Skip to main content

Advertisement

Log in

Microbial and environmental medium–driven responses to phosphorus fraction changes in the sediments of different lake types during the freezing period

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The comparative study of the transformation among sediment phosphorus (P) fractions in different lake types is a global issue in lake ecosystems. However, interactions between sediment P fractions, environmental factors, and microorganisms vary with the nutrient status of lakes. In this study, we combine sequential extraction and metagenomics sequencing to assess the characteristics of P fractions and transformation in sediments from different lake types in the Inner Mongolian section of the Yellow River Basin. We then further explore the response of relevant microbial and environmental drivers to P fraction transformation and bioavailability in sediments. The sediments of all three lakes exhibited strong exogenous pollution input characteristics, and higher nutritional conditions led to enhanced sediment P fraction transformation ability. The transformation capacity of the sediment P fractions also differed among the different lake types at the same latitudes, which is affected by many factors such as lake environmental factors and microorganisms. Different drivers reflected the mutual control of weakly adsorbed phosphorus (WA-P), potential active phosphorus (PA-P), Fe/Al-bound phosphorus (NaOH-P), and Ca-bound phosphorus (HCl-P) with the bio-directly available phosphorus (Bio-P). The transformation of NaOH-P in reducing environments can improve P bioavailability, while HCl-P is not easily bioavailable in weakly alkaline environments. There were significant differences in the bacterial community diversity and composition between the different lake types at the same latitude (p < 0.05), and the role of P fractions was stronger in the sediments of lakes with rich biodiversity than in poor biodiversity. Lake eutrophication recovery was somewhat hindered by the microbial interactions of P cycling and P fractions within the sediment. This study provides data and theoretical support for exploring the commonalities and differences among different lake types in the Inner Mongolian section of the Yellow River Basin. Besides, it is representative and typical for promoting the optimization of ecological security patterns in ecologically fragile watersheds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw data sequences were deposited in the NCBI GenBank Sequence Read Archive (SRA) under accession numbers: PRJNA990381.

References

  • Bai JH, Ye XF, Jia J, Zhang GL, Zhao QQ, Cui BS, Liu XH (2017) Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions. Chemosphere 188:677–688. https://doi.org/10.1016/j.chemosphere.2017.08.117

    Article  CAS  Google Scholar 

  • Barik SK, Bramha S, Bastia TK, Behera D, Kumar M, Mohanty PK, Rath P (2019) Characteristics of geochemical fractions of phosphorus and its bioavailability in sediments of a largest brackish water lake South Asia. Ecohydrol Hydrobiol 19(3):370–382. https://doi.org/10.1016/j.ecohyd.2019.02.002

    Article  Google Scholar 

  • Bastami KD, Neyestani MR, Raeisi H, Shafeian E, Baniamam M, Shirzadi A, Esmaeilzadeh M, Mozaffari S, Shahrokhi B (2018) Bioavailability and geochemical speciation of phosphorus in surface sediments of the Southern Caspian Sea[J]. Marine Pollut Bull, 126(JAN.):51–57. https://doi.org/10.1016/j.marpolbul.2017.10.095

  • Bhagowati B, Ahamad KU (2019) A review on lake eutrophication dynamics and recent developments in lake modeling[J]. Ecohydrol Hydrobiol 19(1):155–166. https://doi.org/10.1016/j.ecohyd.2018.03.002

    Article  Google Scholar 

  • Biskaborn BK, Forster A, Pfalz G, Pestryakova LA, Stoof-Leichsenring K, Strauss J, Kröger T, Herzschuh U (2023) Diatom responses and geochemical feedbacks to environmental changes at Lake Rauchuagytgyn (Far East Russian Arctic)[J]. Biogeosciences 20:1691–1712. https://doi.org/10.5194/bg-20-1691-2023

    Article  CAS  Google Scholar 

  • Borzenko SV (2021) The main formation processes for different types of salt lakes: evidence from isotopic composition with case studies of lakes in Transbaikalia, Russia[J]. Sci Total Environ 782(1):146782. https://doi.org/10.1016/j.scitotenv.2021.146782

    Article  CAS  Google Scholar 

  • Chang WJ, Sun JL, Pang Y, Zhang SH, Gong LX, Lu JA, Feng B, Xu RC (2020) Effects of different habitats on the bacterial community composition in the water and sediments of Lake Taihu, China[J]. Environ Sci Pollut Res, 27(36). https://doi.org/10.1007/s11356-020-10376-0

  • Cieniawski S , Macdonald D D , Ingersoll C G (2002) A guidance manual to support the assessment of contaminated sediments in freshwater ecosystems[J]. Fresenius Environ Bull, 16(1): 3–7.

  • Ding S, Jiao LX, He J, Li LP, Liu WB, Liu Y, Zhu YR, Zheng JL (2022) Biogeochemical dynamics of particulate organic phosphorus and its potential environmental implication in a typical “algae-type” eutrophic lake[J]. Environ Pollut 314:120240. https://doi.org/10.1016/j.envpol.2022.120240

    Article  CAS  Google Scholar 

  • de Toledo MB, Baulch HM (2023) Variability of sedimentary phosphorus composition across Canadian lakes[J]. Environ Res 236:116654. https://doi.org/10.1016/j.envres.2023.116654

    Article  CAS  Google Scholar 

  • Du CL, Li JX, Li GW, Li XG, Zhao C, Zhang LY (2022) Distribution and risk assessment on the nutrients and heavy metals in surface sediments of Wuliangsuhai Lake[J]. Environ Sci, 43(12):5598–5607. https://doi.org/10.13227/j.hjkx.202202060

  • Du EZ, Doorn MV, Vries WD (2021) Spatially divergent trends of nitrogen versus phosphorus limitation across European forests[J]. Sci Total Environ, 771:145391. https://doi.org/10.1016/j.scitotenv.2021.145391

  • Du YL, Peng WQ, Wang SY, Liu XB, Chen C, Liu C, Wang L (2018) Modeling of water quality evolution and response with the hydrological regime changes in Poyang Lake. Environ Earth Sci 77(7):265. https://doi.org/10.1007/s12665-018-7408-4

    Article  Google Scholar 

  • EEA [European Environment Agency], 2018. European waters. Assessment of status and pressures 2018. EEA Report 7 / 2018. Publications Office of the European Union, Luxembourg

  • Fan CX, Liu M, Wang SR, Fang HW, Xia XH, Cao WZ, Ding SM, Hou LJ, Wang PF, Chen JA, You J, Wang JY, Sheng YQ, Zhu W (2021) Research progress and prospect of sediment environment and pollution control in China in recent 20 years[J]. Adv Earth Sci, 36(4):346–374. https://doi.org/10.11867/j.issn.1001-8166.2021.038

  • Fan XF, Gao SS, Zhang Y, Qin BQ, Xu H, Ding SM (2022) Stimulation of high-concentration dissolved nitrogen and reactive phosphorus in Lake Taihu sediments on the initiation and maintenance of cyanobacterial blooms[J]. Sci Total Environ, 851, Part 2:158088. https://doi.org/10.1016/j.scitotenv.2022.158088

  • Gao WL, Zhang SW, Rao XY, Lin X, Li RS (2021) Landsat TM/OLI-based ecological and environmental quality survey of Yellow River Basin Inner Mongolia. Section Remote Sens 13:4477. https://doi.org/10.3390/rs13214477

    Article  Google Scholar 

  • Ge Y, Lou YH, Xu MM, Wu C, Meng J, Shi L, Xia F, Xu Y (2020) Spatial distribution and influencing factors on the variation of bacterial communities in an urban river sediment[J]. Environ Pollut 272:115984. https://doi.org/10.1016/j.envpol.2020.115984

    Article  CAS  Google Scholar 

  • Hao YC, Zhang Y, Yang WH, Li WP, Yu LH (2020) Characteristics of lake pollution and distribution of nitrogen nutrients in cold-arid area[J]. Environ Sci Technol, 43(03): 87–94. https://doi.org/10.19672/j.cnki.1003-6504.2020.03.012

  • Hou CY, Liu HX, Zhao J, Song YH (2024) Difficulties and critical points of agricultural nonpoint source pollution in Hetao irrigation district, Yellow River Basin[J], Res Environ Sci, 37(01): 73–79. https://doi.org/10.13198/j.issn.1001-6929.2023.12.08

  • Hu SD, Wang TX, Xu SG, Ma LX, Wang TZ, Sun Y (2022) Accumulation characteristic of nitrogen in reservoirs during the ice-covered period under superimposed influence of ice and sediments: a case study of Biliuhe reservoir. Environ Pollut 312:120025. https://doi.org/10.1016/j.envpol.2022.120025

    Article  CAS  Google Scholar 

  • Jin ZX, Liao P, Jaisi DP, Wang DJ, Wang JF, Wang H, Jiang SH, Yang JJ, Qiu SR, Chen JG (2023) Suspended phosphorus sustains algal blooms in a dissolved phosphorus-depleted lake[J]. Water Res, 241:120134. https://doi.org/10.1016/j.watres.2023.120134

  • Kang XM, Song JM, Yuan HM, Shi X, Yang WF, Li XG, Li N, Duan LQ (2017) Phosphorus speciation and its bioavailability in sediments of the Jiaozhou Bay[J]. Estuarine Coastal Shelf Sci, 188(MAR.15):127–136. https://doi.org/10.1016/j.ecss.2017.02.029

  • Kakade A, Salama E-S, Han HW, Zheng YZ, Kulshrestha S, Jalalah M, Harraz FA, Alsareii SA, Li XK (2021) World eutrophic pollution of lake and river: biotreatment potential and future perspectives. Environ Technol Innov 23:101604. https://doi.org/10.1016/j.eti.2021.101604

    Article  CAS  Google Scholar 

  • Kor K, Ershadifar H, Ghazilou A, Koochaknejad E (2021) Seasonal variations, potential bioavailability, and ecological risk of phosphorus species in the coastal sediments of the Makran[J]. Mar Pollut Bull 173(Pt B):113125. https://doi.org/10.1016/j.marpolbul.2021.113125

    Article  CAS  Google Scholar 

  • Liang Z, Liu ZM, Zhen SM, He R (2015) Phosphorus speciation and effects of environmental factors on release of phosphorus from sediments obtained from Taihu Lake Tien Lake, and East Lake. Toxicol Environ Chem 97(3–4):335–348. https://doi.org/10.1080/02772248.2015.1050186

    Article  CAS  Google Scholar 

  • Lin Q, Zhang K, Liu EF, Sabatier P, Arnaud F, Shen J (2020) Deciphering centurial anthropogenic pollution processes in large lakes dominated by socio-economic impacts[J]. Anthropocene 32:100269. https://doi.org/10.1016/j.ancene.2020.100269

    Article  Google Scholar 

  • Lin Q, Zhang K, Mcgowan S, Capo E, Shen J (2021) Synergistic impacts of nutrient enrichment and climate change on long-term water quality and ecological dynamics in contrasting shallow-lake zones[J]. Limnol Oceanogr, 66(9). https://doi.org/10.1002/lno.11878

  • Lu D, Guo PY, Ji JF, Liu LP, Yang P (2016) Evaluation of phosphorus distribution and bioavailability in sediments of a subtropical wetland reserve in southeast China[J]. Ecol Indicators, 66(Jul.):556–563. https://doi.org/10.1016/j.ecolind.2016.02.015

  • Ma HH, Zhu YR, Jiang J, Bing XJ, Xu WN, Hu XY, Zhang SL, Shen YQ, He ZQ (2022) Characteristics of inorganic and organic phosphorus in Lake Sha sediments from a semiarid region, Northwest China: Sources and bioavailability[J]. Applied Geochemistry, 137:105209-. https://doi.org/10.1016/j.apgeochem.2022.105209.

  • Ma X, Gao F, Yang Y, Xue YL, Song RQ, Chi LM (2023) Water quality and aquatic biological status of Daihai[J]. Guangdong Water Resources and Hydropower, 09: 8–12. 1008–0112(2023)09–0008–05

  • Ma FB, Pang DZ (2023) Research on the practice of ecological integration protection and governance : takeling the pilot project of ecological protection and restoration in Wuliangsuhai Lake as an example[J]. Value Engineering 42(36):27–29. https://doi.org/10.3969/j.issn.1006-4311.2023.36.009

    Article  Google Scholar 

  • Mao CP, Li TN, Rao WB, Song YX, Wang S (2021) Chemical speciation of phosphorus in surface sediments from the Jiangsu Coast, East China: influences, provenances and bioavailabilities[J]. Mar Pollut Bull 163:111961. https://doi.org/10.1016/j.marpolbul.2020.111961

    Article  CAS  Google Scholar 

  • Ni ZK, Li Y, Wang SR (2022) Cognizing and characterizing the organic phosphorus in lake sediments: advances and challenges. Water Res 220:118663. https://doi.org/10.1016/j.watres.2022.118663

    Article  CAS  Google Scholar 

  • Peng YH, Tian CC, Chi MX, Yang HW (2019) Distribution of phosphorus species and their release risks in the surface sediments from different reaches along Yellow River[J]. Environ Sci Pollut Res, 26(27). https://doi.org/10.1007/s11356-019-06026-9.

  • Poikane S, Kelly MG, Várbíró G, Borics G, Erős T, Hellsten S, Kolada A, Lukács BA, Solheim AL, López JP, Willby NJ, Wolfram G, Phillips G (2022) Estimating nutrient thresholds for eutrophication management: novel insights from understudied lake types. Sci Total Environ 827:154242. https://doi.org/10.1016/j.scitotenv.2022.154242

    Article  CAS  Google Scholar 

  • Qi HY, Huang D, Wang FH, Ye M, Jiang X (2022) Spatial dynamics of prokaryotic microbial communities in sediments of the Yellow Sea: assembly process, co-occurrence relationships, and environmental implications. J Environ Manage 319:115645. https://doi.org/10.1016/j.jenvman.2022.115645

    Article  CAS  Google Scholar 

  • Qin BQ, Zhou J, Elser JJ, Gardner, WS, Deng JM, Brookes JD (2020) Water depth underpins the relative roles and fates of nitrogen and phosphorus in lakes[J]. Environ Sci Technol, 54(6):3191–3198. https://doi.org/10.1021/acs.est.9b05858

  • Qing S, Runa A, Shun B, Zhao W, Bao Y, Hao Y (2020) Distinguishing and mapping of aquatic vegetations and yellow algae bloom with Landsat satellite data in a complex shallow lake, China during 1986–2018. Ecol Indic 112:18. https://doi.org/10.1016/j.ecolind.2020.106073

    Article  Google Scholar 

  • Qu X, Chen YS, Liu H, Xia WT, Lu Y, Gang DDC, Lin LS (2020) A holistic assessment of water quality condition and spatiotemporal patterns in impounded lakes along the eastern route of China’s South-to-North water diversion project. Water Res 2020(185):116275. https://doi.org/10.1016/j.watres.2020.116275

    Article  CAS  Google Scholar 

  • Radosavljevic J, Slowinski S, Shafii M, Akbarzadeh Z, Rezanezhad F, Parsons CT, Withers W, a Van Cappellen P. Salinization as a driver of eutrophication symptoms in an urban lake (Lake Wilcox, Ontario, Canada). Sci Total Environ, 2022, 846, p.157336. https://doi.org/10.1016/j.scitotenv.2022.157336

  • Rather IA, Dar AQ (2020) Spatio-temporal variation in physio-chemical parameters over a 20-year period, potential future strategies for management: a case study of Dal Lake, NW Himalaya India. Environ Technol Innov 20:101102. https://doi.org/10.1016/j.eti.2020.101102

    Article  CAS  Google Scholar 

  • Ren XH, Yu RH, Liu XY, Sun HY, Geng Y, Qi Z, Zhang ZZ, Li XW, Wang J, Zhu PH, Guo ZW, Wang LX, Xu JF (2023) Spatial changes and driving factors of lake water quality in Inner Mongolia, China[J]. J Arid Land 15(2):164–179. https://doi.org/10.1007/s40333-022-0080-2

    Article  Google Scholar 

  • Saar K, Nõges P, Søndergaard M, Jensen M, Jørgensen C, Reitzel K, Jeppesen E, Lauridsen TL, Jensen HS (2022) The impact of climate change and eutrophication on phosphorus forms in sediment: results from a long-term lake mesocosm experiment[J]. Sci Total Environ 825:153751. https://doi.org/10.1016/j.scitotenv.2022.153751

    Article  CAS  Google Scholar 

  • Sacdal R, Madriaga J, Espino MP (2020) Overview of the analysis, occurrence and ecological effects of hormones in lake waters in Asia. Environ Res 182:109091. https://doi.org/10.1016/j.envres.2019.109091

    Article  CAS  Google Scholar 

  • Scholz J, Brahney J (2022) Evidence for multiple potential drivers of increased phosphorus in high-elevation lakes. Sci Total Environ 825:153939. https://doi.org/10.1016/j.scitotenv.2022.153939

    Article  CAS  Google Scholar 

  • Siegfried MR, Venturelli RA, Patterson MO, Arnuk W, Campbell TD, Gustafson CD, Michaud AB, Galton-Fenzi BK, Hausner MB, Holzschuh SN, Huber B, Mankoff KD, Schroeder DM, Summers PT, Tyler S, Carter SP, Fricker HA, Harwood DM, Leventer A, Rosenheim BE, Skidmore ML, Priscu JC, the SALSA Science Team (2023) The life and death of a subglacial lake in West Antarctica[J]. Geology, 51 (5): 434–438. https://doi.org/10.1130/G50995.1

  • Sun HY, Lu XX, Yu RH, Yang J, Liu XY, Gao ZX, Zhang ZZ, Li MX, Geng Y (2021) Eutrophication decreased CO2 but increased CH4 emissions from lake: a case study of a shallow Lake Ulansuhai[J]. Water Research, 201(9):117363. https://doi.org/10.1016/j.watres.2021.117363

  • Tammeorg O, Nürnberg GK, Nõges P, Niemistö J (2022) The role of humic substances in sediment phosphorus release in northern lakes[J]. Sci Total Environ 833:155257. https://doi.org/10.1016/j.scitotenv.2022.155257

    Article  CAS  Google Scholar 

  • Tu CQ, Jin ZH, Che FF, Cao X, Song XS, Lu CY, Huang W (2022) Characterization of phosphorus sorption and microbial community in lake sediments during overwinter and recruitment periods of cyanobacteria. Chemosphere, 307, Part 1:135777. https://doi.org/10.1016/j.chemosphere.2022.135777

  • Tu LY, Jarosch KA, Schneider T, Grosjean M (2019) Phosphorus fractions in sediments and their relevance for historical lake eutrophication in the Ponte Tresa basin (Lake Lugano, Switzerland) since 1959[J]. The Science of the Total Environment, 685(OCT.1):806–817. https://doi.org/10.1016/j.scitotenv.2019.06.243

  • Ukawska-Matuszewska K, Brocawik O, Brodecka-Goluch A, Rzepa G, Manecki, M, Bolalek, J (2022) Biogeochemical and mineralogical effects of Fe-P-S dynamics in sediments of continental shelf sea: impact of salinity, oxygen conditions, and catchment area characteristics[J]. Sci Total Environ, 807:151035. https://doi.org/10.1016/j.scitotenv.2021.151035

  • Velde SJVD, James RK, Callebaut I, Hidalgo-Martinez S, Meysman FJR (2021) Bioturbation has a limited effect on phosphorus burial in salt marsh sediments[J]. Biogeosciences, (4). 10.5194/BG-18-1451-2021

  • Wang SH, Zhang B, Jiang X, Wang WW, Zhao L, Chen JY (2015) Analysis of phosphorus fractions in sediments by sequential extraction. Res Environ Sci, 28(9):1382–1388. https://doi.org/10.13198/j.issn.1001-6929.2015.09.0

  • Wang SH, Zhang S, Wu R, Shi XH, Zhao SN, Sun B (2023) Characteristics of phytoplankton communities in typical lakes in Inner Mongolia and their applicability in evaluating their nutritional status[J]. China Environ Sci, 1–12. https://doi.org/10.19674/j.cnki.issn1000-6923.20221019.002

  • Wang XJ, Ren YX, Yu ZQ, Shen GF, Cheng HF, Tao S (2022) Effects of environmental factors on the distribution of microbial communities across soils and lake sediments in the Hoh Xil Nature Reserve of the Qinghai-Tibetan Plateau[J]. Sci Total Environ, 838, Part 2:156148. https://doi.org/10.1016/j.scitotenv.2022.156148

  • Wang YJ, Gu XC, Yang G, Yao JQ, Liao N (2021) Impacts of climate change and human activities on water resources in the Ebinur Lake Basin Northwest China. J Arid Land 13(6):581–598. https://doi.org/10.1007/s40333-021-0067-4

    Article  Google Scholar 

  • Wen SL, Wang HW, Wu T, Yang J, Jiang X, Zhong JC (2023) Vertical profiles of phosphorus fractions in the sediment in a chain of reservoirs in North China: implications for pollution source, bioavailability, and eutrophication - ScienceDirect[J]. Sci Total Environ 704:135318. https://doi.org/10.1016/j.scitotenv.2019.135318

    Article  CAS  Google Scholar 

  • Wu Z, Li JC, Sun YX, Peñuelas J, Huang JL, Sardans J, Jiang QS, Finlay JC, L. Britten J, Follows MJ, Gao W, Qin BQ, Ni JR, Huo SL, Liu Y (2022) Imbalance of global nutrient cycles exacerbated by the greater retention of phosphorus over nitrogen in lakes. Nat. Geosci, 15, 464–468. https://doi.org/10.1038/s41561-022-00958-7

  • Yang JJ, Li GH, Sheng YZ, Zhang F (2022) Response and contribution of bacterial and archaeal communities to eutrophication in urban river sediments[J]. Environmental pollution (Barking, Essex: 1987), 306:119397. https://doi.org/10.1016/j.envpol.2022.119397

  • Yang K, Yu ZY, Luo Y (2020) Analysis on driving factors of lake surface water temperature for major lakes in Yunnan-Guizhou Plateau[J]. Water Res 184:116018. https://doi.org/10.1016/j.watres.2020.116018

    Article  CAS  Google Scholar 

  • Yang TT, Hei PF, Song JD, Zhang J, Zhu ZF, Zhang YY, Yang J, Liu CL, Jin J, Quan J (2019) Nitrogen variations during the ice-on season in the eutrophic lakes [J]. Environ Pollut 247:1089–1099. https://doi.org/10.1016/j.envpol.2018.12.088

  • Yang WH (2021) Seasonal change of water quality and its impact to characteristics of bacteria and algae communities about urban lake in cold-zone[D]. https://doi.org/10.27229/d.cnki.gnmnu.2020.000044

  • Yang WH, Cui YN, Li WP, Yu LH, Miao CL, Fan AP (2018) Distribution and pollution evaluation of carbon, nitrogen and phosphorus in sediments of lake Nanhai in Baotou City[J]. Environ Chem, 37(02):287–295. https://doi.org/10.7524/j.issn.0254-6108.2017072902

  • Ye HM, Huang CC, Yuan XY, Wang H, Huang T, Yang H (2021) Morphological characteristics and ecological risk assessment of nitrogen and phosphorus in the sediments of Futunxi watershed in Fujian province[J]. Environ Monit Assess 193(6):1–14. https://doi.org/10.1007/s10661-021-09106-x

    Article  CAS  Google Scholar 

  • Younis AM, Soliman NF, Elkady EM, Mohamedein LI (2022) Distribution and ecological risk evaluation of bioavailable phosphorus in sediments of El Temsah Lake, Suez Canal[J]. Oceanologia 64(2):287–298. https://doi.org/10.1016/j.oceano.2021.12.001.2021

    Article  Google Scholar 

  • Zhao GQ, Sheng YQ, Jiang M, Zhou HY, Zhang HC (2019) The biogeochemical characteristics of phosphorus in coastal sediments under high salinity and dredging conditions. Chemosphere 215:681–692. https://doi.org/10.1016/j.chemosphere.2018.10.015

  • Zhao GQ, Sheng YQ, Wang WJ, Liu QQ, Jiang M, Li ZR (2020) Effects of suspended particular matters, excess PO43-, and salinity on phosphorus speciation in coastal river sediments[J]. Environ Sci Pollut Res 27(22):27697–27707. https://doi.org/10.1007/s11356-020-09139-8

    Article  CAS  Google Scholar 

  • Zhao ZH, Zhang ML, Tian JM, Yu KK, Chen Y, Wang YH (2022) Occurrence and driving forces of different nitrogen forms in the sediments of the grass and algae-type zones of Taihu Lake[J]. Environ Sci Pollut Res 29(20):30114–30125. https://doi.org/10.1007/s11356-021-17784-w

    Article  CAS  Google Scholar 

  • Zhang H, Xin M, Lin CY, Wang BD, Ouyang W, Liu XT, He MC (2022) Phosphorus distribution in the water and sediment of Laizhou Bay and sediment phosphorus release potential[J]. Sci Total Environ, 846:157483. https://doi.org/10.1016/j.scitotenv.2022.157483

  • Zhang HJ, Yang L, Li Y, Wang C, Zhang WL, Wang LF, Niu LH (2022) Pollution gradients shape the co-occurrence networks and interactions of sedimentary bacterial communities in Taihu Lake, a shallow eutrophic lake[J]. J Environ Manage, 305:114380-. https://doi.org/10.1016/j.jenvman.2021.114380

  • Zhang L, Zhao F, Li XC, Lu WX (2020) Contribution of influent rivers affected by different types of pollution to the changes of benthic microbial community structure in a large lake - ScienceDirect[J]. Ecotoxicol Environ Saf 198:110657. https://doi.org/10.1016/j.ecoenv.2020.110657

    Article  CAS  Google Scholar 

  • Zhang LF, Yu C, Chen KJ, Lv XW (2021) Evaluation and analysis of the environmental quality of seawater in Daihai Lake in 2020[J]. Inner Mongolia Water Resources, No.232(12):7–9

  • Zhang LY, Delgado-Baquerizo M, Shi Y, Liu X, Yang YF, Chu HY (2021b) Co-existing water and sediment bacteria are driven by contrasting environmental factors across glacier-fed aquatic systems[J]. Water Res 1:117139. https://doi.org/10.1016/j.watres.2021.117139

    Article  CAS  Google Scholar 

  • Zhou J, Han XX, Brookes JD, Qin BQ (2022) High probability of nitrogen and phosphorus co-limitation occurring in eutrophic lakes[J]. Environmental pollution (Barking, Essex: 1987), 292(Pt A):118276. https://doi.org/10.1016/j.envpol.2021.118276

  • Zhang SL, Yi QT, Buyang SJ, Cui HB, Zhang SB (2019) Enrichment of bioavailable phosphorus in fine particles when sediment resuspension hinders the ecological restoration of shallow eutrophic lakes[J]. Sci Total Environ 710:135672. https://doi.org/10.1016/j.scitotenv.2019.135672

    Article  CAS  Google Scholar 

  • Zhang YQ, Shao KQ, Hu Y, Ding YQ, Zhang EL, Gao G, Tang XM (2022) Bacterial diversity and community composition in lake water and sediment of Lake Daihai[J]. Lake Sci, 34(06):2070–2082. https://doi.org/10.18307/2022.0621.

  • Zhang WH, Wan WJ, Lin H, Pan X, Lin L, Yang YY (2022d) Nitrogen rather than phosphorus driving the biogeographic patterns of abundant bacterial taxa in a eutrophic plateau lake[J]. Sci Total Environ 806:150947. https://doi.org/10.1016/j.scitotenv.2021.150947

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number: 42167018) and supported by the Fundamental Research Funds for Inner Mongolia University of Science & Technology (grant number:2023YXXS026).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation and data collection and analysis were performed by Zhi Yao, Mingyu Zhang, Jingtian Gao, Weiping Li, and Wenhuan Yang. The first draft of the manuscript was written by Jie Ma, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wenhuan Yang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Robert Duran

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 148 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Yao, Z., Zhang, M. et al. Microbial and environmental medium–driven responses to phosphorus fraction changes in the sediments of different lake types during the freezing period. Environ Sci Pollut Res 31, 25147–25162 (2024). https://doi.org/10.1007/s11356-024-32798-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32798-w

Keywords

Navigation