Skip to main content

Advertisement

Log in

In-depth characterization of particulate matter in a highly polluted urban environment at the foothills of Himalaya–Karakorum Region

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In recent years, the rising levels of atmospheric particulate matter (PM) have an impact on the earth’s system, leading to undesirable consequences on various aspects like human health, visibility, and climate. The present work is carried out over an insufficiently studied but polluted urban area of Peshawar, which lies at the foothills of the famous Himalaya and Karakorum area, Northern Pakistan. The particulate matter with an aerodynamic diameter of less than 10 µm, i.e., PM10 are collected and analyzed for mineralogical, morphological, and chemical properties. Diverse techniques were used to examine the PM10 samples, for instance, Fourier transform infrared spectroscopy, x-ray diffraction, and scanning electron microscopy along with energy-dispersive x-ray spectroscopy, proton-induced x-ray emission, and an OC/EC carbon analyzer. The 24 h average PM10 mass concentration along with standard deviation was investigated to be 586.83 ± 217.70 µg/m3, which was around 13 times greater than the permissible limit of the world health organization (45 µg/m3) and 4 times the Pakistan national environmental quality standards for ambient PM10 (150 µg/m3). Minerals such as crystalline silicate, carbonate, asbestiform minerals, sulfate, and clay minerals were found using FTIR and XRD investigations. Microscopic examination revealed particles of various shapes, including angular, flaky, rod-like, crystalline, irregular, rounded, porous, chain, spherical, and agglomeration structures. This proved that the particles had geogenic, anthropogenic, and biological origins. The average value of organic carbon, elemental carbon, and total carbon is found to be 91.56 ± 43.17, 6.72 ± 1.99, and 102.41 ± 44.90 µg/m3, respectively. Water-soluble ions K+ and OC show a substantial association (R = 0.71). Prominent sources identified using Principle component analysis (PCA) are anthropogenic, crustal, industrial, and electronic combustion. This research paper identified the potential sources of PM10, which are vital for preparing an air quality management plan in the urban environment of Peshawar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The relevant author is agreeable to grant the data utilized in this research work on behalf of realistic appeal.

References

  • Alam K, Blaschke T, Madl P, Mukhtar A, Hussain M, Trautmann T, Rahman S (2011) Aerosol size distribution and mass concentration measurements in various cities of Pakistan. J Environ Monit 13:1944–1952

    Article  CAS  Google Scholar 

  • Alam K, Mukhtar A, Shahid I, Blaschke T, Majid H, Rahman S et al (2014) Source apportionment and characterization of particulate matter (PM10) in urban environment of Lahore. Aerosol Air Qual Res 14(7):1851–1861

    Article  CAS  Google Scholar 

  • Alam K, Rahman N, Khan HU, Haq BS, Rahman S (2015) Particulate matter and its source apportionment in Peshawar, Northern Pakistan. Aerosol Air Qual Res 15:634–647

    Article  CAS  Google Scholar 

  • Aldape F, Flores MJ, Diaz RV, Crumpton D (1996a) Upgrading of the PIXE system at ININ (Mexico) and report on elemental composition of atmospheric aerosols from 1990 in the ZMCM. Nucl Instr Meth B 109:459–464

    Article  Google Scholar 

  • Aldape F, Flores MJ, García RG, Nelson JW (1996b) PIXE analysis of atmospheric aerosols from a simultaneous three site sampling during the autumn of 1993 in Mexico City. Nucl Instr Meth B 109:502–505

    Article  Google Scholar 

  • Aldape F (2004) Uso de los Aceleradores en la Búsqueda de Soluciones a la Problemática Ambiental: Trascendencia Social. In: Experiencia Mexicana en Aceleradores de Partículas. Serie: Ciencia y Tecnología en la Historia de Mexico. Editorial Siglo XXI. Primera Edición, p 203

    Google Scholar 

  • Alexis NE et al (2006) Biological material on inhaled coarse fraction particulate matter activates airway phagocytes in vivo in healthy volunteers. J Allergy Clin Immunol 117:1396–1403

    Article  CAS  Google Scholar 

  • Allen DT, Palen EJ, Haimov MI, Hering SV, Young JR (1994) Fourier transforms infrared spectroscopy of aerosol collected in a low pressure impactor (LPI/FTIR): method development and field calibration. Aerosol Sci Technol 21:325–342

    Article  CAS  Google Scholar 

  • Andreae MO, Rosenfeld DJESR (2008) Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci Rev 89(1–2):13–41

    Article  Google Scholar 

  • Antao SM, Hassan I, Wang J, Lee PL, Toby BH (2008) State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite. Can Miner 46(6):1501–1509

    Article  CAS  Google Scholar 

  • Bahadur R, Uplinger T, Russell LM, Sive BC, Cliff SS, Millet DB, Goldstein A, Bates TS (2010) Phenol groups in northeastern US submicrometer aerosol particles produced from seawater sources. Environ Sci Technol 44:2542–2548

    Article  CAS  Google Scholar 

  • Balakrishna G, Pervez S, Bisht DS (2011) Source apportionment of arsenic in atmospheric dust fall out in an urban residential area, Raipur, central India. Atmos Chem Phys 11:5141–5151. https://doi.org/10.5194/acp-11-5141-2011

    Article  CAS  Google Scholar 

  • Balducci D, Valerio F (1986) Qualitative and quantitative evaluation of chrysotile and crocidolite fibers with IR-spectroscopy: application to asbestos-cement products. Int J Environ Anal Chem 27(4):315–323

    Article  CAS  Google Scholar 

  • Bernardoni V, Vecchi R, Valli G, Piazzalunga A, Fermo P (2011) PM10 source apportionment in Milan (Italy) using time-resolved data. Sci Total Environ 409:4788–4795. https://doi.org/10.1016/j.scitotenv.2011.07.048

    Article  CAS  Google Scholar 

  • Bharti SK, Kumar D, Anand S, Barman SC, Kumar N (2017) Characterization and morphological analysis of individual aerosol of PM10 in urban area of Lucknow, India. Micron 103:90–98

    Article  CAS  Google Scholar 

  • Bhuyan P, Deka P, Prakash A, Balachandran S, Hoque RR (2018) Chemical characterization and source apportionment of aerosol over mid Brahmaputra Valley, India. Environ Pollut 234:997–1010

    Article  CAS  Google Scholar 

  • Bora J, Deka P, Bhuyan P, Sarma KP, Hoque RR (2021) Morphology and mineralogy of ambient particulate matter over mid Brahmaputra Valley: application of SEM–EDX, XRD, and FTIR techniques. SN Appl Sci 3:137

    Article  CAS  Google Scholar 

  • Brauer M, Amann M, Burnett RT, Cohen A, Dentener F, Ezzati M, Henderson SB, Krzyzanowski M, Martin RV, Van Dingenen R, Van Donkelaar A (2012) Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ Sci Technol 46(2):652–660

    Article  CAS  Google Scholar 

  • Braun RA, Dadashazar H, MacDonald AB, Aldhaif AM, Maudlin LC, Crosbie E, Aghdam MA, Hossein Mardi A, Sorooshian A (2017) Impact of wildfire emissions on chloride and bromide depletion in marine aerosol particles. Environ Sci Technol 51:9013–9021

    Article  CAS  Google Scholar 

  • Cachier H, Bremond MP, Buat-Menard PATRICK (1989) Determination of atmospheric soot carbon with a simple thermal method. Tellus B: Chem Phys Meteorol 41(3):379–390

    Article  Google Scholar 

  • Calvo AI, Alves C, Castro A, Pont V, Vicente AM, Fraile R (2013) Research on aerosol sources and chemical composition: past, current and emerging issues. Atmos Res 120:1–28

    Article  Google Scholar 

  • Chang Y, Huang K, Xie M, Deng C, Zou Z, Liu S, Zhang Y (2018) First long-term and near real-time measurement of trace elements in China’s urban atmosphere: temporal variability, source apportionment and precipitation effect. Atmos Chem Phys 18:11793–11812. https://doi.org/10.5194/acp-18-11793-2018

    Article  CAS  Google Scholar 

  • Chen Y, Zhi G, Feng Y, Fu J, Feng J, Sheng G, Simoneit BR (2006) Measurements of emission factors for primary carbonaceous particles from residential raw-coal combustion in China. Geophys Res Lett 33(20)

  • Choobari OA, Zawar-Reza P, Sturman A (2014) The global distribution of mineral dust and its impacts on the climate system: a review. Atmos Res 138:152–165

    Article  CAS  Google Scholar 

  • Chow JC, Watson JG, Lu Z, Lowenthal DH, Frazier CA, Solomon PA, Thuillier RH, Magliano K (1996) Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmos Environ 30:2079–2112

    Article  CAS  Google Scholar 

  • Chowdhury S, Dey S, Smith KR (2018) Ambient PM2. 5 exposure and expected premature mortality to 2100 in India under climate change scenarios. Nature Commun 9(1):318

    Article  Google Scholar 

  • Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman spectroscopy, 3rd edn. Acadamic press, Newyork

    Google Scholar 

  • Coury C, Dillner AM (2008) A method to quantify organic functional groups and inorganic compounds in ambient aerosols using attenuated total reflectance FTIR spectroscopy and multivariate chemometric techniques. Atmos Environ 42:5923–5932

    Article  CAS  Google Scholar 

  • Crosbie E, Sorooshian A, Monfared NA, Shingler R, Esmaili O (2014) A multi-year aerosol characterization for the greater Tehran Area using satellite, surface, and modeling data. Atmos 5(2):178–197

    Article  Google Scholar 

  • De Marco A, Proietti C, Anav A, Ciancarella L, D’Elia I, Fares S, Fornasierb MF, Fusaroe L, Manese MGF, Marchettof A, Mirceac M, Paolettig E, Piersantic A, Rogoraf M, Salvatid L, Salvatorie E, Screpantih A, Vialettoc G, Vitalee M, Leonardi C (2019) Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: insights from Italy. Environ Int 125:320–333

    Article  Google Scholar 

  • Dockery CA, Hueckel-Weng R, Birbaumer N, Plewnia C (2009) Enhancement of planning ability by transcranial direct current stimulation. J Neurosci 29(22):7271–7277

    Article  CAS  Google Scholar 

  • Draxler RR (2003) HYSPLIT (hybrid single-particle Lagrangian integrated trajectory) model. http://www.arl.noaa.gov/HYSPLIT.php

    Google Scholar 

  • EPA, U (2004) EPA air quality criteria for particulate matter (final report, Oct 2004). US Environmental Protection Agency, Washington EPA 600/P-99/002aF-bF

    Google Scholar 

  • Falkovich AH, Ganor E, Levin Z, Formenti P, Rudich Y (2001) Chemical and mineralogical analysis of individual mineral dust particles. J Geophys Res Atmos 106(D16):18029–18036

    Article  CAS  Google Scholar 

  • Fang Y, Naik V, Horowitz LW, Mauzerall DL (2013) Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases from the pre industrial period to present. Atmos Chem Phys 13:1377–1394

    Article  Google Scholar 

  • Farsani MH, Shirmardi M, Alavi N, Maleki H, Sorooshian A, Babaei A et al (2018) Evaluation of the relationship between PM10 concentrations and heavy metals during normal and dusty days in Ahvaz. Iran Aeolian Res 33:12–22

    Article  Google Scholar 

  • Flores MJ, Aldape F (2001) PIXE study of airborne particulate matter in northern Mexico City. Int J PIXE 11(1–2):61–67

    Article  Google Scholar 

  • Flores MJ, Aldape F, DÍAZ, Crumpton D (1993) Set-up and improvements of the PIXE facility at ININ, Mexico. Nucl Instr Meth B 75(1–4):116–119

    Article  Google Scholar 

  • Flores MJ, Aldape F, Diaz RV, Hernández-Méndez B (1999) PIXE analysis of airborne particulate matter from Xalostoc, Mexico: winter to summer comparison. Nucl Instr Meth B 150(1–4):445–449

    Article  Google Scholar 

  • Götschi T, Oglesby L, Mathys P, Monn C, Manalis N, Koistinen K et al (2002) Comparison of black smoke and PM2. 5 levels in indoor and outdoor environments of four European cities. Environ Sci Technol 36(6):1191–1197

    Article  Google Scholar 

  • Gualtieri AF, Venturelli P (1999) In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction. Am Mineral 84(5–6):895–904

    Article  CAS  Google Scholar 

  • Gugamsetty B, Wei H, Liu CN, Awasthi A, Hsu SC, Tsai CJ, Roam GD, Wu YC, Chen CF (2012) Source characterization and apportionment of PM10, PM2.5 and PM0.1 by using positive matrix factorization. Aerosol Air Qual Res 12:476–491

    Article  CAS  Google Scholar 

  • Gupta I, Kumar R (2006) Trends of particulate matter in four cities in India. Atmos Environ 40:2552–2566

    Article  CAS  Google Scholar 

  • Hansen LP, Sargent TJ (2001) Robust control and model uncertainty. Am Econ Rev 91(2):60–66

    Article  Google Scholar 

  • Harper M (2008) 10th Anniversary critical review: naturally occurring asbestos. J Environ Monit 10(12):1394–1408

    Article  CAS  Google Scholar 

  • Herman JR, Bhartia PK, Torres O, Hsu C, Seftor C, Celarier E (1997) Global distribution of UV- absorbing aerosols from Nimbus 7/TOMS data. J Geophys Res 102:16911–16922

    Article  CAS  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change. Cambridge University Press, Cambridge, p 881

    Google Scholar 

  • Khan S, Zeb B, Ullah S, Huraira MM, Ali G, Zahid S, Rahman Z (2024) Assessment and characterization of particulate matter during the winter season in the urban environment of Lahore, Pakistan. Int J Environ Sci Technol 21(1):833–844

    Article  Google Scholar 

  • Khaniabadi YO, Daryanoosh SM, Hopke PK, Ferrante M, De Marco A, Sicard P, Conti GO, Goudarzi G, Basiri H, Mohammadi MJ, Keishams F (2017) Acute myocardial infarction and COPD attributed to ambient SO2 in Iran. Environ Res 156:683–687

    Article  CAS  Google Scholar 

  • Khokhar MF, Yasmin N, Chishtie F, Shahid I (2016) Temporal variability and characterization of aerosols across the Pakistan region during the winter fog periods. Atmosphere 7(5):67

    Article  Google Scholar 

  • Kleshtanova V, Tonchev V, Stoycheva A, Angelov C (2023) Cloud condensation nuclei and backward trajectories of air masses at Mt. Moussala in two months of 2016. J Atmos Solar-Terrestrial Phys 243:106004

    Article  Google Scholar 

  • Kłosek-Wawrzyn E, Małolepszy J, Murzyn P (2013) Sintering behavior of kaolin with calcite. Procedia Eng 57:572–582

    Article  Google Scholar 

  • Kodama H, Oinuma K (1962) Identification of kaolin minerals in the presence of chlorite by X-ray diffraction and infrared absorption spectra. Clays Clay Miner 11(1):236–249

    Google Scholar 

  • Kulkarni G, Mei F, Shilling JE, Wang J, Reveggino RP, Flynn C, Zelenyuk A, Fast J (2023) Cloud condensation nuclei closure study using airborne measurements over the Southern Great Plains. J Geophys Res: Atmos 128(5):e2022JD037964

    Article  Google Scholar 

  • Kulshrestha UC, Saxena A, Kumar N, Kumari KM, Srivastava SS (1998) Chemical composition and association of size differentiated aerosols at a suburban site in a semi arid tract of India. J Atmos Chem 29:109–118

    Article  CAS  Google Scholar 

  • Kumar B, Verma K, Kulshrestha U (2014) Deposition and mineralogical characteristics of atmospheric dust in relation to land use and land cover change in Delhi (India). Geography J. https://doi.org/10.1155/2014/325612

    Article  Google Scholar 

  • Kuzmichev AA, Loboyko VF (2016) Impact of the polluted air on the appearance of buildings and architectural monuments in the area of town planning. Procedia Eng 150:2095–2101

    Article  Google Scholar 

  • Lafuente B, Downs RT, Yang H, Stone N, Armbruster T, Danisi RM (2015) The power of databases: the RRUFF project. In: Highlights in mineralogical crystallography, vol 1, p 25

    Google Scholar 

  • Lafuente R, García-Blàquez N, Jacquemin B, Checa MA (2016) Outdoor air pollution and sperm quality. Fertil Steril 106(4):880–896

    Article  CAS  Google Scholar 

  • Li W, Bai Z (2009) Characteristics of organic and elemental carbon in atmospheric fine particles in Tianjin, China. Particuology 7(6):432–437

    Article  CAS  Google Scholar 

  • Li WJ, Shao LY (2009) Observation of nitrate coatings on atmospheric mineral dust particles. Atmos Chem Phys 9:1863–1871

    Article  Google Scholar 

  • Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Aryee M (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2224–2260

    Article  Google Scholar 

  • Liu B, Li Y, Wang L, Bi X, Dong H, Sun X, Xiao Z, Zhang Y, Feng Y (2020) Source directional apportionment of ambient PM2. 5 in urban and industrial sites at a megacity in China. Atmos Res 235:104764

    Article  CAS  Google Scholar 

  • Lough GC, Schauer JJ, Park JS, Shafer MM, Deminter JT, Weinstein JP (2005) Emissions of metals associated with motor vehicle roadways. Environ Sci Technol 39:826–836

    Article  CAS  Google Scholar 

  • Madejova J, Komadel P (2001) Baseline studies of the clay minerals society source clays: infrared methods. Clays Clay Miner 49(5):410–432

    Article  CAS  Google Scholar 

  • Maenhaut W, Francois F, Cafmeyer J (1994) The “Gent” stacked filter unit (SFU) sampler for the collection of atmospheric aerosols in two size fractions: Description and instructions for installation and use (No. NAHRES--19)

  • Mahapatra PS, Sinha PR, Boopathy R, Das T, Mohanty S, Sahu SC, Gurjar BR (2018) Seasonal progression of atmospheric particulate matter over an urban coastal region in peninsular India: role of local meteorology and long-range transport. Atmos Res 199:145–158

    Article  CAS  Google Scholar 

  • Maleki H, Sorooshian A, Goudarzi G, Nikfal AH, Baneshi MM (2016) Temporal profile of PM10 and associated health effects in one of the most polluted cities of the world (Ahvaz, Iran) between 2009 and 2014. Aeolian Res 22:135–140

    Article  Google Scholar 

  • Manzoor S, Kulshrestha U (2015) Atmospheric aerosols: air quality and climate change perspectives. Curr World Environ 10(3):738–746

    Article  Google Scholar 

  • Maria SF, Russell LM, Turpin BJ, Porcja RJ (2002) FTIR measurements of functional groups and organic mass in aerosol samples over the Caribbean. Atmos Environ 36:5185–5196

    Article  CAS  Google Scholar 

  • Mariani LR, Mello W (2007) PM2.5–10, PM2.5 and associated water-soluble inorganic species at a coastal urban site in the metropolitan region of Rio de Janeiro. Atmos Environ 41:2887–2892

    Article  CAS  Google Scholar 

  • Marzouni MB, Moradi M, Zarasvandi A, Akbaripoor S, Hassanvand MS, Neisi A, Goudarzi G, Mohammadi MJ, Sheikhi R, Kermani M, Shirmardi M (2017) Health benefits of PM 10 reduction in Iran. Int j Biometeorol 61:1389–1401

    Article  Google Scholar 

  • Memhood T, Tianle Z, Ahmad I, Li X, Shen F, Akram W, Dong L (2018) Variations of PM2. 5, PM10 mass concentration and health assessment in Islamabad, Pakistan. In: IOP conference series: earth and environmental science, vol 133. IOP Publishing, p 012031

    Google Scholar 

  • Miranda J, López-Suárez A, Paredes-Gutiérrez R, González S, De Lucio OG, Andrade E, Morales JR, Avila-Sobarzo MJ (1998) A study of atmospheric aerosols from five sites in Mexico city using PIXE. Nucl Instr Meth B 136(1–4):970–974

    Article  Google Scholar 

  • Misiūnas A, Niaura G, Talaikytė Z, Eicher-Lorka O, Razumas V (2005) Infrared and Raman bands of phytantriol as markers of hydrogen bonding and interchain interaction. Spectrochimica Acta Part A: Mol Biomol Spectrosc 62(4–5):945–957

    Article  Google Scholar 

  • Mogo S, Cachorro VE, de Frutos AM (2005) Morphological, chem- ical and optical absorbing characterization of aerosols in the urban atmosphere of Valladolid. Atmos Chem Phys Eur Geosci Union 5(10):2739–2748

    Article  CAS  Google Scholar 

  • Mukherjee A, Agrawal M (2017) World air particulate matter: sources, distribution and health effects. Environ Chem Let 15:283–309

    Article  CAS  Google Scholar 

  • Murr LE, Bang JJ (2003) Electron microscope comparisons of fine and ultra-fine carbonaceous and non-carbonaceous, airborne particulates. Atmos Environ 37:4795–4806

    Article  CAS  Google Scholar 

  • Nagendra SS, Diya M, Chithra VS, Menon JS, Peter AE (2016) Characteristics of air pollutants at near and far field regions of a national highway located at an industrial complex. Transport Res D:Trans Environ 48:1–13

    Article  Google Scholar 

  • Neupane BB, Amita S, Basant G, Mahesh KJ (2020) Characterization of airborne dust samples collected from core areas of Kathmandu Valley. Heliyon 6(4):e03791

    Article  Google Scholar 

  • Ojima J (2003) Determining of crystalline silica in respirable dust samples by infrared spectrophotometry in the presence of interferences. J Occup Health 45(2):94–103

    Article  CAS  Google Scholar 

  • Osinubi OY, Gochfeld M, Kipen HM (2000) Health effects of asbestos and nonasbestos fibers. Environ Health Persp 108:665–674

    CAS  Google Scholar 

  • Öztürk F, Keleş M (2016) Wintertime chemical compositions of coarse and fine fractions of particulate matter in Bolu, Turkey. Environ Sci Pollut Res 23(14):4157–14172

    Article  Google Scholar 

  • Pachauri T, Singla V, Satsangi A, Lakhani A, Kumari KM (2013) SEM-EDX characterization of individual coarse particles in Agra, India. Aerosol Air Qual Res 13:523–536

    Article  CAS  Google Scholar 

  • Panda S, Nagendra SS (2018) Chemical and morphological characterization of respirable suspended particulate matter (PM10) and associated heath risk at a critically polluted industrial cluster. Atmos Pollut Res 9(5):791–803

    Article  CAS  Google Scholar 

  • Parmar RS, Satsangi GS, Kumari M, Lakhani A, Srivastava SS, Prakash S (2001) Study of size distribution of atmospheric aerosol at Agra. Atmos Environ 35:693–702

    Article  CAS  Google Scholar 

  • Pipal AS, Kulshrestha A, Taneja A (2011) Characterization and morphological analysis of airborne P M2.5 and P M10 in Agra located in north central India. Atmos Environ 45:3621–3630. https://doi.org/10.1016/j.atmosenv.2011.03.062

    Article  CAS  Google Scholar 

  • Pipal AS, Jan R, Satsangi PG, Tiwari S, Taneja A (2014) Study of surface morphology, elemental composition and origin of atmospheric aerosols (PM2.5 and P M10) over Agra, India. Aerosol Air Qual Res 14(6):1685–1700

    Article  CAS  Google Scholar 

  • Prabhu V, Shridhar V, Choudhary A (2019) Investigation of the source, morphology, and trace elements associated with atmospheric PM10 and human health risks due to inhalation of carcinogenic elements at Dehradun, an indo-Himalayan city. SN Appl Sci 1(5):429

    Article  CAS  Google Scholar 

  • Rahman SA, Hamzah MS, Elias MS, Salim NAA, Hashim A, Shukor S, Siong WB, Wood AK (2015) A long term study on characterization and source apportionment of particulate pollution in Klang Valley, Kuala Lumpur. Aerosol Air Qual Res 15(6):2291–2304

    Article  Google Scholar 

  • Rai P, Furger M, El Haddad I, Kumar V, Wang L, Singh A, Dixit K, Bhattu D, Petit JE, Ganguly D, Rastogi N (2020) Real-time measurement and source apportionment of elements in Delhi’s atmosphere. Sci Total Environ 742:140332

    Article  CAS  Google Scholar 

  • Ram K, Sarin MM (2010) Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India. J Aerosol Sci 41:88–98

    Article  CAS  Google Scholar 

  • Reizer M, Juda-Rezler K (2016) Explaining the high PM10 concentrations observed in Polish urban areas. Air Qual Atmos Hlth 9(5):517–531

    Article  CAS  Google Scholar 

  • Ristić M, Czakó-Nagy I, Musić S, Vértes A (2011) Spectroscopic characterization of chrysotile asbestos from different regions. J Mol Struc 993(1–3):120–126

    Article  Google Scholar 

  • Rodríguez I, Galí S, Marcos C (2009) Atmospheric inorganic aero- sol of a non-industrial city in the centre of an industrial region of the North of Spain, and its possible influence on the climate on a regional scale. Environ Geol 56(8):1551–1561

    Article  Google Scholar 

  • Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2001) Measurement of emissions from air pollution sources. 3. C1–C29 organic compounds from fireplace combustion of wood. Environ Sci Technol 35:1716–1728

    Article  CAS  Google Scholar 

  • Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2002) Measurement of emissions from air pollution sources. 5. C1–C32 organic compounds from gasoline-powered motor vehicles. Environ Sci Tech 36:1169–1180

    Article  CAS  Google Scholar 

  • See SW, Balasubramanium R (2008) Chemical characteristics of fine particles emitted from different gas cooking methods. Atmos Environ 42:8852–8862

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons

    Google Scholar 

  • Seinfeld J, Pandis S (2006) Atmospheric chemistry and physics, from air pollution to climate change, 2nd edn. Willey Interscience Publication, USA

    Google Scholar 

  • Shahid I, Chishtie F, Bulbul G, Shahid MZ, Shafique S, Lodhi A (2019) State of air quality in twin cities of Pakistan: Islamabad and Rawalpindi. Atmósfera 32(1):71–84

    Article  CAS  Google Scholar 

  • Shakya KM, Rupakheti M, Shahi A, Maskey R, Pradhan B, Panday A, Puppala SP, Lawrence M, Peltier RE (2017) Near-road sampling of PM 2. 5, BC, and fine-particle chemical components in Kathmandu Valley, Nepal. Atmos Chem Phys 17(10):6503–6516

    Article  CAS  Google Scholar 

  • Sharma SK, Mandal TK, Saxena M, Sharma A, Gautam R (2014) Source apportionment of PM10 by using positive matrix factorization at an urban site of Delhi, India. Urban Clim 10:656–670

    Article  Google Scholar 

  • Sharma A, Singh S, Kulshrestha UC (2017) Determination of urban dust signatures through chemical and mineralogical characterization of atmospheric dustfall in East Delhi (India). J Ind Geophys Union 21(2):140–147

    Google Scholar 

  • Siddiqui MA, Ahmed Z (2005) Mineralogy of the Swat kaolin deposits, Pakistan. Arab J Sci Eng 30:195–218

    CAS  Google Scholar 

  • Simao J, Agudo RE, Navarro RC (2006) Effects of particulate matter from gasoline and diesel vehicle exhaust emissions on silicate stones sulfation. Atmos Environ 40:6905–6917

    Article  CAS  Google Scholar 

  • Simonsen ME, Sønderby C, Li Z, Søgaard EG (2009) XPS and FT-IR investigation of silicate polymers. J Mater Sci 44(8):2079–2088

    Article  CAS  Google Scholar 

  • Singh R, Sharma BS (2012) Composition, seasonal variation, andsources of PM10 from world heritage site Taj Mahal, Agra. Environ Monit Assess 184:5945–5956

    Article  CAS  Google Scholar 

  • Steiner AL, Brooks SD, Deng C, Thornton DC, Pendleton MW, Bryant V (2015) Pollen as atmospheric cloud condensation nuclei. Geophys Res Lett 42(9):3596–3602

    Article  CAS  Google Scholar 

  • Tidblad J, Kreislová K, Faller M, De la Fuente D, Yates T, Verney-Carron A, Grøntoft T, Gordon A, Hans U (2017) ICP materials trends in corrosion, soiling and air pollution (1987–2014). Materials 10:969

    Article  Google Scholar 

  • Tsai YI, Kuo SC (2005) PM2.5 aerosol water content and chemical composition in a metropolitan and a coastal area in Southern Taiwan. Atmos Environ 39:4827–4839

    Article  CAS  Google Scholar 

  • Usman F, Zeb B, Alam K, Huang Z, Shah A, Ahmad I, Ullah S (2022a) In-depth analysis of physicochemical properties of particulate matter (PM10, PM2. 5 and PM1) and its characterization through FTIR, XRD and SEM–EDX techniques in the foothills of the Hindu Kush region of northern Pakistan. Atmosphere 13(1):124

    Article  CAS  Google Scholar 

  • Usman F, Zeb B, Alam K, Valipour M, Ditta A, Sorooshian A et al (2022b) Exploring the mass concentration of particulate matter and its relationship with meteorological parameters in the HinduKush range. Atmosphere 13(10):1628

    Article  Google Scholar 

  • Vempati RK, Loeppert RH, Sittertz-Bhatkar H, Burghardt RC (1990) Infrared vibrations of hematite formed froam aqueous-and dry-thermal incubation of Si-containing ferrihydrite. Clays Clay Miner 38(3):294–298

    Article  CAS  Google Scholar 

  • Wang J, Becker U (2009) Structure and carbonate orientation of vaterite (CaCO3). Am Mineral 94(2–3):380–386

    Article  CAS  Google Scholar 

  • Wang X, Zhang L, Yao Z, Ai S, Qian ZM, Wang H, BeLue R, Liu T, Xiao J, Li X, Zeng W (2018) Ambient coarse particulate pollution and mortality in three Chinese cities: association and attributable mortality burden. Sci Total Environ 628:1037–1042

    Article  Google Scholar 

  • Watson JG, Chow JC (2001) PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in northwestern Colorado during 1995. Chemosphere 43:1141–1151

    Article  CAS  Google Scholar 

  • Wu Z, Liu F, Fan W (2015) Characteristics of PM10 and PM2.5 at Mount Wutai Buddhism scenic spot, Shanxi, China. Atmosphere 6(8):1195–1210

    Article  Google Scholar 

  • Yadav R, Sahu LK, Jaaffrey SNA, Beig G (2014) Temporal variation of particulate matter (PM) and potential sources at an urban site of Udaipur in Western India. Aerosol Air Qual Res 14(6):1613–1629

    Article  CAS  Google Scholar 

  • Yadav S, Gettu N, Swain B, Kumari K, Ojha N, Gunthe SS (2020) Bioaerosol impact on crop health over India due to emerging fungal diseases (EFDs): an important missing link. Environ Sci Pollut Res 27:12802–12829

    Article  Google Scholar 

  • Yassin A, Yebesi F, Tingle R (2005) Occupational exposure to crystalline silica dust in the United States, 1988–2003. Environ Health Perspec 113(3):255–260

    Article  CAS  Google Scholar 

  • Zeb B, Alam K, Sorooshian A, Blaschke T, Ahmad I, Shahid I (2018) On the morphology and composition of particulate matter in an urban environment. Aerosol Air Qual Res 18:1431–1447

    Article  CAS  Google Scholar 

  • Zeb B, Alam K, Ditta A, Ullah S, Ali HM, Ibrahim M, Salem MZ (2022) Variation in coarse particulate matter (PM10) and its characterization at multiple locations in the semiarid region. Front Environ Sci 10:843582

    Article  Google Scholar 

  • Zhang Y, Shao M, Zhang Y, Zeng L, He L, Zhu B, Wei Y, Zhu X (2007) Source profiles of particulate organic matters emitted from cereal straw burnings. J Environ Sci 19:167–175

    Article  CAS  Google Scholar 

  • Zhang L, Chen Z, Guo J, Xu Z (2021) Distribution of heavy metals and release mechanism for respirable fine particles incineration ashes from lignite. Resour Conserv Recycl 166:105282

    Article  CAS  Google Scholar 

  • Zhou J, Xing Z, Deng J, Du K (2016) Characterizing and sourcing ambient PM2. 5 over key emission regions in China I: water-soluble ions and carbonaceous fractions. Atmos Environ 135:20–30

    Article  CAS  Google Scholar 

  • Zuśka Z, Kopcińska J, Dacewicz E, Skowera B, Wojkowski J, Ziernicka-Wojtaszek A (2019) Application of the principal component analysis (PCA) method to assess the impact of meteorological elements on concentrations of particulate matter (PM10): a case study of the mountain valley (the Sącz Basin, Poland). Sustainability 11(23):6740

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very much thankful to the Director Accelerator at the National Centre for Physics, Quaid-i-Azam University (Islamabad) for the PIXE analysis of PM10 samples. It is noted that the Pakistan Meteorological Department (Regional Office Peshawar) provided meteorological data as well as graciously supporting and facilitating the collecting of PM10 data. The authors appreciate the anonymous reviewers’ helpful criticism and improvement of the paper

Author information

Authors and Affiliations

Authors

Contributions

Bahadar Zeb: formal analysis, investigation, and writing original draft; Khan Alam: conceptualization, methodology, validation, writing—review and editing; Zhongwei Huang: formal analysis and investigation; Fatma Öztürk: methodology and formal analysis; Peng Wang: formal analysis and reviewing and editing; Lyudmila Mihaylova: reviewing and editing; Muhammad Fahim Khokhar: methodology and formal analysis; Said Munir: validation.

Corresponding author

Correspondence to Khan Alam.

Ethics declarations

Ethical approval

The authors confirm that the current research study is novel and carried out morally. All authors have given their approval to the manuscript and the manuscript does not feature any research involving either animals or humans.

Consent to participate

The authors have given their approval to take part in this study.

Consent for publication

The authors provide their permission for publication in the ESPR journal for the present study.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gerhard Lammel

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1081 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeb, B., Alam, K., Huang, Z. et al. In-depth characterization of particulate matter in a highly polluted urban environment at the foothills of Himalaya–Karakorum Region. Environ Sci Pollut Res (2024). https://doi.org/10.1007/s11356-024-33487-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11356-024-33487-4

Keywords

Navigation