Skip to main content
Log in

Microplastic pollution interaction with disinfectant resistance genes: research progress, environmental impacts, and potential threats

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The consumption of disposable plastic products and disinfectants has surged during the global COVID-19 pandemic, as they play a vital role in effectively preventing and controlling the spread of the virus. However, microplastic pollution and the excessive or improper use of disinfectants contribute to the increased environmental tolerance of microorganisms. Microplastics play a crucial role as vectors for microorganisms and plankton, facilitating energy transfer and horizontal gene exchange. The increase in the use of disinfectants has become a driving force for the growth of disinfectant resistant bacteria (DRB). A large number of microorganisms can have intense gene exchange, such as plasmid loss and capture, phage transduction, and cell fusion. The reproduction and diffusion rate of DRB in the environment is significantly higher than that of ordinary microorganisms, which will greatly increase the environmental tolerance of DRB. Unfortunately, there is still a huge knowledge gap in the interaction between microplastics and disinfectant resistance genes (DRGs). Accordingly, it is critical to comprehensively summarize the formation and transmission routes of DRGs on microplastics to address the problem. This paper systematically analyzed the process and mechanisms of DRGs formed by microbes. The interaction between microplastics and DRGs and the contribution of microplastic on the diffusion and spread of DRGs were expounded. The potential threats to the ecological environment and human health were also discussed. Additionally, some challenges and future priorities were also proposed with a view to providing useful basis for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Aase B, Sundheim G, Langsrud S, Rørvik LM (2000) Occurrence of and a possible mechanism for resistance to a quaternary ammonium compound in Listeria monocytogenes. Int J Food Microbiol 62:57–63

    CAS  PubMed  Google Scholar 

  • Amsalu A, Sapula SA, De Barros LM, Hart BJ, Nguyen AH, Drigo B, Turnidge J, Leong LEX, Venter H (2020) Efflux pump-driven antibiotic and biocide cross-resistance in Pseudomonas aeruginosa isolated from different ecological niches: a case study in the development of multidrug resistance in environmental hotspots. Microorganisms 8:1647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arias-Andres M, Klümper U, Rojas-Jimenez K, Grossart HP (2018) Microplastic pollution increases gene exchange in aquatic ecosystems. Environ Pollut 237:253–261

    CAS  PubMed  Google Scholar 

  • Auta HS, Emenike C, Fauziah S (2017) Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environ Int 102:165–176

    CAS  PubMed  Google Scholar 

  • Bergmann M, Mützel S, Primpke S, Tekman MB, Trachsel J, Gerdts G (2019) White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci Adv 5:eaax1157

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Botelho J, Grosso F, Peixe L (2019) Antibiotic resistance in Pseudomonas aeruginosa-Mechanisms, epidemiology and evolution. Drug Resist Update 44:100640

    Google Scholar 

  • Carlie MS, Boucher CE, Bragg RR (2020) Molecular basis of bacterial disinfectant resistance. Drug Resist Update 48:100672

    Google Scholar 

  • Cazares A, Moore MP, Hall JP, Wright LL, Grimes M, Emond-Rhéault JG, Pongchaikul P, Santanirand P, Levesque RC, Fothergill JL (2020) A megaplasmid family driving dissemination of multidrug resistance in Pseudomonas. Nature Commun 11:1–13

    Google Scholar 

  • Chang X, Fang Y, Wang Y, Wang F, Shang L, Zhong R (2022) Microplastic pollution in soils, plants, and animals: a review of distributions, effects and potential mechanisms. Sci Total Environ 850:157857

    ADS  CAS  PubMed  Google Scholar 

  • Dai HH, Gao JF, Wang ZQ, Zhao YF, Zhang D (2020) Behavior of nitrogen, phosphorus and antibiotic resistance genes under polyvinyl chloride microplastics pressures in an aerobic granular sludge system. J Clean Prod 256:120402

    CAS  Google Scholar 

  • Davies R, Wales A (2019) Antimicrobial resistance on farms: a review including biosecurity and the potential role of disinfectants in resistance selection. Compr Rev Food Sci F 18:753–774

    CAS  Google Scholar 

  • Dong H, Chen Y, Wang J, Zhang Y, Zhang P, Li X, Zou JX, Zhou AG (2021) Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments. J Hazard Mater 403:123961

    CAS  PubMed  Google Scholar 

  • Eckert EM, Di Cesare A, Kettner MT, Arias-Andres M, Fontaneto D, Grossart HP, Corno G (2018) Microplastics increase impact of treated wastewater on freshwater microbial community. Environ Pollut 234:495–502

    CAS  PubMed  Google Scholar 

  • Enfrin M, Lee J, Fane AG, Dumée LF (2021) Mitigation of membrane particulate fouling by nano/microplastics via physical cleaning strategies. Sci Total Environ 788:147689

    ADS  CAS  PubMed  Google Scholar 

  • Feng C, Bo T, Maity P, Zuo S, Zhou W, Huang KW, Mohammed OF, Zhang HB (2023) Regulating photocatalytic CO2 reduction kinetics through modification of surface coordination sphere. Adv Funct Mater:2309761

  • Futoma-Kołoch B, Bugla-Płskońska G, Dudek B, Dorotkiewicz-Jach A, Drulis-Kawa Z, Gamian A (2019) Outer membrane proteins of Salmonella as potential markers of resistance to serum, antibiotics and biocides. Curr Med Chem 26:1960–1978

    PubMed  Google Scholar 

  • Gabale U, Peña Palomino PA, Kim H, Chen W, Ressl S (2020) The essential inner membrane protein YejM is a metalloenzyme. Sci Rep 10:1–14

    Google Scholar 

  • Galafassi S, Sabatino R, Sathicq MB, Eckert EM, Fontaneto D, Dalla Fontana G, Mossotti R, Corno G, Volta P, Di Cesare A (2021) Contribution of microplastic particles to the spread of resistances and pathogenic bacteria in treated wastewaters. Water Res 201:117368

    CAS  PubMed  Google Scholar 

  • Galgani L, Goßmann I, Scholz-Böttcher B, Jiang X, Liu Z, Scheidemann L, Schlundt C, Engel A (2022) Hitchhiking into the deep: how microplastic particles are exported through the biological carbon pump in the north atlantic ocean. Environ Sci Technol 56:15638–15649

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Liao M, He B, Liu J, Hu X, Yan D, Wang J (2021) Impact of the COVID-19 pandemic on household disinfectant consumption behaviors and related environmental concerns: a questionnaire-based survey in China. J Environ Chem Eng 9:106168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo MT, Yuan QB, Yang J (2015) Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater. Environ Sci Technol 49:5771–5778

    ADS  CAS  PubMed  Google Scholar 

  • Hassan KA, Liu Q, Henderson PJ, Paulsen IT (2015) Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. MBio 6:e01982–e01914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hitchcock JN (2022) Microplastics can alter phytoplankton community composition. Sci Total Environ 819:153074

    ADS  CAS  PubMed  Google Scholar 

  • Imran M, Das KR, Naik MM (2019) Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: an emerging health threat. Chemosphere 215:846–857

    ADS  CAS  PubMed  Google Scholar 

  • Jiang P, Zhao S, Zhu L, Li D (2018) Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary. Sci Total Environ 624:48–54

    ADS  CAS  PubMed  Google Scholar 

  • Jiang Q, Feng M, Ye C, Yu X (2022) Effects and relevant mechanisms of non-antibiotic factors on the horizontal transfer of antibiotic resistance genes in water environments: a review. Sci Total Environ 806:150568

    ADS  CAS  PubMed  Google Scholar 

  • Jiang X, Yu T, Liang Y, Ji S, Guo X, Ma J, Zhou LJ (2016) Efflux pump-mediated benzalkonium chloride resistance in Listeria monocytogenes isolated from retail food. Int J Food Microbiol 217:141–145

    CAS  PubMed  Google Scholar 

  • Jin M, Liu L, Wang DN, Yang D, Liu WL, Yin J, Yang ZW, Wang HR, Qiu ZG, Shen ZQ, Shi DY, Li Guo JH, Li JW (2020) Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. ISME J 14:1847–1856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kakar FL, Okoye F, Onyedibe V, Hamza R, Dhar BR, Elbeshbishy E (2023) Climate change interaction with microplastics and nanoplastics pollution. Curr Dev Biotechnol Bioeng Book:387–403. https://doi.org/10.1016/B978-0-323-99908-3.00003-8

  • Khan H, Liu M, Ahmad S, Liang J, Bai X (2021) DNA phosphorothioate modification facilitates the dissemination of mcr-1 and blaNDM-1 in drinking water supply systems. Environ Pollut 268:115799

    CAS  PubMed  Google Scholar 

  • Kim M, Weigand MR, Oh S, Hatt JK, Krishnan R, Tezel U, Pavlostathis SG, Konstantinidis KT (2018) Widely used benzalkonium chloride disinfectants can promote antibiotic resistance. Appl Environ Microbiol 84:e01201–e01218

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • LaBreck PT, Bochi-Layec AC, Stanbro J, Dabbah-Krancher G, Simons MP, Merrell DS (2020) Systematic analysis of efflux pump-mediated antiseptic resistance in Staphylococcus aureus suggests a need for greater antiseptic stewardship. MSphere 5:e00959–e00919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laju R, Jayanthi M, Jeyasanta KI, Patterson J, Asir NGG, Sathish MN, Edward JKP (2022) Spatial and vertical distribution of microplastics and their ecological risk in an Indian freshwater lake ecosystem. Sci Total Environ 820:153337

    ADS  CAS  PubMed  Google Scholar 

  • Legner M, McMillen DR, Cvitkovitch DG (2019) Role of dilution rate and nutrient availability in the formation of microbial biofilms. Front Microbiol 10:916

    PubMed  PubMed Central  Google Scholar 

  • Leslie HA, Van Velzen MJ, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH (2022) Discovery and quantification of plastic particle pollution in human blood. Environ Int 163:107199

    CAS  PubMed  Google Scholar 

  • Li D, Wang X, Zhang G, Wang Z, Huang K (2022) Advances in antibiotic resistance genes (ARGs) in aquaculture environment. South China Fisheries Sci 18:166–176

    Google Scholar 

  • Li H, Li X, Chen T, Yang Z, Shi D, Yin J, Yang D, Zhou SQ, Li JW, Jin M (2023) Antidepressant exposure as a source of disinfectant resistance in waterborne bacteria. J Hazard Mater 452:131371

    CAS  PubMed  Google Scholar 

  • Li L, Ye L, Kromann S, Meng H (2017) Occurrence of extended-spectrum β-lactamases, plasmid-mediated quinolone resistance, and disinfectant resistance genes in Escherichia coli isolated from ready-to-eat meat products. Foodborne Pathog Dis 14:109–115

    CAS  PubMed  Google Scholar 

  • Li R, Zhu L, Yang K, Li H, Zhu YG, Cui L (2021) Impact of urbanization on antibiotic resistome in different microplastics: evidence from a large-scale whole river analysis. Environ Sci Technol 55:8760–8770

    ADS  CAS  PubMed  Google Scholar 

  • Liffourrena AS, Lucchesi GI (2014) Identification, cloning and biochemical characterization of Pseudomonas putida A (ATCC 12633) monooxygenase enzyme necessary for the metabolism of tetradecyltrimethylammonium bromide. Appl Biochem Biotechnol 173:552–561

    CAS  PubMed  Google Scholar 

  • Liu R, Yu Z, Zhang H, Yang M, Shi B, Liu X (2012) Diversity of bacteria and mycobacteria in biofilms of two urban drinking water distribution systems. Can J Microbiol 58:261–270

    CAS  PubMed  Google Scholar 

  • Liu X, Wang H, Li L, Deng C, Chen Y, Ding H, Yu Z (2022) Do microplastic biofilms promote the evolution and co-selection of antibiotic and metal resistance genes and their associations with bacterial communities under antibiotic and metal pressures? J Hazard Mater 424:127285

    CAS  PubMed  Google Scholar 

  • Loiseau C, Sorci G (2022) Can microplastics facilitate the emergence of infectious diseases? Sci Total Environ 823:153694

    ADS  CAS  PubMed  Google Scholar 

  • Lu J, Wang Y, Zhang S, Bond P, Yuan Z, Guo J (2020) Triclosan at environmental concentrations can enhance the spread of extracellular antibiotic resistance genes through transformation. Sci Total Environ 713:136621

    ADS  CAS  PubMed  Google Scholar 

  • Lu J, Zhang Y, Wu J, Luo Y (2019) Effects of microplastics on distribution of antibiotic resistance genes in recirculating aquaculture system. Ecotoxicol Environ Safe 184:109631

    CAS  Google Scholar 

  • Luprano ML, De Sanctis M, Del Moro G, Di Iaconi C, Lopez A, Levantesi C (2016) Antibiotic resistance genes fate and removal by a technological treatment solution for water reuse in agriculture. Sci Total Environ 571:809–818

    ADS  CAS  PubMed  Google Scholar 

  • Luther MK, Bilida S, Mermel LA, LaPlante KL (2015) Ethanol and isopropyl alcohol exposure increases biofilm formation in Staphylococcus aureus and Staphylococcus epidermidis. Infect Dis Ther 4:219–226

    PubMed  PubMed Central  Google Scholar 

  • Lv L, Jiang T, Zhang S (2014) Exposure to mutagenic disinfection byproducts leads to increase of antibiotic resistance in Pseudomonas aeruginosa. Environ Sci Technol 48:8188–8195

    ADS  CAS  PubMed  Google Scholar 

  • Macêdo LPR, Dornelas ASP, Vieira MM, de Jesus Ferreira JS, Sarmento RA, Cavallini GS (2019) Comparative ecotoxicological evaluation of peracetic acid and the active chlorine of calcium hypochlorite: use of Dugesia tigrina as a bioindicator of environmental pollution. Chemosphere 233:273–281

    ADS  Google Scholar 

  • Machado I, Coquet L, Jouenne T, Pereira MO (2013) Proteomic approach to Pseudomonas aeruginosa adaptive resistance to benzalkonium chloride. J Proteomics 89:273–279

    CAS  PubMed  Google Scholar 

  • McKinney CW, Pruden A (2012) Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environ Sci Technol 46:13393–13400

    ADS  CAS  PubMed  Google Scholar 

  • Meier AB, Guldimann C, Markkula A, Pöntinen A, Korkeala H, Tasara T (2017) Comparative phenotypic and genotypic analysis of Swiss and Finnish Listeria monocytogenes isolates with respect to benzalkonium chloride resistance. Front Microbiol 8:397

    PubMed  PubMed Central  Google Scholar 

  • Mishra AK, Singh J, Mishra PP (2021) Microplastics in polar regions: an early warning to the world's pristine ecosystem. Sci Total Environ 784:147149

    ADS  CAS  PubMed  Google Scholar 

  • Møretrø T, Schirmer BC, Heir E, Fagerlund A, Hjemli P, Langsrud S (2017) Tolerance to quaternary ammonium compound disinfectants may enhance growth of Listeria monocytogenes in the food industry. Int J Food Microbiol 241:215–224

    PubMed  Google Scholar 

  • Munir M, Wong K, Xagoraraki I (2011) Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res 45:681–693

    CAS  PubMed  Google Scholar 

  • Niu L, Li Y, Li Y, Hu Q, Wang C, Hu J, Zhang W, Wang L, Zhang C, Zhang H (2021) New insights into the vertical distribution and microbial degradation of microplastics in urban river sediments. Water Res 188:116449

    CAS  PubMed  Google Scholar 

  • Nontaleerak B, Duang-Nkern J, Wongsaroj L, Trinachartvanit W, Romsang A, Mongkolsuk S (2020) Roles of RcsA, an AhpD family protein, in reactive chlorine stress resistance and virulence in Pseudomonas aeruginosa. Appl Environ Microbiol 86:e01480–e01420

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberbeckmann S, Loeder MG, Gerdts G, Osborn AM (2014) Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol Ecol 90:478–492

    CAS  PubMed  Google Scholar 

  • Partridge SR, Kwong SM, Firth N, Jensen SO (2018) Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 31:e00088–e00017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pivokonsky M, Cermakova L, Novotna K, Peer P, Cajthaml T, Janda V (2018) Occurrence of microplastics in raw and treated drinking water. Sci Total Environ 643:1644–1651

    ADS  CAS  PubMed  Google Scholar 

  • Qian J, He X, Wang P, Xu B, Li K, Lu B, Jin W, Tang S (2021) Effects of polystyrene nanoplastics on extracellular polymeric substance composition of activated sludge: the role of surface functional groups. Environ Pollut 279:116904

    CAS  PubMed  Google Scholar 

  • Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, Papa F, Rongioletti MCA, Baiocco F, Draghi S, D'Amore E, Rinaldo D, Matta M, Giorgini E (2021) Plasticenta: first evidence of microplastics in human placenta. Environment Int 146:106274

    CAS  Google Scholar 

  • Ribič U, Klančnik A, Jeršek B (2017) Characterization of Staphylococcus epidermidis strains isolated from industrial cleanrooms under regular routine disinfection. J Appl Microbiol 122:1186–1196

    PubMed  Google Scholar 

  • Romero JL, Grande Burgos MJ, Pérez-Pulido R, Gálvez A, Lucas R (2017) Resistance to antibiotics, biocides, preservatives and metals in bacteria isolated from seafoods: co-selection of strains resistant or tolerant to different classes of compounds. Front Microbiol 8:1650

    PubMed  PubMed Central  Google Scholar 

  • Rota E, Bergami E, Corsi I, Bargagli R (2022) Macro-and microplastics in the antarctic environment: ongoing assessment and perspectives. Environments 9:93

    Google Scholar 

  • Saetae P, Bunthawin S, Ritchie RJ (2014) Environmental persistence of chlorine from prawn farm discharge monitored by measuring the light reactions of photosynthesis of phytoplankton. Aquacult Int 22:321–338

    CAS  Google Scholar 

  • Shan J, Wang J, Zhan J, Liu L, Wu F, Wang X (2020) Sorption behaviors of crude oil on polyethylene microplastics in seawater and digestive tract under simulated real-world conditions. Chemosphere 257:127225

    CAS  PubMed  Google Scholar 

  • Shen M, Liu S, Hu T, Zheng K, Wang Y, Long H (2023a) Recent advances in the research on effects of micro/nanoplastics on carbon conversion and carbon cycle: a review. J Environ Manage 334:117529

    CAS  PubMed  Google Scholar 

  • Shen M, Song B, Zhou C, Almatrafi E, Hu T, Zeng G, Zhang Y (2021a) Recent advances in impacts of microplastics on nitrogen cycling in the environment: a review. Sci Total Environ 815:152740

    ADS  PubMed  Google Scholar 

  • Shen M, Song B, Zhu Y, Zeng G, Zhang Y, Yang Y, Wen X, Chen M, Yi H (2020) Removal of microplastics via drinking water treatment: current knowledge and future directions. Chemosphere 251:126612

    CAS  PubMed  Google Scholar 

  • Shen M, Zeng Z, Li L, Song B, Zhou C, Zeng G, Zhang Y, Xiao R (2021b) Microplastics act as an important protective umbrella for bacteria during water/wastewater disinfection. J Clean Prod 315:128188

    CAS  Google Scholar 

  • Shen M, Zhang Y, Zhu Y, Song B, Zeng G, Hu D, Wen X, Ren X (2019a) Recent advances in toxicological research of nanoplastics in the environment: a review. Environ Pollut 252:511–521

    CAS  PubMed  Google Scholar 

  • Shen M, Zhao Y, Liu S, Tao S, Li T, Long H (2023b) Can microplastics and disinfectant resistance genes pose conceivable threats to water disinfection process? Sci Total Environ 905:167192

    ADS  CAS  PubMed  Google Scholar 

  • Shen M, Zhu Y, Zhang Y, Zeng G, Wen X, Yi H, Ye S, Ren X, Song B (2019b) Micro(nano)plastics: Unignorable vectors for organisms. Mar Pollut Bull 139:328–331

    CAS  PubMed  Google Scholar 

  • Shi P, Jia S, Zhang XX, Zhang T, Cheng S, Li A (2013) Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. Water Res 47:111–120

    CAS  PubMed  Google Scholar 

  • Skovgaard S, Nielsen LN, Larsen MH, Skov RL, Ingmer H, Westh H (2013) Staphylococcus epidermidis isolated in 1965 are more susceptible to triclosan than current isolates. PLoS One 8:e62197

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Y, Zhang Z, Zhu J, Shi J, Wei H, Xie B, Shi H (2021) Microplastics act as vectors for antibiotic resistance genes in landfill leachate: the enhanced roles of the long-term aging process. Environ Pollut 270:116278

    CAS  PubMed  Google Scholar 

  • Syranidou E, Kalogerakis N (2022) Interactions of microplastics, antibiotics and antibiotic resistant genes within WWTPs. Sci Total Environ 804:150141

    ADS  CAS  PubMed  Google Scholar 

  • Tan Q, Li W, Zhang J, Zhou W, Chen J, Li Y, Ma J (2019) Presence, dissemination and removal of antibiotic resistant bacteria and antibiotic resistance genes in urban drinking water system: a review. Front Environ Sci Eng 13:1–15

    ADS  CAS  Google Scholar 

  • Thorrold C, Letsoalo M, Dusé A, Marais E (2007) Efflux pump activity in fluoroquinolone and tetracycline resistant Salmonella and E. coli implicated in reduced susceptibility to household antimicrobial cleaning agents. Int J Food Microbiol 113:315–320

    CAS  PubMed  Google Scholar 

  • Tong C, Hu H, Chen G, Li Z, Li A, Zhang J (2021a) Chlorine disinfectants promote microbial resistance in Pseudomonas sp. Environ Res 199:111296

    CAS  PubMed  Google Scholar 

  • Tong C, Hu H, Chen G, Li Z, Li A, Zhang J (2021b) Disinfectant resistance in bacteria: mechanisms, spread, and resolution strategies. Environ Res 195:110897

    CAS  PubMed  Google Scholar 

  • van der Veen S, Abee T (2010) HrcA and DnaK are important for static and continuous-flow biofilm formation and disinfectant resistance in Listeria monocytogenes. Microbiology 156:3782–3790

    PubMed  Google Scholar 

  • Vikram A, Bomberger JM, Bibby KJ (2015) Efflux as a glutaraldehyde resistance mechanism in Pseudomonas fluorescens and Pseudomonas aeruginosa biofilms. Antimicrob Agents Chem 59:3433–3440

    CAS  Google Scholar 

  • Vikram A, Lipus D, Bibby K (2014) Produced water exposure alters bacterial response to biocides. Environ Sci Technol 48:13001–13009

    ADS  CAS  PubMed  Google Scholar 

  • Wang H, Edwards M, Falkinham JO III, Pruden A (2012) Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems. Appl Environ Microbiol 78:6285–6294

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Chen X (2022) Removal of antibiotic resistance genes (ARGs) in various wastewater treatment processes: an overview. Crit Rev Environ Sci Technol 52:571–630

    CAS  Google Scholar 

  • Wang J, Sui M, Yuan B, Li H, Lu H (2019) Inactivation of two mycobacteria by free chlorine: effectiveness, influencing factors, and mechanisms. Sci Total Environ 648:271–284

    ADS  CAS  PubMed  Google Scholar 

  • Wang Z, Han M, Li E, Liu X, Wei H, Yang C, Lu S, Ning K (2020) Distribution of antibiotic resistance genes in an agriculturally disturbed lake in China: their links with microbial communities, antibiotics, and water quality. J Hazard Mater 393:122426

    CAS  PubMed  Google Scholar 

  • Wieczorek AM, Croot PL, Lombard F, Sheahan JN, Doyle TK (2019) Microplastic ingestion by gelatinous zooplankton may lower efficiency of the biological pump. Environ Sci Technol 53:5387–5395

    ADS  CAS  PubMed  Google Scholar 

  • Wu X, Liu Z, Li M, Bartlam M, Wang Y (2022) Integrated metagenomic and metatranscriptomic analysis reveals actively expressed antibiotic resistomes in the plastisphere. J Hazard Mater 430:128418

    CAS  PubMed  Google Scholar 

  • Wu X, Pan J, Li M, Li Y, Bartlam M, Wang Y (2019) Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res 165:114979

    CAS  PubMed  Google Scholar 

  • Xiong X, Siddique MS, Graham NJ, Yu W (2022) Towards microplastics contribution for membrane biofouling and disinfection by-products precursors: the effect on microbes. J Hazard Mater 426:127797

    CAS  PubMed  Google Scholar 

  • Xu L, Ouyang W, Qian Y, Su C, Su J, Chen H (2016) High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems. Environ Pollut 213:119–126

    CAS  PubMed  Google Scholar 

  • Yang K, Chen ML, Zhu D (2023a) Exposure to benzalkonium chloride disinfectants promotes antibiotic resistance in sewage sludge microbiomes. Sci Total Environ 867:161527

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Zhang B, Xin X, Lee K, Chen B (2022) Microplastic and oil pollution in oceans: interactions and environmental impacts. Sci Total Environ 838:156142

    ADS  CAS  PubMed  Google Scholar 

  • Yang Y, Liu G, Song W, Ye C, Lin H, Li Z, Liu W (2019) Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environ Int 123:79–86

    CAS  PubMed  Google Scholar 

  • Yang Y, Zhang W, Tan X, Jiang K, Zhai S, Li Z (2023b) Atomic-level reactive sites for electrocatalytic nitrogen reduction to ammonia under ambient conditions. Coordin Chem Rev 489:215196

    CAS  Google Scholar 

  • Ye J, Rensing C, Su J, Zhu YG (2017) From chemical mixtures to antibiotic resistance. J Environ Sci 62:138–144

    CAS  Google Scholar 

  • Yu H, Qi W, Cao X, Hu J, Li Y, Peng J, Hu C, Qu J (2021) Microplastic residues in wetland ecosystems: Do they truly threaten the plant-microbe-soil system? Environ Int 156:106708

    CAS  PubMed  Google Scholar 

  • Yu X, Zhang Y, Tan L, Han C, Li H, Zhai L, Ma W, Li C, Lu X (2022) Microplastisphere may induce the enrichment of antibiotic resistance genes on microplastics in aquatic environments: a review. Environ Pollut 310:119891

    CAS  PubMed  Google Scholar 

  • Yu X, Zhou Z, Shuai X, Lin Z, Liu Z, Zhou J, Lin Y, Zeng G, Ge Z, Chen H (2023) Microplastics exacerbate co-occurrence and horizontal transfer of antibiotic resistance genes. J Hazard Mater 451:131130

    CAS  PubMed  Google Scholar 

  • Zhang H, Chen S, Zhang Q, Long Z, Yu Y, Fang H (2020) Fungicides enhanced the abundance of antibiotic resistance genes in greenhouse soil. Environ Pollut 259:113877

    CAS  PubMed  Google Scholar 

  • Zhang K, Hu H, Chen G (2022a) Resistance mechanism of microbial disinfectants. Prog Biochem Biophys 49:34–47

    Google Scholar 

  • Zhang M, Zhao Y, Qin X, Jia W, Chai L, Huang M, Huang Y (2019) Microplastics from mulching film is a distinct habitat for bacteria in farmland soil. Sci Total Environ 688:470–478

    ADS  CAS  PubMed  Google Scholar 

  • Zhang R, Yang S, An Y, Wang Y, Lei Y, Song L (2022b) Antibiotics and antibiotic resistance genes in landfills: a review. Sci Total Environ 806:150647

    ADS  CAS  PubMed  Google Scholar 

  • Zhang S, Liu X, Qiu P, Chen B, Xu C, Dong W, Liu T (2022c) Microplastics can selectively enrich intracellular and extracellular antibiotic resistant genes and shape different microbial communities in aquatic systems. Sci Total Environ 822:153488

    ADS  CAS  PubMed  Google Scholar 

  • Zhang S, Zhang W, Ju M, Qu L, Chu X, Huo C, Wang J (2022d) Distribution characteristics of microplastics in surface and subsurface Antarctic seawater. Sci Total Environ 838:156051

    ADS  CAS  PubMed  Google Scholar 

  • Zhang W, Liu X, Liu L, Lu H, Wang L, Tang J (2022e) Effects of microplastics on greenhouse gas emissions and microbial communities in sediment of freshwater systems. J Hazard Mater 435:129030

    CAS  PubMed  Google Scholar 

  • Zhang Y, Gu AZ, He M, Li D, Chen J (2017) Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera. Environ Sci Technol 51:570–580

    ADS  CAS  PubMed  Google Scholar 

  • Zhu Z, Shan L, Zhang X, Hu F, Zhong D, Yuan Y, Zhang J (2021) Effects of bacterial community composition and structure in drinking water distribution systems on biofilm formation and chlorine resistance. Chemosphere 264:128410

    CAS  PubMed  Google Scholar 

Download references

Funding

The study is financially supported by the Program for Shanghai Tongji Gaotingyao Environmental Science and Technology Development Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Jiahao Zhang: writing, analysis, review, and editing; Tianhao Li: writing, review, and editing; Shiyu Tao: review and editing; Maocai Shen: supervision, analysis, and original draft.

Corresponding author

Correspondence to Maocai Shen.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Diane Purchase

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, T., Tao, S. et al. Microplastic pollution interaction with disinfectant resistance genes: research progress, environmental impacts, and potential threats. Environ Sci Pollut Res 31, 16241–16255 (2024). https://doi.org/10.1007/s11356-024-32225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32225-0

Keywords

Navigation