Zhang B, Ji J, Liu B, Xie R, Gan Y, Xie X, Zhang J, Huang P, Huang H (2023) Exceptional ozone decomposition over δ-MnO2/AC under an entire humidity environment. Environ Sci Technol 57(46):17727–17736

    Article  CAS  Google Scholar 

  • Dehmani Y, Lamhasni T, Mohsine A, Tahri Y, Lee H-S, Lgaz H, Alrashdi AA, Abouarnadasse S (2024) Adsorption removal of phenol by oak wood charcoal activated carbon. Biomass Convers Biorefinery 14(6):8015–8027

    Article  CAS  Google Scholar 

  • Dong C, Yang J-J, Xie L-H, Cui G, Fang W-H, Li J-R (2022) Catalytic ozone decomposition and adsorptive VOCs removal in bimetallic metal-organic frameworks. Nat Commun 13(1):4991

    Article  CAS  Google Scholar 

  • Fadeyi MO, Weschler CJ, Tham KW, Wu WY, Sultan ZM (2013) Impact of human presence on secondary organic aerosols derived from ozone-initiated chemistry in a simulated office environment. Environ Sci Technol 47(8):3933–3941

    Article  CAS  Google Scholar 

  • Fang C, Li D, Wang X, Wang Y, Chen J, Luo M (2021) Exploring an efficient manganese oxide catalyst for ozone decomposition and its deactivation induced by water vapor. New J Chem 45(23):10402–10408

    Article  CAS  Google Scholar 

  • Fang W, Wang C, Liu Z, Wang L, Liu L, Li H, Xu S, Zheng A, Qin X, Liu L, Xiao F-S (2022) Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration. Science 377(6604):406–410

    Article  CAS  Google Scholar 

  • Hao Z, Cheng D, Guo Y, Liang Y (2001) Supported gold catalysts used for ozone decomposition and simultaneous elimination of ozone and carbon monoxide at ambient temperature. Appl Catal B 33(3):217–222

    Article  CAS  Google Scholar 

  • He Y, Zhang P, Yang J, Wang S, Li J (2022) Fabrication of MnO2 coating on aluminum honeycomb for fast catalytic decomposition of ozone at room temperature. J Environ Sci 134:34–43

  • Hong W, Zhu T, Sun Y, Wang H, Li X, Shen F (2019) Enhancing oxygen vacancies by introducing Na+ into OMS-2 tunnels to promote catalytic ozone decomposition. Environ Sci Technol 53(22):13332–13343

    Article  Google Scholar 

  • Hong W, Ma J, Zhu T, He H, Wang H, Sun Y, Shen F, Li X (2021) To enhance water resistance for catalytic ozone decomposition by fabricating H2O adsorption-site in OMS-2 tunnels. Appl Catal B 297:120466

    Article  CAS  Google Scholar 

  • Itoh H, Taguchi M, Suzuki S (2020) Thermal decomposition of ozone at high temperature leading to ozone zero phenomena. J Phys D Appl Phys 53(18):185206

    Article  CAS  Google Scholar 

  • Ivatt PD, Evans MJ, Lewis AC (2022) Suppression of surface ozone by an aerosol-inhibited photochemical ozone regime. Nat Geosci 15(7):536–540

    Article  CAS  Google Scholar 

  • Jia J, Yang W, Zhang P, Zhang J (2017) Facile synthesis of Fe-modified manganese oxide with high content of oxygen vacancies for efficient airborne ozone destruction. Appl Catal A 546:79–86

    Article  CAS  Google Scholar 

  • Jiang C, Zhang P, Zhang B, Li J, Wang M (2013) Facile synthesis of activated carbon-supported porous manganese oxide via in situ reduction of permanganate for ozone decomposition. Ozone: Sci Eng 35(4):308–315

    Article  CAS  Google Scholar 

  • Kwon KM, Kim IG, Nam Y-S, Choi J, Cho WI, Oh IH, Lee K-B, Jang M, Park S, Nah IW (2018) Catalytic decomposition of hydrogen peroxide aerosols using granular activated carbon coated with manganese oxides. J Ind Eng Chem 62:225–230

    Article  CAS  Google Scholar 

  • Leong ZY, Yang HY (2019) A study of MnO2 with different crystalline forms for pseudocapacitive desalination. ACS Appl Mater Interfaces 11(14):13176–13184

    Article  CAS  Google Scholar 

  • Li W, Oyama ST (1998) Mechanism of ozone decomposition on a manganese oxide catalyst. 2. Steady-state and transient kinetic studies. J Am Chem Soc 120(35):9047–9052

    Article  CAS  Google Scholar 

  • Li H, Lu G, Dai Q, Wang Y, Guo Y, Guo Y (2011) Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres. Appl Catal B 102(3):475–483

    Article  CAS  Google Scholar 

  • Li J, Tian T, Jia Y, Xu N, Yang S, Zhang C, Gao S, Shen W, Wang Z (2023) Adsorption performance and optimization by response surface methodology on tetracycline using Fe-doped ZIF-8-loaded multi-walled carbon nanotubes. Environ Sci Pollut Res 30(2):4123–4136

    Article  CAS  Google Scholar 

  • Lian Z, Ma J, He H (2015) Decomposition of high-level ozone under high humidity over Mn–Fe catalyst: the influence of iron precursors. Catal Commun 59:156–160

    Article  CAS  Google Scholar 

  • Liang X, Wang X, Yang M, Dong H, Ji Y, Wang L, Zhang J, Long C (2023) α-Fe2O3-supported Co3O4 nanoparticles to construct highly active interfacial oxygen vacancies for ozone decomposition. Environ Pollut 330:121704

  • Liu X, Zhou K, Wang L, Wang B, Li Y (2009) Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J Am Chem Soc 131(8):3140–3141

    Article  CAS  Google Scholar 

  • Liu X, Lai D, Wang Y (2019) Performance of Pb(II) removal by an activated carbon supported nanoscale zero-valent iron composite at ultralow iron content. J Hazard Mater 361:37–48

    Article  CAS  Google Scholar 

  • Liu B, Nie X, Tang Y, Yang S, Bian L, Dong F, He H, Zhou Y, Liu K (2021) Objective findings on the K-Doped g-C3N4 photocatalysts: the presence and influence of organic byproducts on K-Doped g-C3N4 photocatalysis. Langmuir 37(16):4859–4868

    Article  CAS  Google Scholar 

  • Ma J, Wang C, He H (2016) Transition metal doped cryptomelane-type manganese oxide catalysts for ozone decomposition. Appl Catal B: Environ 201:503–510

  • Mehandjiev D, Naydenov A, Ivanov G (2001) Ozone decomposition, benzene and CO oxidation over NiMnO3-ilmenite and NiMn2O4-spinel catalysts. Appl Catal A 206(1):13–18

    Article  CAS  Google Scholar 

  • Namdari M, Lee C-S, Haghighat F (2022) A systematic comparative study of granular activated carbons and catalysts for ozone removal. Build Environ 224:109510

    Article  Google Scholar 

  • Powell A, Scolding JWS (2018) Direct application of ozone in aquaculture systems. Rev Aquac 10(2):424–438

    Article  Google Scholar 

  • Subrahmanyam D, Bulushev A, Kiwi-Minsker L (2005) Dynamic behaviour of activated carbon catalysts during ozone decomposition at room temperature. Appl Catal B: Environ 61(1):98–106

    Article  CAS  Google Scholar 

  • Wang M, Zhang P, Li J, Jiang C (2014) The effects of Mn loading on the structure and ozone decomposition activity of MnOx supported on activated carbon. Chin J Catal 35(3):335–341

    Article  CAS  Google Scholar 

  • Wang H, Rassu P, Wang X, Li H, Wang X, Wang X, Feng X, Yin A, Li P, Jin X, Chen S-L, Ma X, Wang B (2018) An iron-containing metal–organic framework as a highly efficient catalyst for ozone decomposition. Angew Chem Int Ed 57(50):16416–16420

    Article  CAS  Google Scholar 

  • Weschler CJ (2000) Ozone in indoor environments: concentration and chemistry. Indoor Air 10(4):269–288

    Article  CAS  Google Scholar 

  • Wu M-C, Kelly NA (1998) Clean-air catalyst system for on-road applications: II. Mechanistic studies of pollutant removal. Appl Catal B 18(1):93–104

    Article  CAS  Google Scholar 

  • Wu Y, Tang M, Zhong Y, Guo Z, Li K, Yang Y, Li Q (2022) High-efficiency activation of the C-H bond to synthesize p-methoxy benzaldehyde over a MnO2/CNT/Gr catalyst. New J Chem 46(20):9755–9761

    Article  CAS  Google Scholar 

  • Yadav AK, Vaidya PD (2019) A study on the efficacy of noble metal catalysts for butanol steam reforming. Int J Hydrogen Energy 44(47):25575–25588

    Article  CAS  Google Scholar 

  • Yu Q, Pan H, Zhao M, Liu Z, Wang J, Chen Y, Gong M (2009) Influence of calcination temperature on the performance of Pd–Mn/SiO2–Al2O3 catalysts for ozone decomposition. J Hazard Mater 172(2):631–634

    Article  CAS  Google Scholar 

  • Yu Y, Ji J, Li K, Huang H, Shrestha RP, Kim Oanh NT, Winijkul E, Deng J (2020) Activated carbon supported MnO nanoparticles for efficient ozone decomposition at room temperature. Catal Today 355:573–579

    Article  CAS  Google Scholar 

  • Zhang J, Wei Y, Fang Z (2019) Ozone pollution: a major health hazard worldwide. Front Immunol 10

  • Zhu G, Zhu W, Lou Y, Ma J, Yao W, Zong R, Zhu Y (2021a) Encapsulate α-MnO2 nanofiber within graphene layer to tune surface electronic structure for efficient ozone decomposition. Nat Commun 12(1):4152

    Article  CAS  Google Scholar 

  • Zhu R, Yu Q, Li M, Zhao H, Jin S, Huang Y, Fan J, Chen J (2021b) Analysis of factors influencing pore structure development of agricultural and forestry waste-derived activated carbon for adsorption application in gas and liquid phases: A review. J Environ Chem Eng 9(5):105905

    Article  CAS  Google Scholar 

Download references

Funding

This work was partly supported by the Natural Science Foundation of Jiangsu Province (BK20210983, BK20221405), the Changzhou Science and Technology Bureau (CQ20210103, CM20223017), the Zhongwu Scientific Research Air Pollution Detection Team (11830512201), the Talent Introduction Program of Jiangsu University of Technology (KYY19022, KYY19040), and Shuangchuang Ph.D. award (from World Prestigious Universities).

Author information

Authors and Affiliations

Authors

Contributions

Qishun Qing: data curation, writing—original draft preparation. Shouwang Zhu:visualization and investigation. Hongyang Jin: software, validation. Tianhong Mei: methodology and software. Wei Liu: supervision. Songjian Zhao: conceptualization, methodology, reviewing and editing.

Corresponding author

Correspondence to Songjian Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: George Z. Kyzas

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 260 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qing, Q., Zhu, S., Jin, H. et al. Efficient ozone decomposition in high humidity environments using novel iron-doped OMS-2-loaded activated carbon material. Environ Sci Pollut Res 31, 35678–35687 (2024). https://doi.org/10.1007/s11356-024-33623-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-33623-0

Keywords

Navigation