Skip to main content
Log in

Spatial and temporal evolution and drivers of GHG emissions from urban domestic wastewater treatment in China: a review at the provincial level

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To mitigate greenhouse gas (GHG) emissions from the wastewater treatment industry, it is crucial to explore GHG emission patterns and propose useful measures. In this study, we use the Kaya model and LMDI decomposition method to analyze the changes in GHG emissions from urban domestic wastewater treatment at the provincial level and further explore the distribution characteristics and driving factors of urban domestic wastewater treatment GHG emissions across various years and regions. The results indicate the following: (1) In the temporal dimension, urban domestic wastewater treatment GHG emissions are increasing, from 21.0 MtCO2 in 2011 to 27.1 MtCO2 in 2020, with an average annual growth rate of 2.88%. The spatial distribution is high in the southeast and low in the northwest. There is variability in the spatial evolution trend of GHG emissions by province, with the growth rate becoming slower or even negative in Jiangsu, Zhejiang, and North China, while the average annual growth rate exceeds 25% in Inner Mongolia and Xinjiang. (2) According to the decomposition results of driving factors, economic scale is the dominant positive driver, and the positive contributions of TI and the population effect are limited. The sludge disposal structure is the main negative driver, and the EEI and technology have restricted negative contributions. (3) Based on the decomposition results, for major coastal GHG emitters, such as Guangdong and Shandong, it is necessary to invest capital and technology to continuously upgrade the wastewater treatment process and reduce non-CO2 emissions. Along with adopting circular economy schemes, local governments in the northwestern region should transform the traditional sludge disposal structure and optimize the power supply structure to increase carbon offset and reduce CO2 emissions. The findings suggest a low-carbon transformation path to support the industry’s dual carbon goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

Download references

Acknowledgements

This study was supported by the Central University Project (2022CDJSKPY07).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by Yue Xiao and Yuan Liu. Material preparation and the first draft of the manuscript were written by Yue Xiao and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Weiguang Cai.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: V.V.S.S. Sarma

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 59 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Liu, Y. & Cai, W. Spatial and temporal evolution and drivers of GHG emissions from urban domestic wastewater treatment in China: a review at the provincial level. Environ Sci Pollut Res 31, 21028–21043 (2024). https://doi.org/10.1007/s11356-024-32358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32358-2

Keywords

Navigation