Skip to main content

Advertisement

Log in

Modelling fuel oil transformation on geographically different seacoasts and assessing their self-cleansing capacity

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present paper considers the results of long-term (up to 17 years) in situ and laboratory research carried out on oiled French, Spanish, and Russian seacoasts. The objective of this research is to quantify the influence of geographical factors on the rates of natural transformation of the heavy fuel oil stranded ashore and to develop an empirical statistical model in order to evaluate the self-cleansing capacity of the coastal environment. In a number of field campaigns, 363 samples of weathered oil slicks and tar balls have been collected and analysed with the use of thin-layer chromatography combined with optical and gravimetric methods. The results obtained have been subjected to multiple nonlinear regression analyses. It has been shown that heavy fuel oil natural attenuation is more active in continental or estuarine environments influenced by nutrient-rich freshwater runoff and characterised by a higher number of sunny days, solar irradiation, and large temperature fluctuations. On the oceanic coasts, especially in sectors with low hydrodynamic energy, these processes take more time. The resulting model allows for the identification and mapping of the most vulnerable seacoasts, characterised by a low potential to degrade oil pollution. This information may be used in the contingency plans in order to optimise clean-up techniques and associated costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The dataset used in this research is available from the corresponding author on request.

References

  • Albaigés J, Bernabeu A, Castanedo S, Jiménez N, Morales-Caselles C, Puente A, Viñas L (2014) The prestige oil spill. In: Handbook of oil spill science and technology. Ed. Fingas M. Chapter: 22, Wiley, https://doi.org/10.1002/9781118989982.ch22

  • Albaigés J, Bayona JM, Radović JR (2016) Photochemical effects on oil spill fingerprinting. In: Stout SA, Wang Z (eds) Standard handbook oil spill environmental forensics, Second Edition. Academic Press, pp 917–959. https://doi.org/10.1016/B978-0-12-803832-1.00020-9

  • Atlas R, Bragg J (2007) Assessing the long-term weathering of petroleum on shorelines: uses of conserved components for calibrating loss and bioremediation potential. In Proc 30 Arctic Mar Oilspill Program AMOP Tech Semin 1:939

    Google Scholar 

  • Bedritskii AI, Asmus VV, Krovotyntsev VA, Lavrova OY, Ostrovskii AG (2007) Satellite monitoring of pollution in the Russian sector of the Azov and Black seas in 2003–2007. Russ Meteorol Hydrol 32(11):669–674

    Article  Google Scholar 

  • Bernabeu AM, Rey D, Rubio B, Vilas F, Domínguez C, Bayona JM, Albaigés J (2009) Assessment of cleanup needs of oiled sandy beaches: lessons from the Prestige oil spill. Environ Sci Technol 43(7):2470–2475. https://doi.org/10.1021/es803209h

    Article  CAS  Google Scholar 

  • Bociu I, Shin B, Wells WB et al (2019) Decomposition of sediment-oil-agglomerates in a Gulf of Mexico sandy beach, 36 Sci. Rep 9:10071

    Google Scholar 

  • Capellos C, Bielski BHJ (1972) Kinetic systems: mathematical description of chemical kinetics in solution. Anamaya Publishers, New Delhi, Springer, New York, p 138

    Google Scholar 

  • Carmona ASL, Gherardi DFM, Tessler MG et al (2012) Environment sensitivity mapping and vulnerability modeling for oil spill response along the Sao Paulo state coastline content in a trusted digital archive. J Coastal Res 39:1455–1458

    Google Scholar 

  • Caspian Pipeline Consortium (2022) On the assessment of the amount of crude oil spilled into the Black Sea. https://www.cpc.ru/EN/press/releases/2022/Pages/20220228.aspx. Accessed 5 Jan 2024

  • Charraudeau R, Vandermeirsch F (2006) Bay of Biscay’s temperature and salinity climatology. Brest, IFREMER, p 6

  • Chever F, Jezequel R, Guyomarch J (2018) The Erika oil spill: 10-years monitoring program and effects of the weathering processes. Chapter 18. In: Oil Spill Environmental Forensics Case Studies. Elsevier Inc., p 387–400

  • Colombo JC, Barreda A, Bilos C, Cappelletti N, Migoya MC, Skorupka C (2005) Oil spill in the Rio de la Plata estuary, Argentina: 2-hydrocarbon disappearance rates in sediments and soils. Environ Pollut 134:267–276

    Article  CAS  Google Scholar 

  • Depellegrin D, Pereira P (2016) Assessing oil spill sensitivity in unsheltered coastal environments: a case study for Lithuanian-Russian coasts. South-Eastern Baltic Sea Mar Pollut Bull 102(1):44–57

    Article  CAS  Google Scholar 

  • Dubourg AB (2000) Quand un oiseau perd la vie, l’homme y laisse des plumes ! L’oiseau 1:3 (in French)

    Google Scholar 

  • Elechi O, Yelebe ZR, Oruabena B, Nelson SE (2018) Comparative study of degradation kinetics of crude oil contaminated mangrove and clay soils. Int J Adv Sci Res Eng 4(11):113–124

    Google Scholar 

  • Ezra S, Feinstein S, Pelly I, Bauman D, Miloslavsky I (2000) Weathering of fuel oil spill on the east Mediterranean coast, Ashdod. Israel Org Geochem 31:1733–1741

    Article  CAS  Google Scholar 

  • Fabri L, Kuznetsov A, Rollo N, Fattal P (2023) Natural degradation of spilt fuel oil on seacoasts: modelling, mapping, and spatial analysis. Reg Stud Mar Sci 58:102782. https://doi.org/10.1016/j.rsma.2022.102782

    Article  Google Scholar 

  • Fafet A, Da Silva M, Haeseler F (2004) Analytical characterization and comparison of Prestige and Erika's fuel oil No. 6. Interspill, Trondheim, presentation No. 462

  • Fan T, Wang J, Buckley JS (2002) Evaluating crude oils by SARA analysis. SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, April 2002. https://doi.org/10.2118/75228-MS

  • Fattal P (2004) Pollutions of Prestige and of Erika: different issues of two crises. South-West Eur Rev 17:61–77

    Google Scholar 

  • Fattal P, Fichaut B (2002) Marée noire de l’Erika. Enjeux et problèmes relatifs au nettoyage des plages. Ann De Geogr 623:3–24 (in French)

    Article  Google Scholar 

  • Fattal P, Maanan M, Tillier I, Rollo N, Robin M, Pottier P (2010) Coastal vulnerability to oil spill pollution: the case of Noirmoutier Island (France). J Coast Res 26(5):879–887

    Article  Google Scholar 

  • Fedorov YuA, Stradomskaya AG, Kuznetsov AN (2006) Regularities in the transformation of oil pollution in watercourses based on long-term observational data. Water Resour 33(3):300–309. https://doi.org/10.1134/S0097807806030079

    Article  CAS  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • GEBCO (General Bathymetric Chart of the Oceans) (2023) IHO. UNESCO. https://www.gebco.net. Accessed 15 May 2023

  • Geng X, An C, Lee K, Boufadel MC (2022) Modeling oil biodegradation and bioremediation within beaches. Curr Opin Chem Eng 35:100751. https://doi.org/10.1016/j.coche.2021.100751

    Article  Google Scholar 

  • Ghanbari M, Arabi M, Obeysekera J, Sweet W (2019) A coherent statistical model for coastal flood frequency analysis under nonstationary sea level conditions. Earths’ Future 7(2):162–177. https://doi.org/10.1029/2018EF001089

    Article  Google Scholar 

  • Glattke T, Chacón-Patiño ML, Marshall AG, Rodgers RP (2020) Molecular characterization of photochemically produced asphaltenes via photooxidation of deasphalted crude oils. Energy Fuels 34(11):14419–14428. https://doi.org/10.1021/acs.energyfuels.0c02654

    Article  CAS  Google Scholar 

  • Glattke TJ, Chacón-Patiño ML, Marshall AG, Rodgers RP (2022) Maltene and asphaltene contributions to the formation of water-soluble emerging contaminants from photooxidation of paving materials. Energy Fuels 36(21):13060–13072. https://doi.org/10.1021/acs.energyfuels.2c02936

    Article  CAS  Google Scholar 

  • Gohin F, Saulquin B, Bryère P (2020) Atlas de la Température, de la concentration en Chlorophylle et de la Turbidité de surface du plateau continental français et de ses abords de l’Ouest européen. Technical Report. IFREMER, p 53 (in French)

  • GOST 10585–2013 (2019) Interstate standard. Petroleum fuel. Mazut. Specification. Moscow, Federal Agency for Technical Regulation and Metrology, p 116 (in Russian)

  • Gros J, Reddy CM, Aeppli C, Nelson RK, Carmichael CA, Arey JS (2014) Resolving biodegradation patterns of persistent saturated hydrocarbons in weathered oil samples from the Deepwater horizon disaster. Environ Sci Technol 48(3):1628–1637

    Article  CAS  Google Scholar 

  • Gundlach ER, Hayes MO (1978) Vulnerability of coastal environments to oil spill impacts. Mar Technol Soc J 12(4):18–27

    Google Scholar 

  • Haselmann K et al (1988) The WAM model — a third generation ocean wave prediction model. J Phys Oceanogr 18:1775–1810

    Article  Google Scholar 

  • ISO 8217:2017 (2017) International standard. Petroleum products. Fuels (class F). Specifications of marine fuels

  • Kankara RS, Arockiaraj S, Prabhu K (2016) Environmental sensitivity mapping and risk assessment for oil spill along the Chennai Coast in India. Mar Pollut Bull 106(1–2):95–103

    Article  CAS  Google Scholar 

  • Klenkin AA, Agapov SA (2011) Dynamics of oil product distributions in water and bottom sediments of the Sea of Azov and the Black Sea after ship accidents in the Kerch Strait. Water Resour 38(2):220–228

    Article  CAS  Google Scholar 

  • Ko MS, Kwon D, Yang JS et al (2014) Identifying type of refined petroleum products in environmental media: thin-layer chromatography (TLC) as a quick methodology. Water Air Soil Pollut 225:2149. https://doi.org/10.1007/s11270-014-2149-9

    Article  CAS  Google Scholar 

  • Kochergin AT, Kriskevich LV (2021) Chlorophyll-α in the Azov Sea according to the data of remote sensing of the Earth in 2006–2019. Aquat Bioresources Environ 4(2):7–17

    Google Scholar 

  • Korshenko A (ed.) et al (2008–2022) Marine water pollution. Annual Reports 2007–2021. Moscow, State Oceanographic Institute (in Russian)

  • Kuznetsov A, Fedorov Yu (2020) Oil pollution of the coastal zone of the Black Sea in an area of intensive navigation (Novorossiysk Bay, Kerch Strait) and the dynamics of natural attenuation process. In: The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2020_503

  • Kuznetsov AN, Fedorov Yu A, Fattal P (2012) Impacts of the 2007 Kertch Oil Spill. Mediterranée 119(2):91–99. https://doi.org/10.4000/mediterranee.6567 (in French)

  • Kuznetsov A, Fedorov Yu, Fattal P, Ebner F (2016) Self-cleaning capacity of seacoasts in case of oil pollution. Proceedings of International Conference “Managing risks to coastal regions and communities in a changing world”, Academus Publishing. https://doi.org/10.31519/conferencearticle_5b1b9441ab8c21.53053195

  • Lavrova O.Yu, Mityagina MI, Kostianoy AG, Strochkov M (2017) Satellite monitoring of the Black Sea ecological risk areas. Ecologica Montenegrina 14:1–13. https://doi.org/10.37828/em.2017.14.1

  • Lavrova OY, Mityagina MI (2013) Satellite monitoring of oil slicks on the Black Sea surface. Izv Atmos Ocean Phys 49:897–912. https://doi.org/10.1134/S0001433813090107

    Article  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    Article  CAS  Google Scholar 

  • Li H, Zhao Q, Boufadel MC, Venosa AD (2007) A universal nutrient application strategy for the bioremediation of oil-polluted beaches. Mar Pollut Bull 54:1146–1161

    Article  CAS  Google Scholar 

  • Lokhov AS, Gubaidullin MG, Korobov VB, Tutygin AG (2020) Geographical and ecological land zoning of onshore oil pipeline location by level of hazard to environment from emergency oil spills in Arctic region. Theor Appl Ecol 2020(4):43–48

    Article  Google Scholar 

  • Lu Y-Y, Liu F, Zhao Y-G, Song X-D, Zhang G-L (2019) An integrated method of selecting environmental covariates for predictive soil depth mapping. J Integr Agric 18(2):301–315. https://doi.org/10.1016/S2095-3119(18)61936-7

    Article  Google Scholar 

  • Mahmoudi N, Porter TM, Zimmerman AR, Fulthorpe RR, Kasozi GN, Silliman BR, Slater GF (2013) Rapid degradation of Deepwater Horizon spilled oil by indigenous microbial communities in Louisiana saltmarsh sediments. Environ Sci Technol 47:13303–13312

    Article  CAS  Google Scholar 

  • Marcos MJ, Agüero A, Garcia-Olivares A, de Pablos JL (2004) Assessment of the behaviour of oil in the tanks of the “Prestige” in the Atlantic Deep Sea. Sci Mar 68(3):307–315

    Article  Google Scholar 

  • Matishov GG, Inzhebeikin YI, Savitskii RM (2013) The environmental and biotic impact of the oil spill in Kerch Strait in November 2007. Water Resour 40(3):271–284. https://doi.org/10.1134/S0097807813020048

    Article  CAS  Google Scholar 

  • McKenna AM, Nelson RK, Reddy CM, Savory JJ, Kaise NK, Fitzsimmons JE, Marshall AG, Rodgers RP (2013) Expansion of the analytical window for oil spill characterization by ultrahigh resolution mass spectrometry: beyond gas chromatography. Environ Sci Technol 47(13):7530–7539. https://doi.org/10.1021/es305284t

    Article  CAS  Google Scholar 

  • Minaudo C, Meybeck M, Moatar F, Gassama N, Curie E (2015) Eutrophication mitigation in rivers: 30 years of trends in spatial and seasonal patterns of biogeochemistry of the Loire River, 1980–2012). Biogeosciences 12:2549–2563

    Article  Google Scholar 

  • Munilla I, Arcos JM, Oro D, Alvarez D, Leyenda PM, Velando A (2011) Mass mortality of seabirds in the aftermath of the Prestige oil spill. Ecosphere USA 2(7):art83. https://doi.org/10.1890/ES11-00020.1,10.1890/ES11-00020.1

    Article  Google Scholar 

  • Natter M, Keevan J, Wang Y, Keimowitz AR, Okeke BC, Son A, Lee MK (2012) Level and degradation of Deepwater Horizon spilled oil in coastal marsh sediments and pore-water. Environ Sci Technol 46:5744–5755

    Article  CAS  Google Scholar 

  • Nemirovskaya IA, Zavialov PO, Khramtsova AV (2022) Hydrocarbon pollution in the waters and sediments of the Kerch Strait. Mar Pollut Bull 2022(180):113760

    Article  Google Scholar 

  • Newell CJ, Rifai HS, Wilson JT, Connor JA, Aziz JA, Suarez MP (2002) Calculation and use of first-order rate constants for monitored natural attenuation studies. U.S. Environmental Protection Agency. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=10004674.txt. Accessed 25 May 2023

  • Nikanorov AM, Stradomskaya AG (2009) Identification of petroleum pollution sources of water bodies and streams. Water Resour 36(2):163–169. https://doi.org/10.1134/S0097807809020055

    Article  CAS  Google Scholar 

  • Nixon Z, Michel J, Hayes MO, Irvine GV, Short J (2013) Geomorphic factors related to the persistence of subsurface oil from the Exxon Valdez oil spill. J Coastal Res 69:115–126

    Article  Google Scholar 

  • NOAA (2023) NOAA international exchange data. http://rp5.ru. Accessed 25 May 2023

  • Overton EB, Wade TL, Radović JR, Meyer BM, Miles MS, Larter SR (2016) Chemical composition of Macondo and other crude oils and compositional alterations during oil spills. Oceanography 29(3):50–63

    Article  Google Scholar 

  • Owens EH, Mauseth GS, Martin CA, Lamarche A, Brown J (2002) Tar ball frequency data and analytical results from a long-term beach monitoring program. Mar Pollut Bull 44(8):770–780. https://doi.org/10.1016/S0025-326X(02)00057-7

    Article  CAS  Google Scholar 

  • Pavlenko LF, Korpakova IG, Skrypnik GV, Larin AA (2008) Characteristic of pollution of the territories of the Kerch strait and adjacent areas of the Sea of Azov and the Black Sea. In: Accident of Kerch: Consequences for the Water Ecosystems. Rostov-on-Don, Azov Fishery Research Institute, pp 58–105 (in Russian)

  • Péquin B, Qinhong C, Lee K, Greer CW (2022) Natural attenuation of oil in marine environments: a review. Mar Pollut Bull 176:113464. https://doi.org/10.1016/j.marpolbul.2022.113464

    Article  CAS  Google Scholar 

  • Poncet F (2009) Donges Refinery: a leak from a canalization. Bull Inf CEDRE 25:4–11

    Google Scholar 

  • Poole CF (2023) Instrument platforms for high-performance thin-layer chromatography. In: Poole CF (ed) Instrumental thin-layer chromatography, Second Edition. Handbooks in Separation Science, Chapter 5. Elsevier, p 111–142. https://doi.org/10.1016/B978-0-323-99970-0.00002-8

  • Prince RC, Garrett RM, Bare RE, Grossman MJ, Townsend T, Suflita JM, Lee K, Owens EH, Sergy GA, Braddock JF, Lindstrom JE, Lessard RR (2003) The roles of photooxidation and biodegradation in long-term weathering of crude and heavy fuel oils. Spill Sci Technol Bull 8(2):145–156

    Article  CAS  Google Scholar 

  • Radović JR, Romero IC, Oldenburg TBP, Larter SR, Tunnell JW (2020) 40 years of weathering of coastal oil residues in the Southern Gulf of Mexico. In: Murawski S. et al. (eds) Deep Oil Spills. Springer, Cham. https://doi.org/10.1007/978-3-030-11605-7_20

  • Ratmaya W, Soudant D, Salmon-Monviola J, Plus M, Cochennec-Laureau N, Goubert E, Andrieux-Loyer F, Barillé L, Souchu P (2019) Reduced phosphorus loads from the Loire and Vilaine rivers were accompanied by increasing eutrophication in the Vilaine Bay (south Brittany, France). Biogeosciences 16:1361–1380

    Article  CAS  Google Scholar 

  • Romero IC, Chanton JP, Roseheim BE, Radović JR, Schwing PT, Hollander DJ, Larter SR, Oldenburg TBP (2020) Long-term preservation of oil spill events in sediments: the case for the Deepwater Horizon oil spill in the Northern Gulf of Mexico. In: Murawski S. et al. Deep Oil Spills. Springer, Cham. https://doi.org/10.1007/978-3-030-11605-7_17

  • ROSHYDROMET (2018) Guidance for the calculation of the marine wind waves’ regime characteristics. Moscow, Russian Federal Service for Hydrometeorology and Environmental Monitoring (ROSHYDROMET), p 60 (in Russian)

  • Rousseau C, Girin M (2004) Accident du Prestige: le volet français. Bull Inf CEDRE, France 19:4–16 (in French)

    Google Scholar 

  • Rousseau C (2003) Accident du Prestige, 13 novembre 2002. Cap Finisterre (Galice). Les premières opérations. Bulletin d'information du CEDRE. 2003(18):4‒16 (in French)

  • Ruddy BM, Huettel M, Kostka JE, Lobodin VV, Bythell BJ, McKenna AM, Aeppli C, Reddy CM, Nelson RK, Marshall AG, Rodgers RP (2014) Targeted petroleomics: analytical investigation of Macondo well oil oxidation products from Pensacola Beach. Energy Fuels 28(6):4043–4050. https://doi.org/10.1021/ef500427n

    Article  CAS  Google Scholar 

  • Saner WA, Fitzgerald GE (1976) Thin-layer chromatographic technique for identification of waterborne petroleum oils. Environ Sci Technol 10(9):893–897. https://doi.org/10.1021/es60120a005

    Article  CAS  Google Scholar 

  • Saprygin VV, Berdnikov SV, Kulygin VV, Dashkevich LV, Mestetskiy LM (2018) Spatial distribution and seasonal dynamics of the chlorophyll-a concentration in the Sea of Azov based on MERIS images. Oceanology 58(5):689–699

    Article  CAS  Google Scholar 

  • Shyam B, Phukan R, Das C (2023) Bioremediation of oil spill cleanup: case studies of two major oil spills. In: Deka D., Majumder S.K., Purkait M.K. (eds) Sustainable Environment. NERC 2022. Springer, Singapore. https://doi.org/10.1007/978-981-19-8464-8_7

  • SIMAR (2021) Banco de datos oceanograficos de puertos del estado. Gobierno de Espana, Ministerio de Fomento, modeled data obtained from hindcasts and the analysis of the forecast system (in Spanish). http://www.puertos.es/en-us/oceanografia/Pages/portus.aspx. Accessed 25 May 2023

  • Sourisseau M, Rogé M, Lefèbvre Al, Lefèvre D, Fichaut M, Cariou T (2012) Caractéristiques et état écologique. Golfe de Gascogne. État physique et chimique. Caractéristiques chimiques. Répartition spatio-temporelle des nutriments. Brest, IFREMER, p 14 (in French)

  • Spaulding ML (2017) State of the art review and future directions in oil spill modeling. Mar Pollut Bull 115(1–2):7–19

    Article  CAS  Google Scholar 

  • Sweet WV, Park J (2014) From the extreme to the mean: acceleration and tipping points of coastal inundation from sea level rise. Earth’s Future 2(12):579–600. https://doi.org/10.1002/2014EF000272

    Article  Google Scholar 

  • SYVEL (2011) Système de Veille dans l’Estuaire de la Loire. DREAL Pays de la Loire, SHOM, GIP Loire Estuary Bulletin, 2, p 10 (in French)

  • Tanford C (1961) Physical chemistry of macromolecules. John Wiley & Sons Inc., New York, p 717

    Google Scholar 

  • Taylor E, Owens E, Lee K, An C, Chen Z (2021) A review of numerical models for oil penetration, retention, and attenuation on shorelines. J Environ Inform Lett 5(1):27–38

    Google Scholar 

  • Tiercelin C, Marchand M, Rousseau C (1999−2000) Accident of the Erika, the Bay of Biscay (South Brittany), 12 December 1999. Bulletin information CEDRE 13, 10–19 (in French)

  • Urbano M, Elango V, Pardue JH (2013) Biogeochemical characterization of MC252 oil: sand aggregates on a coastal headland beach. Mar Pollut Bull 77(1–2):183–191

    Article  CAS  Google Scholar 

  • Vega FA, Covelo EF, Reigosa MJ, Andrade ML (2009) Degradation of fuel oil in salt marsh soils affected by the Prestige oil spill. J Hazard Mater 166(2–3):1020–1029. https://doi.org/10.1016/j.jhazmat.2008.11.113

    Article  CAS  Google Scholar 

  • Vostokov SV, Lobkovskiy LI, Vostokova AS, Solov’ev DM (2019) Seasonal and interannual variability of phytoplankton in the Black Sea on the basis of remote sensing data and in situ measurements of chlorophyll-a. Dokl Earth Sci 485(1):293–297. https://doi.org/10.1134/S1028334X19030097

    Article  CAS  Google Scholar 

  • Wang H (2014) A multi-model assessment of climate change impacts on the distribution and productivity of ecosystems in China. Reg Environ Change 14:133–144. https://doi.org/10.1007/s10113-013-0469-8

    Article  CAS  Google Scholar 

  • World Bank Group (2023) Global Solar Atlas. https://globalsolaratlas.info. Accessed 25 May 2023

  • Yang Z, Shah K, Laforest S, Hollebone BP, Lambert P, Brown CE, Yang C, Goldthorp M (2018) A study of the 46-year-old Arrow oil spill: Persistence of oil residues and variability in oil contamination along Chedabucto Bay, Nova Scotia, Canada. J Clean Prod 198:1459–1473. https://doi.org/10.1016/j.jclepro.2018.07.112

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the international bilateral grants of the National Centre for Scientific Research of France (PICS-3451, LIA no. 1033) and the Russian Foundation for Basic Research (no. 06–05-22001, 13–05-93105).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Andrey N. Kuznetsov. He also has written the first draft of the manuscript, and both authors commented on previous versions of the manuscript. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Andrey N. Kuznetsov.

Ethics declarations

Consent to participate

Not applicable. In this research, no human participants and/or animals have been involved.

Consent for publication

Both authors agree with the content of the article and give explicit consent to publish it. The authors confirm that they have obtained consent from the responsible authorities of the organisations where the work has been carried out.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Synopsis

The content of nutrients, temperature, salinity, solar irradiation, and surf action are the key predictors of the rates of natural attenuation of the spilt fuel oil on the seacoasts and their self-cleansing capacity.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1597 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, A.N., Fattal, P. Modelling fuel oil transformation on geographically different seacoasts and assessing their self-cleansing capacity. Environ Sci Pollut Res 31, 28178–28197 (2024). https://doi.org/10.1007/s11356-024-32902-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32902-0

Keywords

Navigation