Skip to main content
Log in

MXene-supported MIL-88A(Fe) as persulfate activator for removal of tetracycline

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The poor conductivity, poor stability, and agglomeration of iron-based metal organic framework MIL-88A(Fe) limit its application as persulfate (PS) activator in water purification. Herein, MXene-supported MIL-88A(Fe) composites (M88A/MX) were synthesized to enhance its adsorption and catalytic capability for tetracycline (TC) removal. Scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FT-IR), and X-ray photoelectron spectroscopy (XPS) were used to characterize prepared materials, confirming the successful attachment of MIL-88A(Fe) to the surface of MXene. M88A/MX-0.2 composites, prepared with 0.2 g MXene addition, exhibit optimal degradation efficiency, reaching 98% under conditions of 0.2 g/L M88A/MX-0.2, 1.0 mM PS, 20 ppm TC, and pH 5. The degradation rate constants of M88A/MX-0.2 were 0.03217 min−1, which was much higher than that of MIL-88A(Fe) (0.00159 min−1) and MXene (0.00626 min−1). The removal effects of reaction parameters, such as dosage of M88A/MX-0.2 and PS; initial solution pH; and the presence of the common co-existing constituents (humic acid and the inorganic anions) were investigated in detail. Additionally, the reuse of M88A/MX-0.2 showed that the composites had good cycling stability by recurrent experiments. The results of electron paramagnetic resonance (EPR) and quenching experiments indicated that ·OH, ·SO4, and ·O2 were involved in the M88A/MX-0.2/PS system where persulfate oxidation process was activated with prepared M88A/MX-0.2. In addition, the intermediates of photocatalytic degradation were determined by HPLC–MS, and the possible degradation pathways of the target molecules were inferred. This study offered a new avenue for sulfate-based degradation of Fe-based metal organic framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Some or all data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Alamgholiloo H, Pesyan NN, Mohammadi R, Rostamnia S, Shokouhimehr M (2021) Synergistic advanced oxidation process for the fast degradation of ciprofloxacin antibiotics using a GO/CuMOF-magnetic ternary nanocomposite. J Environ Chem Eng 9(4):105486. https://doi.org/10.1016/j.jece.2021.105486

  • Chen Y, Chen Y, Bai X (2022) 3D micro–meso-structured iron-based hybrid for peroxymonosulfate activation: performance, mechanism and comprehensive practical application potential evaluation. Environ Sci: Water Res Technol 8(11):2602–2613

    CAS  Google Scholar 

  • Chen Y-d, Duan X, Zhou X, Wang R, Wang S, Ren N-q, Ho S-H (2021) Advanced oxidation processes for water disinfection: features, mechanisms and prospects. Chem Eng J 409:128207. https://doi.org/10.1016/j.cej.2020.128207

  • Daghrir R, Drogui P (2013) Tetracycline antibiotics in the environment: a review. Environ Chem Lett 11(3):209–227

    CAS  Google Scholar 

  • Ding S, Wan J, Ma Y, Wang Y, Pu M, Li X, Sun J (2021) Water stable SiO2-coated Fe-MOF-74 for aqueous dimethyl phthalate degradation in PS activated medium. J Hazard Mater 411:125194. https://doi.org/10.1016/j.jhazmat.2021.125194

  • Dominguez CM, Rodriguez V, Montero E, Romero A, Santos A (2020) Abatement of dichloromethane using persulfate activated by alkali: a kinetic study. Sep Purif Technol 241:116679. https://doi.org/10.1016/j.seppur.2020.116679

  • Du X, Zhou M (2021) Strategies to enhance catalytic performance of metal–organic frameworks in sulfate radical-based advanced oxidation processes for organic pollutants removal. Chem Eng J 403:126346.  https://doi.org/10.1016/j.cej.2020.126346

  • Duan R, Ma S, Xu S, Wang B, He M, Li G, Fu H, Zhao P (2022) Soybean straw biochar activating peroxydisulfate to simultaneously eliminate tetracycline and tetracycline resistance bacteria: insights on the mechanism. Water Res 218:118489

    CAS  Google Scholar 

  • El Asmar R, Baalbaki A, Abou Khalil Z, Naim S, Bejjani A, Ghauch A (2021) Iron-based metal organic framework MIL-88-A for the degradation of naproxen in water through persulfate activation. Chem Eng J 405

  • Fang G, Gao J, Dionysiou DD, Liu C, Zhou D (2013) Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs. Environ Sci Technol 47(9):4605–4611

    CAS  Google Scholar 

  • Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah SM, Su X (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci 368(1):540–546

    CAS  Google Scholar 

  • Guo Y, Zeng Z, Zhu Y, Huang Z, Cui Y, Yang J (2018) Catalytic oxidation of aqueous organic contaminants by persulfate activated with sulfur-doped hierarchically porous carbon derived from thiophene. Appl Catal B 220:635–644

    CAS  Google Scholar 

  • Han C-H, Park H-D, Kim S-B, Yargeau V, Choi J-W, Lee S-H, Park J-A (2020) Oxidation of tetracycline and oxytetracycline for the photo-Fenton process: their transformation products and toxicity assessment. Water Res 172:115514. https://doi.org/10.1016/j.watres.2020.115514

  • Hodges BC, Cates EL, Kim JH (2018) Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat Nanotechnol 13(8):642–650

    CAS  Google Scholar 

  • Huang D, Zhang Q, Zhang C, Wang R, Deng R, Luo H, Li T, Li J, Chen S, Liu C (2020) Mn doped magnetic biochar as persulfate activator for the degradation of tetracycline. Chem Eng J 391:123532.  https://doi.org/10.1016/j.cej.2019.123532

  • Huang M, Han Y, Xiang W, Zhong D, Wang C, Zhou T, Wu X, Mao J (2021) In situ-formed phenoxyl radical on the CuO surface triggers efficient persulfate activation for phenol degradatioN. Environ Sci Technol 55(22):15361–15370

    CAS  Google Scholar 

  • Jiang N, Xu H, Wang L, Jiang J, Zhang T (2020) Nonradical oxidation of pollutants with single-atom-Fe(III)-activated persulfate: Fe(V) being the possible intermediate oxidant. Environ Sci Technol 54(21):14057–14065. https://doi.org/10.1021/acs.est.0c04867

    Article  CAS  Google Scholar 

  • Jiang Q, Jiang S, Li H, Zhang R, Jiang Z, Zhang Y (2022) A stable biochar supported S-nZVI to activate persulfate for effective dichlorination of atrazine. Chem Eng J 431

  • Kim C, Ahn JY, Kim TY, Shin WS, Hwang I (2018) Activation of persulfate by nanosized zero-valent iron (NZVI): mechanisms and transformation products of NZVI. Environ Sci Technol 52(6):3625–3633. https://doi.org/10.1021/acs.est.7b05847

    Article  CAS  Google Scholar 

  • Leong S, Li D, Hapgood K, Zhang X, Wang H (2016) Ni(OH)2 decorated rutile TiO2 for efficient removal of tetracycline from wastewater. Appl Catal B Environ 198:224–233. https://doi.org/10.1016/j.apcatb.2016.05.043

  • Li M, Li Y-W, Yu P-F, Zhao H-M, Xiang L, Feng N-X, Li Q-K, He K-Y, Luo X, Cai Q-Y, Zhou S-Q, Mo C-H, Yeung K-L (2022a) Exploring degradation mechanism of tetracycline via high-effective peroxymonosulfate catalysts of montmorillonite hybridized CoFe composites and safety assessment. Chem Eng J 427:130930

    CAS  Google Scholar 

  • Li N, Wang Y, Cheng X, Dai H, Yan B, Chen G, Hou L, Wang S (2022b) Influences and mechanisms of phosphate ions onto persulfate activation and organic degradation in water treatment: a review. Water Res 222:118896

    CAS  Google Scholar 

  • Li N, Wu S, Dai H, Cheng Z, Peng W, Yan B, Chen G, Wang S, Duan X (2022c) Thermal activation of persulfates for organic wastewater purification: heating modes, mechanism and influencing factors. Chem Eng J 450:137976. https://doi.org/10.1016/j.cej.2022.137976

  • Li Z, Ning S, Hu F, Zhu H, Zeng L, Chen L, Wang X, Fujita T, Wei Y (2022d) Preparation of VCo-MOF@MXene composite catalyst and study on its removal of ciprofloxacin by catalytically activating peroxymonosulfate: construction of ternary system and superoxide radical pathway. J Colloid Interface Sci 629:97–110.  https://doi.org/10.1016/j.jcis.2022.08.193

  • Li M, Li C, Chunrui Z, Li T, Jiang J, Han Z, Zhang C, Sun H, Dong S (2023a) Citric acid-modified MIL-88A(Fe) for enhanced photo-Fenton oxidation in water decontamination. Sep Purif Technol 308:122945. https://doi.org/10.1016/j.seppur.2022.122945

    Article  CAS  Google Scholar 

  • Li Y, Dong H, Xiao J, Li L, Chu D, Hou X, Xiang S, Dong Q, Zhang H (2023b) Advanced oxidation processes for water purification using percarbonate: insights into oxidation mechanisms, challenges, and enhancing strategies. J Hazard Mater 442:130014

    CAS  Google Scholar 

  • Liu Y, Gan X, Zhou B, Xiong B, Li J, Dong C, Bai J, Cai W (2009) Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode. J Hazard Mater 171(1–3):678–683

    CAS  Google Scholar 

  • Liu N, Huang W, Zhang X, Tang L, Wang L, Wang Y, Wu M (2018) Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Appl Catal B 221:119–128

    CAS  Google Scholar 

  • Liu M, Zhao Z, Yu W (2020) Citric acid modified wood membranes for efficient adsorption of tetracycline: effect of alkali pretreatment concentration and adsorption mechanism. Chem Eng J 393:124748. https://doi.org/10.1016/j.cej.2020.124748

  • Liu Z, Gao Z, Wu Q (2021) Activation of persulfate by magnetic zirconium-doped manganese ferrite for efficient degradation of tetracycline. Chem Eng J 423:130283. https://doi.org/10.1016/j.cej.2021.130283

  • Liu C, Bai Y, Li W, Yang F, Zhang G, Pang H (2022a) In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors. Angew Chem Int Ed Engl 61(11):e202116282. https://doi.org/10.1002/anie.202116282

  • Liu S, Lai C, Zhou X, Zhang C, Chen L, Yan H, Qin L, Huang D, Ye H, Chen W, Li L, Zhang M, Tang L, Xu F, Ma D (2022b) Peroxydisulfate activation by sulfur-doped ordered mesoporous carbon: insight into the intrinsic relationship between defects and (1)O(2) generation. Water Res 221:118797

  • Liu Y, Zou H, Ma H, Ko J, Sun W, Andrew Lin K, Zhan S, Wang H (2022c) Highly efficient activation of peroxymonosulfate by MOF-derived CoP/CoOx heterostructured nanoparticles for the degradation of tetracycline. Chem Eng J 430:132816

  • Lu T, Xu X, Liu X, Sun T (2017) Super hydrophilic PVDF based composite membrane for efficient separation of tetracycline. Chem Eng J 308:151–159

    CAS  Google Scholar 

  • Lu X, Zhao J, Wang Q, Wang D, Xu H, Ma J, Qiu W, Hu T (2019) Sonolytic degradation of bisphenol S: effect of dissolved oxygen and peroxydisulfate, oxidation products and acute toxicity. Water Res 165:114969

    CAS  Google Scholar 

  • Luo R, Li Z, Li R, Jiang C, Qi R, Liu M, Lin H, Huang R, Luo C, Peng H (2022) Ultrafine Ru nanoparticles derived from few-layered Ti3C2Tx MXene templated MOF for highly efficient alkaline hydrogen evolution. Int J Hydrogen Energy 47(77):32787–32795

    CAS  Google Scholar 

  • Lutze HV, Bircher S, Rapp I, Kerlin N, Bakkour R, Geisler M, von Sonntag C, Schmidt TC (2015) Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter. Environ Sci Technol 49(3):1673–1680

    CAS  Google Scholar 

  • Meek ST, Greathouse JA, Allendorf MD (2011) Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater 23(2):249–267

    CAS  Google Scholar 

  • Miklos DB, Remy C, Jekel M, Linden KG, Drewes JE, Hubner U (2018) Evaluation of advanced oxidation processes for water and wastewater treatment - a critical review. Water Res 139:118–131

    CAS  Google Scholar 

  • Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Adv Mater 23(37):4248–4253

    CAS  Google Scholar 

  • Naguib M, Barsoum MW, Gogotsi Y (2021) Ten years of progress in the synthesis and development of MXenes. Adv Mater 33(39):e2103393

    Google Scholar 

  • Oh S-Y, Kang S-G, Kim D-W, Chiu PC (2011) Degradation of 2,4-dinitrotoluene by persulfate activated with iron sulfides. Chem Eng J 172(2–3):641–646

    CAS  Google Scholar 

  • Qian R, Shen T, Yang Q, Andrew Lin K-Y, Tong S (2020) Activation of persulfate by graphite supported CeO2 for isoniazid degradation. Sep Purif Technol, 250

  • Qiao J, Jiao W, Liu Y (2021) Degradation of nitrobenzene-containing wastewater by sequential nanoscale zero valent iron-persulfate process. Green Energy Environ 6(6):910–919

    CAS  Google Scholar 

  • Qin L, Ye H, Lai C, Liu S, Zhou X, Qin F, Ma D, Long B, Sun Y, Tang L, Yan M, Chen W, Chen W, Xiang L (2022) Citrate-regulated synthesis of hydrotalcite-like compounds as peroxymonosulfate activator - investigation of oxygen vacancies and degradation pathways by combining DFT. Appl Catal B Environ 317:121704. https://doi.org/10.1016/j.apcatb.2022.121704

  • Rasool K, Pandey RP, Rasheed PA, Buczek S, Gogotsi Y, Mahmoud KA (2019) Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Mater Today 30:80–102

    CAS  Google Scholar 

  • Rodriguez S, Vasquez L, Costa D, Romero A, Santos A (2014) Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI). Chemosphere 101:86–92

    CAS  Google Scholar 

  • Saini H, Srinivasan N, Šedajová V, Majumder M, Dubal DP, Otyepka M, Zbořil R, Kurra N, Fischer RA, Jayaramulu K (2021) Emerging MXene@metal–organic framework hybrids: design strategies toward versatile applications. ACS Nano 15(12):18742–18776

    CAS  Google Scholar 

  • Shen M, Huang Z, Luo X, Ma Y, Chen C, Chen X, Cui L (2020a) Activation of persulfate for tetracycline degradation using the catalyst regenerated from Fenton sludge containing heavy metal: synergistic effect of Cu for catalysis. Chem Eng J 396:125238. https://doi.org/10.1016/j.cej.2020.125238

  • Shen S, Ke T, Rajavel K, Yang K, Lin D (2020b) Dispersibility and photochemical stability of delaminated MXene flakes in water. Small 16(36):2002433. https://doi.org/10.1002/smll.202002433

  • Shi L, Wu C, Wang Y, Dou Y, Yuan D, Li H, Huang H, Zhang Y, Gates ID, Sun X, Ma T (2022) Rational design of coordination bond connected metal organic frameworks/MXene hybrids for efficient solar water splitting. Adv Funct Mater 32(30):2202571.  https://doi.org/10.1002/adfm.202202571

  • Song J, How ZT, Huang Z, Gamal El-Din M (2022) Biochar/iron oxide composite as an efficient peroxymonosulfate catalyst for the degradation of model naphthenic acids compounds. Chem Eng J 429:132220.  https://doi.org/10.1016/j.cej.2021.132220

  • Suda T, Hata T, Kawai S, Okamura H, Nishida T (2012) Treatment of tetracycline antibiotics by laccase in the presence of 1-hydroxybenzotriazole. Bioresour Technol 103(1):498–501

    CAS  Google Scholar 

  • Sun J, Wan J, Wang Y, Yan Z, Ma Y, Ding S, Tang M, Xie Y (2022) Modulated construction of Fe-based MOF via formic acid modulator for enhanced degradation of sulfamethoxazole: design, degradation pathways, and mechanism. J Hazard Mater 429:128299

    CAS  Google Scholar 

  • Sun M, Qu J, Han T, Xue J, Li K, Jiang Z, Zhang G, Yu H, Zhang Y (2023) Resource utilization of bovine bone to prepare biochar as persulfate activator for phenol degradation. J Clean Prod 383:135415. https://doi.org/10.1016/j.jclepro.2022.135415

  • Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils – a review. J Plant Nutr Soil Sci 166(2):145–167

    CAS  Google Scholar 

  • Wang J, Wan J, Ma Y, Wang Y, Pu M, Guan Z (2016) Metal–organic frameworks MIL-88A with suitable synthesis conditions and optimal dosage for effective catalytic degradation of Orange G through persulfate activation. RSC Adv 6(113):112502–112511

    CAS  Google Scholar 

  • Wan Y, Wan J, Ma Y, Wang Y, Luo T (2020) Sustainable synthesis of modulated Fe-MOFs with enhanced catalyst performance for persulfate to degrade organic pollutants. Sci Total Environ 701:134806

    CAS  Google Scholar 

  • Wang M, Cui Y, Cao H, Wei P, Chen C, Li X, Xu J, Sheng G (2021) Activating peroxydisulfate with Co3O4/NiCo2O4 double-shelled nanocages to selectively degrade bisphenol A – a nonradical oxidation process. Appl. Catal. Environ., 282

  • Wang L, Song L, Yang Z, Chang YM, Hu F, Li L, Li L, Chen HY, Peng S (2022a) Electronic modulation of metal–organic frameworks by interfacial bridging for efficient pH‐universal hydrogen evolution. Adv Funct Mater 33:2210322. https://doi.org/10.1002/adfm.202210322

  • Wang Y, Wang S, Ma ZL, Yan LT, Zhao XB, Xue YY, Huo JM, Yuan X, Li SN, Zhai QG (2022b) Competitive coordination-oriented monodispersed ruthenium sites in conductive MOF/LDH hetero-nanotree catalysts for efficient overall water splitting in alkaline media. Adv Mater 34:2107488. https://doi.org/10.1002/adma.202107488

  • Wang D, Suo M, Lai S, Deng L, Liu J, Yang J, Chen S, Wu M-F, Zou J-P (2023a) Photoinduced acceleration of Fe3+/Fe2+ cycle in heterogeneous FeNi-MOFs to boost peroxodisulfate activation for organic pollutant degradation. Appl Catal B Environ 321:122054. https://doi.org/10.1016/j.apcatb.2022.122054

  • Wang Y, Song J, Wong WY (2023b) Constructing 2D sandwich-like MOF/MXene heterostructures for durable and fast aqueous zinc-ion batteries. Angew Chem Int Ed Engl 62(8):e202218343

    CAS  Google Scholar 

  • Wu Y, Prulho R, Brigante M, Dong W, Hanna K, Mailhot G (2017) Activation of persulfate by Fe(III) species: implications for 4-tert-butylphenol degradation. J Hazard Mater 322(Pt B):380–386

    CAS  Google Scholar 

  • Wu Q, Yang H, Kang L, Gao Z, Ren F (2020a) Fe-based metal-organic frameworks as Fenton-like catalysts for highly efficient degradation of tetracycline hydrochloride over a wide pH range: acceleration of Fe(II)/ Fe(III) cycle under visible light irradiation. Appl Catal B Environ 263:118282. https://doi.org/10.1016/j.apcatb.2019.118282

  • Wu Y, Li X, Yang Q, Wang D, Yao F, Cao J, Chen Z, Huang X, Yang Y, Li X (2020b) Mxene-modulated dual-heterojunction generation on a metal-organic framework (MOF) via surface constitution reconstruction for enhanced photocatalytic activity. Chem Eng J, 390

  • Wu H, Gao Y, Xu X, Li X, Cui J, Lin A (2022) Efficient activation of peroxydisulfate by FeNC for chloramphenicol degradation: performance and mechanisms. J Clean Prod 380:134981. https://doi.org/10.1016/j.jclepro.2022.134981

  • Xiao S, Cheng M, Zhong H, Liu Z, Liu Y, Yang X, Liang Q (2020) Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: a review. Chem Eng J 384:123265. https://doi.org/10.1016/j.cej.2019.123265

  • Xie Z, Tang J, Wu X, Li X, Hua R (2019) Bioconcentration, metabolism and the effects of tetracycline on multiple biomarkers in Chironomus riparius larvae. Sci Total Environ 649:1590–1598

    CAS  Google Scholar 

  • Xiong Z, Jiang Y, Wu Z, Yao G, Lai B (2021) Synthesis strategies and emerging mechanisms of metal-organic frameworks for sulfate radical-based advanced oxidation process: a review. Chem Eng J 421:127863. https://doi.org/10.1016/j.cej.2020.127863

  • Xu Y, Ai J, Zhang H (2016) The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process. J Hazard Mater 309:87–96

    CAS  Google Scholar 

  • Xu L, Zhang H, Xiong P, Zhu Q, Liao C, Jiang G (2021) Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: a review. Sci Total Environ 753:141975

    CAS  Google Scholar 

  • Yan J, Lei M, Zhu L, Anjum MN, Zou J, Tang H (2011) Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate. J Hazard Mater 186(2–3):1398–1404

    CAS  Google Scholar 

  • Yang J, Lin Y, Yang X, Ng TB, Ye X, Lin J (2017) Degradation of tetracycline by immobilized laccase and the proposed transformation pathway. J Hazard Mater 322(Pt B):525–531

    CAS  Google Scholar 

  • Yang T, Yu D, Wang D, Yang T, Li Z, Wu M, Petru M, Crittenden J (2021a) Accelerating Fe(III)/Fe(II) cycle via Fe(II) substitution for enhancing Fenton-like performance of Fe-MOFs. Appl Catal B 286:119859

    CAS  Google Scholar 

  • Yang X, Wu P, Chu W, Wei G (2021b) Peroxymonosulfate/LaCoO3 system for tetracycline degradation: performance and effects of co-existing inorganic anions and natural organic matter. J Water Process Eng 43:102231. https://doi.org/10.1016/j.jwpe.2021.102231

  • Yang Z, Xia X, Shao L, wang L, Liu Y (2021c) Efficient photocatalytic degradation of tetracycline under visible light by Z-scheme Ag3PO4/mixed-valence MIL-88A(Fe) heterojunctions: mechanism insight, degradation pathways and DFT calculation. Chem Eng J 410:128454. https://doi.org/10.1016/j.cej.2021.128454

  • Yang L, Chen Y, Wen Q, Xu H, Pan X, Li X (2022) 2D layered structure-supported imidazole-based metal-organic framework for enhancing the power generation performance of microbial fuel cells. Electrochim Acta 428:140959. https://doi.org/10.1016/j.electacta.2022.140959

  • Ye C, Deng J, Huai L, Cai A, Ling X, Guo H, Wang Q, Li X (2022) Multifunctional capacity of CoMnFe-LDH/LDO activated peroxymonosulfate for p-arsanilic acid removal and inorganic arsenic immobilization: performance and surface-bound radical mechanism. Sci Total Environ 806:150379. https://doi.org/10.1016/j.scitotenv.2021.150379

  • Yuan R, Qiu J, Yue C, Shen C, Li D, Zhu C, Liu F, Li A (2020) Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification. Chem Eng J 401:126020. https://doi.org/10.1016/j.cej.2020.126020

  • Zhang Q-Q, Ying G-G, Pan C-G, Liu Y-S, Zhao J-L (2015) Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 49(11):6772–6782

    CAS  Google Scholar 

  • Zhang Y, Zhou J, Chen X, Wang L, Cai W (2019) Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: synergistic effect and degradation pathway. Chem Eng J 369:745–757

    CAS  Google Scholar 

  • Zhang X-W, Lan M-Y, Wang F, Wang C-C, Wang P, Ge C, Liu W (2022a) Immobilized N-C/Co derived from ZIF-67 as PS-AOP catalyst for effective tetracycline matrix elimination: from batch to continuous process. Chem Eng J 450:138082. https://doi.org/10.1016/j.cej.2022.138082

  • Zhang Y, Sun J, Guo Z, Zheng X, Guo P, Xu J, Lei Y (2022b) The decomplexation of Cu-EDTA by electro-assisted heterogeneous activation of persulfate via acceleration of Fe(II)/Fe(III) redox cycle on Fe-MOF catalyst. Chem Eng J 430:133025. https://doi.org/10.1016/j.cej.2021.133025

  • Zheng S, Kong Z, Meng L, Song J, Jiang N, Gao Y, Guo J, Mu T, Huang M (2020) MIL-88A grown in-situ on graphitic carbon nitride (g-C3N4) as a novel sorbent: Synthesis, characterization, and high-performance of tetracycline removal and mechanism. Adv Powder Technol 31(10):4344–4353

    CAS  Google Scholar 

  • Zhou Q, Hong P, Shi X, Li Y, Yao K, Zhang W, Wang C, He J, Zhang K, Kong L (2023) Efficient degradation of tetracycline by a novel nanoconfinement structure Cu(2)O/Cu@MXene composite. J Hazard Mater 448:130995

    CAS  Google Scholar 

  • Zhu K, Xu H, Chen C, Ren X, Alsaedi A, Hayat T (2019) Encapsulation of Fe0-dominated Fe3O4/Fe0/Fe3C nanoparticles into carbonized polydopamine nanospheres for catalytic degradation of tetracycline via persulfate activation. Chem Eng J 372:304–311

    CAS  Google Scholar 

  • Zhu Y, Wei M, Pan Z, Li L, Liang J, Yu K, Zhang Y (2020) Ultraviolet/peroxydisulfate degradation of ofloxacin in seawater: kinetics, mechanism and toxicity of products. Sci Total Environ 705:135960

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Natural Science Foundation of Jiangsu Province, China (Grant No. BK20211509), National Natural Science Foundation of China (Grant No. 52070093), Fundamental Research Funds for the Central Universities (Grant No. 021114380169, 021114913417, and 021114380197).

Author information

Authors and Affiliations

Authors

Contributions

Junxia Chen: investigation, conceptualization, data analysis, writing—original draft; Zhenzhen Yang: methodology, writing—review and editing; Weigang Li: methodology, investigation, characterization; Yuying Yang: data analysis; Feng Zhu: characterization; Zongli Huo: methodology, resources, project administration; Qing Zhou: supervision, funding acquisition, project administration, resources.

Corresponding author

Correspondence to Qing Zhou.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Guilherme Luiz Dotto

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. MXene-supported MIL-88A(Fe) composites (M88A/MX) were synthesized by hydrothermal solvent method.

2. With simultaneous addition of M88A/MX-0.2 and PS, the TC removal efficiencies after 4 min reached 86.7%.

3. The high removal efficiency of the M88A/MX-0.2 could be due to the large specific surface area and resulting in more active sites.

4. Fe2+ and the lattice oxygen were contributed to generate radical ROS (·OH, ·SO4, and·O2).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 772 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Yang, Z., Li, W. et al. MXene-supported MIL-88A(Fe) as persulfate activator for removal of tetracycline. Environ Sci Pollut Res 31, 25273–25286 (2024). https://doi.org/10.1007/s11356-024-32677-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32677-4

Keywords

Navigation