Skip to main content

Advertisement

Log in

Economic complexity, greenfield investments, and energy innovation: policy implications for sustainable development goals in newly industrialised economies

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The crucial role of environmental assessment quality has been recognised by environmental and sustainable development goals in addressing climate change challenges. By focusing on the key identifier of environmental assessment, progress can be made towards overcoming climate change issues effectively. The current study considers environmental commitments under COP28 to study the role of economic complexity, greenfield investments, and energy innovation in environmental degradation in newly industrialised economies from 1995 to 2021. We employ novel panel estimations from CS-ARDL, CS-DL, AMG, and CCEMG to confirm that economic growth and greenfield investments degrade environmental quality. On the other hand, energy innovation and urbanisation improve environmental sustainability. Lastly, we confirm the EKC hypothesis for economic complexity as well. Given the reported empirical findings, the study suggests policymakers must focus on economic complexity to transform industrial sectors’ economic potential. Furthermore, foreign investment projects must be linked with environmental goals to increase renewable energy capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data and relevant materials will be available from the corresponding author.

Notes

  1. Turkey, Thailand, South Africa, Philippines, Mexico, Malaysia, Indonesia, India, China, Brazil.

  2. Hydrofluorocarbons sulphur, hexafluoride, and perfluorocarbons.

References

  • Abu Bakar NA (2019) Greenfield, mergers and acquisitions, energy consumption, and environmental performance in selected SAARC and ASEAN countries. Int J Energy Econ Policy 9(2):216–224

  • Adeel-Farooq RM, Abu Bakar NA, Olajide Raji J (2018) Green field investment and environmental performance: a case of selected nine developing countries of Asia. Environ Prog Sustain Energy 37:1085–1092

    Article  CAS  Google Scholar 

  • Adom PK, Opoku EEO, Yan IKM (2019) Energy demand–FDI nexus in Africa: do FDIs induce dichotomous paths? Energy Econ 81:928–941. https://doi.org/10.1016/j.eneco.2019.05.030

    Article  Google Scholar 

  • Ahmed Z, Asghar MM, Malik MN, Nawaz K (2020a) Moving towards a sustainable environment: the dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China. Resour Policy 67:101677

    Article  Google Scholar 

  • Ahmed Z, Zafar MW, Ali S (2020b) Linking urbanization, human capital, and the ecological footprint in G7 countries: an empirical analysis. Sustain Cities Soc 55:102064

    Article  Google Scholar 

  • Akadiri S saint, Adebayo TS, Asuzu OC et al (2022) Testing the role of economic complexity on the ecological footprint in China: a nonparametric causality-in-quantiles approach. Energy Environ 34(7):2290–2316

  • Al-Mulali U, Ozturk I (2015) The effect of energy consumption, urbanization, trade openness, industrial output, and the political stability on the environmental degradation in the MENA (Middle East and North African) region. Energy 84:382–389

    Article  Google Scholar 

  • Al-Mulali U, Weng-Wai C, Sheau-Ting L, Mohammed AH (2015) Investigating the environmental Kuznets curve (EKC) hypothesis by utilizing the ecological footprint as an indicator of environmental degradation. Ecol Indic 48:315–323

    Article  Google Scholar 

  • Aluko OA, Opoku EEO, Acheampong AO (2022) Economic complexity and environmental degradation: evidence from OECD countries. Bus Strategy Environ n/a.https://doi.org/10.1002/bse.3269

  • Álvarez-Herránz A, Balsalobre D, Cantos JM, Shahbaz M (2017) Energy innovations-GHG emissions nexus: fresh empirical evidence from OECD countries. Energy Policy 101:90–100. https://doi.org/10.1016/j.enpol.2016.11.030

    Article  Google Scholar 

  • Baek J (2016) A new look at the FDI–income–energy–environment nexus: dynamic panel data analysis of ASEAN. Energy Policy 91:22–27

    Article  Google Scholar 

  • Bashir MF (2022) Discovering the evolution of Pollution Haven Hypothesis: a literature review and future research agenda. Environ Sci Pollut Res 29:48210–48232. https://doi.org/10.1007/s11356-022-20782-1

    Article  Google Scholar 

  • Bashir MF, Ma B, Shahbaz M, Jiao Z (2020) The nexus between environmental tax and carbon emissions with the roles of environmental technology and financial development. PLoS One 15:e0242412

    Article  CAS  Google Scholar 

  • Bashir MF, MA B, Hussain HI et al (2022a) Evaluating environmental commitments to COP21 and the role of economic complexity, renewable energy, financial development, urbanization, and energy innovation: empirical evidence from the RCEP countries. Renew Energy 184:541–550. https://doi.org/10.1016/j.renene.2021.11.102

    Article  Google Scholar 

  • Bashir MF, Sadiq M, Talbi B et al (2022b) An outlook on the development of renewable energy, policy measures to reshape the current energy mix, and how to achieve sustainable economic growth in the post COVID-19 era. Environ Sci Pollut Res 29:43636–43647. https://doi.org/10.1007/s11356-022-20010-w

    Article  Google Scholar 

  • Bashir MF, Pan Y, Shahbaz M, Ghosh S (2023) How energy transition and environmental innovation ensure environmental sustainability? Contextual evidence from Top-10 manufacturing countries. Renew Energy 204:697–709. https://doi.org/10.1016/j.renene.2023.01.049

    Article  Google Scholar 

  • Bekun FV, Alola AA, Sarkodie SA (2019) Toward a sustainable environment: nexus between CO2 emissions, resource rent, renewable and nonrenewable energy in 16-EU countries. Sci Total Environ 657:1023–1029

    Article  CAS  Google Scholar 

  • Bilgili F, Kuşkaya S, Khan M et al (2021) The roles of economic growth and health expenditure on CO2 emissions in selected Asian countries: a quantile regression model approach. Environ Sci Pollut Res 28:44949–44972

    Article  CAS  Google Scholar 

  • Bukhari WAA, Pervaiz A, Zafar M et al (2023) Role of renewable and non-renewable energy consumption in environmental quality and their subsequent effects on average temperature: an assessment of sustainable development goals in South Korea. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-30493-w

    Article  Google Scholar 

  • Can M, Gozgor G (2017) The impact of economic complexity on carbon emissions: evidence from France. Environ Sci Pollut Res 24:16364–16370

    Article  Google Scholar 

  • Charfeddine L (2017) The impact of energy consumption and economic development on ecological footprint and CO2 emissions: evidence from a Markov switching equilibrium correction model. Energy Econ 65:355–374

    Article  Google Scholar 

  • Charfeddine L, Mrabet Z (2017) The impact of economic development and social-political factors on ecological footprint: a panel data analysis for 15 MENA countries. Renew Sustain Energy Rev 76:138–154

    Article  Google Scholar 

  • Chu LK (2021) Economic structure and environmental Kuznets curve hypothesis: new evidence from economic complexity. Appl Econ Lett 28:612–616

    Article  Google Scholar 

  • Chu LK, Le NTM (2022) Environmental quality and the role of economic policy uncertainty, economic complexity, renewable energy, and energy intensity: the case of G7 countries. Environ Sci Pollut Res 29:2866–2882

    Article  Google Scholar 

  • Danish, Wang Z (2019) Investigation of the ecological footprint’s driving factors: what we learn from the experience of emerging economies. Sustain Cities Soc 49:101626

  • Destek MA, Manga M (2021) Technological innovation, financialization, and ecological footprint: evidence from BEM economies. Environ Sci Pollut Res 28:21991–22001

    Article  Google Scholar 

  • Dogan E, Ulucak R, Kocak E, Isik C (2020) The use of ecological footprint in estimating the environmental Kuznets curve hypothesis for BRICST by considering cross-section dependence and heterogeneity. Sci Total Environ 723:138063

    Article  CAS  Google Scholar 

  • Doğan B, Balsalobre-Lorente D, Nasir MA (2020) European commitment to COP21 and the role of energy consumption, FDI, trade and economic complexity in sustaining economic growth. J Environ Manag 273:111146

    Article  Google Scholar 

  • Doğan B, Driha OM, Balsalobre Lorente D, Shahzad U (2021) The mitigating effects of economic complexity and renewable energy on carbon emissions in developed countries. Sustain Dev 29:1–12

    Article  Google Scholar 

  • Doytch N (2020) The impact of foreign direct investment on the ecological footprints of nations. Environ Sustain Indic 8:100085

    Google Scholar 

  • Doytch N, Ashraf A (2022) The ecological footprints of greenfield FDI and cross-border M&A Sales. Environ Model Assess 27:935–951

    Article  Google Scholar 

  • Doytch N, Narayan S (2016) Does FDI influence renewable energy consumption? An analysis of sectoral FDI impact on renewable and non-renewable industrial energy consumption. Energy Econ 54:291–301

    Article  Google Scholar 

  • Dumitrescu EI, Hurlin C (2012) Testing for Granger non-causality in heterogeneous panels. Econ Model 29:1450–1460. https://doi.org/10.1016/j.econmod.2012.02.014

    Article  Google Scholar 

  • García-Quevedo J, Jové-Llopis E (2021) Environmental policies and energy efficiency investments. An industry-level analysis. Energy Policy 156:112461

    Article  Google Scholar 

  • Gormus S, Aydin M (2020) Revisiting the environmental Kuznets curve hypothesis using innovation: new evidence from the top 10 innovative economies. Environ Sci Pollut Res 27:27904–27913

    Article  Google Scholar 

  • Hassan ST, Wang P, Khan I, Zhu B (2023) The impact of economic complexity, technology advancements, and nuclear energy consumption on the ecological footprint of the USA: Towards circular economy initiatives. Gondwana Res 113:237–246

    Article  Google Scholar 

  • He K, Ramzan M, Awosusi AA et al (2021) Does globalization moderate the effect of economic complexity on CO2 emissions? Evidence from the top 10 energy transition economies. Front Environ Sci 9:778088

    Article  Google Scholar 

  • IEA (2020) World energy outlook 2020. International Energy Agency: Paris, France, p 2050

  • Ke H, Yang W, Liu X, Fan F (2020) Does innovation efficiency suppress the ecological footprint? Empirical evidence from 280 Chinese cities. Int J Environ Res Public Health 17:6826

    Article  Google Scholar 

  • Khezri M, Heshmati A, Khodaei M (2022) Environmental implications of economic complexity and its role in determining how renewable energies affect CO2 emissions. Appl Energy 306:117948

    Article  CAS  Google Scholar 

  • Kihombo S, Ahmed Z, Chen S et al (2021) Linking financial development, economic growth, and ecological footprint: what is the role of technological innovation? Environ Sci Pollut Res 28:61235–61245

    Article  Google Scholar 

  • Kosifakis G, Kampas A, Papadas CT (2020) Economic complexity and the environment: some estimates on their links. Int J Sustain Agric Manag Inform 6:261–271

    Google Scholar 

  • Lee C-C, Chen M-P, Wu W (2022) The criticality of tourism development, economic complexity, and country security on ecological footprint. Environ Sci Pollut Res 29:37004–37040

    Article  Google Scholar 

  • Leitão NC, Balsalobre-Lorente D, Cantos-Cantos JM (2021) The impact of renewable energy and economic complexity on carbon emissions in BRICS countries under the EKC scheme. Energies (basel) 14:4908

    Article  Google Scholar 

  • Li S, Sun H, Sharif A et al (2024) Economic complexity, natural resource abundance and education: implications for sustainable development in BRICST economies. Resour Policy 89:104572. https://doi.org/10.1016/j.resourpol.2023.104572

    Article  Google Scholar 

  • Liang W, Yang M (2019) Urbanization, economic growth and environmental pollution: evidence from China. Sustai Comput: Inform Syst 21:1–9. https://doi.org/10.1016/j.suscom.2018.11.007

    Article  Google Scholar 

  • Long X, Ji X, Ulgiati S (2017) Is urbanization eco-friendly? An energy and land use cross-country analysis. Energy Policy 100:387–396

    Article  Google Scholar 

  • Luo W, Bai H, Jing Q et al (2018) Urbanization-induced ecological degradation in Midwestern China: an analysis based on an improved ecological footprint model. Resour Conserv Recycl 137:113–125

    Article  Google Scholar 

  • Ma B, Lin S, Bashir MF et al (2023a) Revisiting the role of firm-level carbon disclosure in sustainable development goals: research agenda and policy implications. Gondwana Res 117:230–242. https://doi.org/10.1016/j.gr.2023.02.002

    Article  CAS  Google Scholar 

  • Ma B, Sharif A, Bashir M, Bashir MF (2023b) The dynamic influence of energy consumption, fiscal policy and green innovation on environmental degradation in BRICST economies. Energy Policy 183:113823. https://doi.org/10.1016/j.enpol.2023.113823

    Article  Google Scholar 

  • Mahmood N, Zhao Y, Lou Q, Geng J (2022) Role of environmental regulations and eco-innovation in energy structure transition for green growth: evidence from OECD. Technol Forecast Soc Chang 183:121890

    Article  Google Scholar 

  • Majeed MT, Mazhar M, Samreen I, Tauqir A (2022) Economic complexities and environmental degradation: evidence from OECD countries. Environ Dev Sustain 24:5846–5866

    Article  Google Scholar 

  • Martins JM, Adebayo TS, Mata MN et al (2021) Modeling the relationship between economic complexity and environmental degradation: evidence from top seven economic complexity countries. Front Environ Sci 9(2021):744781

  • Mealy P, Teytelboym A (2022) Economic complexity and the green economy. Res Policy 51:103948

    Article  Google Scholar 

  • Mensah CN, Long X, Boamah KB et al (2018) The effect of innovation on CO2 emissions of OCED countries from 1990 to 2014. Environ Sci Pollut Res 25:29678–29698

    Article  CAS  Google Scholar 

  • Mrabet Z, AlSamara M, Hezam Jarallah S (2017) The impact of economic development on environmental degradation in Qatar. Environ Ecol Stat 24:7–38

    Article  CAS  Google Scholar 

  • Nathaniel S, Khan SAR (2020) The nexus between urbanization, renewable energy, trade, and ecological footprint in ASEAN countries. J Clean Prod 272:122709

    Article  Google Scholar 

  • Neagu O (2021) Economic complexity: a new challenge for the environment. Earth 2:1059–1076

    Article  Google Scholar 

  • Okamoto S (2013) Impacts of growth of a service economy on CO 2 emissions: Japan’s case. J Econ Struct 2:1–21

    Article  Google Scholar 

  • Pesaran MH (2007) A simple panel unit root test in the presence of cross-section dependence. J Appl Economet 22:265–312. https://doi.org/10.1002/jae.951

    Article  Google Scholar 

  • Ponce P, Álvarez-García J, Álvarez V, Irfan M (2022) Analysing the influence of foreign direct investment and urbanization on the development of private financial system and its ecological footprint. Environ Sci Pollut Res 30(4):9624–9641

  • Rafei M, Esmaeili P, Balsalobre-Lorente D (2022) A step towards environmental mitigation: How do economic complexity and natural resources matter? Focusing on different institutional quality level countries. Resour Policy 78:102848

    Article  Google Scholar 

  • Sadiq M, Wen F, Bashir MF, Amin A (2022) Does nuclear energy consumption contribute to human development? Modeling the effects of public debt and trade globalization in an OECD heterogeneous panel. J Clean Prod 375:133965. https://doi.org/10.1016/j.jclepro.2022.133965

    Article  Google Scholar 

  • Shahbaz M, Balsalobre D, Shahzad SJH (2019) The influencing factors of CO 2 emissions and the role of biomass energy consumption: statistical experience from G-7 countries. Environ Model Assess 24:143–161

    Article  Google Scholar 

  • Shahbaz M, Sinha A, Raghutla C, Vo XV (2022) Decomposing scale and technique effects of financial development and foreign direct investment on renewable energy consumption. Energy 238:121758

    Article  Google Scholar 

  • Swart J, Brinkmann L (2020) Economic complexity and the environment: evidence from Brazil. In: Universities and sustainable communities: meeting the goals of the agenda 2030. pp 3–45. Springer International Publishing, 2020

  • Wang Y, Kang L, Wu X, Xiao Y (2013) Estimating the environmental Kuznets curve for ecological footprint at the global level: a spatial econometric approach. Ecol Indic 34:15–21

    Article  Google Scholar 

  • World Bank (2022) World development indicators 2022. The World Bank 2022

  • Yahya F, Rafiq M (2020) Brownfield, greenfield, and renewable energy consumption: moderating role of effective governance. Energy Environ 31:405–423

    Article  Google Scholar 

  • Yilanci V, Pata UK (2020) Investigating the EKC hypothesis for China: the role of economic complexity on ecological footprint. Environ Sci Pollut Res 27:32683–32694

    Article  Google Scholar 

  • Yu Y, Jiang T, Li S et al (2020) Energy-related CO2 emissions and structural emissions’ reduction in China’s agriculture: an input–output perspective. J Clean Prod 276:124169

    Article  CAS  Google Scholar 

Download references

Funding

Moreover, we acknowledge funding support from Project (Grant No:2023JJ40061) supported by Natural Science Foundation of Hunan Province.

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Farhan Bashir: conceptualization, methodology, writing draft, writing—revision; Roula Inglesi-Lotz: data curation, writing draft, methodology, data analysis; Ummara Razi: writing draft; Luqman Shahzad: data curation; methodology.

Corresponding author

Correspondence to Muhammad Farhan Bashir.

Ethics declarations

Ethics approval

N/A.

Consent to participate

N/A.

Consent for publication

N/A.

Competing interests

The author declares no competing interest.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, M.F., Inglesi-Lotz, R., Razi, U. et al. Economic complexity, greenfield investments, and energy innovation: policy implications for sustainable development goals in newly industrialised economies. Environ Sci Pollut Res 31, 36013–36027 (2024). https://doi.org/10.1007/s11356-024-33433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-33433-4

Keywords

Navigation