Skip to main content

Advertisement

Log in

Heavy metals/-metalloids (As) phytoremediation with Landoltia punctata and Lemna sp. (duckweeds): coupling with biorefinery prospects for sustainable phytotechnologies

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Heavy metals/-metalloids can result in serious human health hazards. Phytoremediation is green bioresource technology for the remediation of heavy metals and arsenic (As). However, there exists a knowledge gap and systematic information on duckweed-based metal phytoremediation in an eco-sustainable way. Therefore, the present review offers a critical discussion on the effective use of duckweeds (genera Landoltia and Lemna)-based phytoremediation to decontaminate metallic contaminants from wastewater. Phytoextraction and rhizofiltration were the major mechanism in ‘duckweed bioreactors’ that can be dependent on physico-chemical factors and plant-microbe interactions. The biotechnological advances such as gene manipulations can accelerate the duckweed-based phytoremediation process. High starch and protein contents of the metal-loaded duckweed biomass facilitate their use as feedstock in biorefinery. Biorefinery prospects such as bioenergy production, value-added products, and biofertilizers can augment the circular economy approach. Coupling duckweed-based phytoremediation with biorefinery can help achieve Sustainable Development Goals (SDGs) and human well-being.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abadi SAH, Baharlouei J, Najaf P, Ghahsareh AM (2020) An assessment of the effect of Lemna minor, Cyanobacteria Oscillatoria sp and aeration on the elimination of cadmium, nickel and zinc from urban and industrial wastewater. Int J Environ Anal Chem 102(2):546–557

    Google Scholar 

  • Abbas M, Meharg A (2008) Arsenate arsenite and dimethyl arsinic acid (DMA) uptake and tolerance in maize (Zea mays L.). Plant Soil 304:277–289

    CAS  Google Scholar 

  • Abdallah MAM (2012) Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L. Environ Technol 33:1609–1614

    CAS  PubMed  Google Scholar 

  • Acosta K, Appenroth KJ, Borisjuk L, Edelman M, Heinig U, Jansen MA, Oyama,T, Pasaribu B, Schubert I, Sorrels S, Sree KS. (2021). Return of the Lemnaceae: duckweed as a model plant system in the genomics and postgenomics era. Plant Cell 33(10): 3207-3234.

  • Acosta K, Xu J, Gilbert S, Denison E, Brinkman T, Lebeis S et al (2020) Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. PLoS One 15(2):e0228560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed N, Bodrud-Doza M, Islam SMDU, Choudhry MA, Muhib MI, Zahid A, Hossain MM, Deb N, Bhuiyan MAQ (2019) Hydrogeochemical evaluation and statistical analysis of groundwater of Sylhet, north-eastern Bangladesh. Acta Geochim 38(3):440–455

    CAS  Google Scholar 

  • Al-Baldawi IA, Yasin SR, Jasim SS, Abdullah SRS, Almansoory AF (2022) Removal of copper by Azolla filiculoides and Lemna minor: phytoremediation potential, adsorption kinetics and isotherms. Heliyon 8(11):11456

    Google Scholar 

  • Ali H, Khan E (2018) Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environ Chem Lett 16(3):903–917

    MathSciNet  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    ADS  CAS  PubMed  Google Scholar 

  • Ali S, Abbas Z, Rizwan M, Zaheer IE, Yavaş İ, Ünay A, Abdel-Daim MM, Bin-Jumah M, Hasanuzzaman M, Kalderis D (2020) Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability 12(5):1927

    CAS  Google Scholar 

  • Ali Z, Waheed H, Kazi AG, Hayat A, Ahmad M (2016) Duckweed: an efficient hyperaccumulator of heavy metals in water bodies. In: In Plant Metal Interaction. Elsevier, pp 411–429

    Google Scholar 

  • Alka S, Shahir S, Ibrahim N, Ndejiko MJ, Vo DVNA, Manan F (2021) Arsenic removal technologies and future trends: a mini review. J Clean Prod 278:123805

    CAS  Google Scholar 

  • Al-Khafaji MS, Al-Ani FH, Ibrahim AF (2018) Removal of some heavy metals from industrial wastewater by Lemna minor. KSCE J Civ Eng 22(4):1077–1082

    Google Scholar 

  • Alvarado S, Guédez M, Lué-Merú MP, Nelson G, Alvaro A, Jesús AC, Gyula Z (2008) Arsenic removal from waters by bioremediation with the aquatic plants water hyacinth (Eichhornia crassipes) and lesser duckweed (Lemna minor). Bioresour Technol 99(17):8436–8440

    CAS  PubMed  Google Scholar 

  • An D, Li C, Zhou Y, Wu Y, Wang W (2018) Genomes and transcriptomes of duckweeds. Fron Chem 6:230

    ADS  Google Scholar 

  • Ansari AA, Naeem M, Gill SS, AlZuaibr FM (2020) Phytoremediation of contaminated waters: an eco-friendly technology based on aquatic macrophytes application. Egypt J Aquat Res 46:371–376

    Google Scholar 

  • Ashraf S, Afzal M, Naveed M, Shahid M, Zahir ZA (2018) Endophytic bacteria enhance remediation of tannery effluent in constructed wetlands vegetated with Leptochloa fusca. Int J Phytoremediat 20:121–128

    CAS  Google Scholar 

  • ATSDR. (2012). Toxicological profile for cadmium. http://www.atsdr.cdc.gov/toxprofiles/tp5.pdf

  • Azwar E, Mahari WA, Rastegari H, Tabatabaei M, Peng W, Tsang YF, Park YK, Chen WH, Lam SS (2022) Progress in thermochemical conversion of aquatic weeds in shellfish aquaculture for biofuel generation: technical and economic perspectives. Bioresour Technol 344:126202

    CAS  PubMed  Google Scholar 

  • Baek G, Saeed M, Choi HK (2021) Duckweeds: their utilization, metabolites and cultivation. Appl Biol Chem 64(1):1–15

    Google Scholar 

  • Bahrami A, Sathyapalan T, Moallem SA, Sahebkar A (2020) Counteracting arsenic toxicity: curcumin to the rescue? J Hazard Mater 400:123160

    CAS  PubMed  Google Scholar 

  • Bala R, Thukral AK (2011) Phytoremediation of Cr(VI) by Spirodela polyrrhiza (L.) schleiden employing reducing and chelating agents. Int J Phytoremediat 13:465–491

    CAS  Google Scholar 

  • Balen B, Tkalec M, Šikić S, Tolić S, Cvjetko P, Pavlica M, Vidaković-Cifrek Ž (2011) Biochemical responses of Lemna minor experimentally exposed to cadmium and zinc. Ecotoxicology 20(4):815–826

    CAS  PubMed  Google Scholar 

  • Basile A, Sorbo S, Conte B, Cobianchi RC, Trinchella F, Capasso C, Carginale V (2012) Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. Int J Phytoremediat 14(4):374–387

    CAS  Google Scholar 

  • Bleeker PM, Hakvoort HW, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45(6):917–929

    CAS  PubMed  Google Scholar 

  • Böcük H, Yakar A, Türker OC (2013) Assessment of Lemna gibba L.(duckweed) as a potential ecological indicator for contaminated aquatic ecosystem by boron mine effluent. Ecol Indic 29:538–548

    Google Scholar 

  • Bog M, Appenroth K-J, Sree KS (2019) Duckweed (Lemnaceae): its molecular taxonomy. Front Sustain Food Syst 3:117

    Google Scholar 

  • Bokhari SH, Ahmad I, Mahmood-Ul-Hassan M, Mohammad A (2016) Phytoremediation potential of Lemna minor L. for heavy metals. Int J Phytoremediat 18:25–32

    CAS  Google Scholar 

  • Buta E, Borșan IL, Omotă M, Trif EB, Bunea CI, Mocan A, Bora FD, Rózsa S, Nicolescu A (2023) Comparative phytoremediation potential of Eichhornia crassipes, Lemna minor, and Pistia stratiotes in Two Treatment Facilities in Cluj County, Romania. Horticulturae 9(4):503

    Google Scholar 

  • Cabral Pinto MM, Ordens CM, Condesso de Melo MT, Inácio M, Almeida A, Pinto E, Ferreira da Silva EA (2020) An inter-disciplinary approach to evaluate human health risks due to long-term exposure to contaminated groundwater near a chemical complex. Expos Health 12:199–214

    CAS  Google Scholar 

  • Canatto RA, de Oliveira JA, da-Silva CJ, Albino BÉ. (2021) Tolerance of Landoltia punctata to arsenate: an evaluation of the potential use in phytoremediation programs. Int J Phytoremediat 23(1):102–110

    CAS  Google Scholar 

  • Cantó-Pastor A, Mollá-Morales A, Ernst E, Dahl W, Zhai J, Yan Y, Meyers BC, Shanklin J, Martienssen R (2015) Efficient transformation and artificial miRNA gene silencing in Lemna minor. Plant Biol 17:59–65

    PubMed  Google Scholar 

  • Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML (2010) Processing of poly (lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stab 95(2):116–125

    CAS  Google Scholar 

  • Chai Y, Bai M, Chen A, Peng L, Shao J, Shang C, Peng C, Zhang J, Zhou Y (2022) Thermochemical conversion of heavy metal contaminated biomass: fate of the metals and their impact on products. Sci Total Environ 822:153426

    ADS  CAS  PubMed  Google Scholar 

  • Chen F, Gao J, Zhou Q (2012) Toxicity assessment of simulated urban runoff containing polycyclic musks and cadmium in Carassius auratus using oxidative stress biomarkers. Environ Pollut 162:91–97

    CAS  PubMed  Google Scholar 

  • Chen G, Fang Y, Huang J, Zhao Y, Li Q, Lai F, Xu Y, Tian X, He K, Jin Y, Tan L (2018) Duckweed systems for eutrophic water purification through converting wastewater nutrients to high-starch biomass: comparative evaluation of three different genera (Spirodela polyrhiza, Lemna minor and Landoltia punctata) in monoculture or polyculture. RSC Adv 8(32):17927–17937

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Zhao K, Li W, Yan B, Yu Y, Li J, Zhang Y, Xia S, Cheng Z, Lin F, Li L (2022) A review on bioenergy production from duckweed. Biomass Bioenergy 161:106468

    CAS  Google Scholar 

  • Chhandama MV, Rai PK, Lalawmpuii (2023) Coupling bioremediation and biorefinery prospects of microalgae for circular economy. Bioresour Technol Rep 22(12):101479

  • Corona B, Shen L, Reike D, Carreón JR, Worrell E (2019) Towards sustainable development through the circular economy—a review and critical assessment on current circularity metrics. RCR Adv 151:104498

    Google Scholar 

  • Coughlan NE, Walsh É, Ahern R et al (2022b) Flow rate and water depth alters biomass production and phytoremediation capacity of Lemna minor. Plants 11:2170

    PubMed  PubMed Central  Google Scholar 

  • Coughlan NE et al (2022a) Duckweed bioreactors: challenges and opportunities for large-scale indoor cultivation of Lemnaceae. J Cleaner Prod 336:130285

    CAS  Google Scholar 

  • Cui W, Cheng JJ (2015) Growing duckweed for biofuel production: a review. Plant Biol 17:16–23

    PubMed  Google Scholar 

  • Culaba AB, Mayol AP, San Juan JL, Ubando AT, Bandala AA, Concepcion RS II, Alipio M, Chen WH, Show PL, Chang JS (2022) Design of biorefineries towards carbon neutrality: a critical review. Bioresour Technol 369:128256

    PubMed  Google Scholar 

  • da Silva CJ, Canatto RA, Cardoso AA, Ribeiro C, Oliveira JA (2017) Arsenic-hyperaccumulation and antioxidant system in the aquatic macrophyte Spirodela intermedia W. Koch (Lemnaceae). Theor Exp Plant Physiol 29:203–213

    Google Scholar 

  • de Souza TD, Borges AC, Braga AF, Veloso RW, de Matos AT (2019) Phytoremediation of arsenic-contaminated water by Lemna valdiviana: an optimization study. Chemosphere 234:402–408

    ADS  CAS  PubMed  Google Scholar 

  • De Stefani G, Tocchetto D, Salvato M, Borin M (2011) Performance of a floating treatment wetland for in-stream water amelioration in NE Italy. Hydrobiologia 674:157–167

    CAS  Google Scholar 

  • del Carmen F-MM, Luna-González A, Cortés-Espinosa DV, Cortés-Jacinto E, Fierro-Coronado JA, Álvarez-Ruiz P, González-Ocampo HA, Escamilla-Montes R (2014) Bacterial fermentation of Lemna sp. as a potential substitute of fish meal in shrimp diets. Afr J Microbiol Res 8:1516–1526

    Google Scholar 

  • Ding Y, Fang Y, Guo L, Li Z, He K, Zhao Y, Zhao H (2017) Phylogenetic study of Lemnoideae (duckweeds) through complete chloroplast genomes for eight accessions. PeerJ 5:e4186

    PubMed  PubMed Central  Google Scholar 

  • Doganlar ZB (2013) Metal accumulation and physiological responses induced by copper and cadmium in Lemna gibba, L. minor and Spirodela polyrhiza. Chem Speciat Bioavailab 25:79–88

    CAS  Google Scholar 

  • Duman F (2011) Effects of exogenous glycinebetaine and trehalose on lead accumulation in an aquatic plant (Lemna gibba L.). Int J Phytoremediat 13(5):492–497

    MathSciNet  CAS  Google Scholar 

  • Duman F, Aksoy A, Aydin Z, Temizgul R (2011) Effects of exogenous glycinebetaine and trehalose on cadmium accumulation and biological responses of an aquatic plant (Lemna gibba L.). Water Air Soil Pollut 217:545–556

    ADS  CAS  Google Scholar 

  • Dyck IV et al (2023) Uptake of Co, Cs, Mn, Ni and Zn by Lemna minor and their effects on physiological and biochemical functions. Environ Exp Botany 213:105440

    Google Scholar 

  • Ekperusi AO, Sikoki FD, Nwachukwu EO (2019) Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: state and future perspective. Chemosphere 223:285–309

    ADS  CAS  PubMed  Google Scholar 

  • Elless MP, Poynton CY, Willms CA, Doyle MP, Lopez AC, Sokkary DA, Ferguson BW, Blaylock MJ (2005) Pilot-scale demonstration of phytofiltration for treatment of arsenic in New Mexico drinking water. Water Res 39:3863–3872

    CAS  PubMed  Google Scholar 

  • Erakhrumen AA (2007) Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Edu Res Rev 2:151–156

    Google Scholar 

  • Etteieb S, Magdouli S, Zolfaghari M, Brar S (2020) Monitoring and analysis of Selenium as an emerging contaminant in mining industry: A a critical review. Sci Total Environ 698:134339

    ADS  CAS  PubMed  Google Scholar 

  • Fang YY, Babourina O, Rengel Z, Yang XE, Pu PM (2007) Ammonium and nitrate uptake by the foating plant Landoltia punctata. Ann Bot. 99:365–370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farid M et al (2022) Phytoremediation of contaminated industrial wastewater by duckweed (Lemna minor L.): growth and physiological response under acetic acid application. Chemosphere 304:135262

    CAS  PubMed  Google Scholar 

  • Fatoki JO, Adeleke GE, Badmus JA, Afolabi OK, Adedosu OT, Kehinde SA, Adekunle AS (2019) Time–course of sodium arsenate induced hepatotoxicity and nephrotoxicity in male Wistar rats. Microcirculation 9(4):78–91

  • Fatoki JO, Badmus J (2022) Arsenic as an environmental and human health antagonist: A review of its toxicity and disease initiation. J Hazard Mater Adv 5(3):100052

  • Feng L, Yan H, Dai C, Xu W, Gu F, Zhang F, Li T, Xian J, He X, Yu Y, Ma M (2020) The systematic exploration of cadmium accumulation characteristics of maize kernel in acidic soil with different pollution levels in China. Sci Total Environ 729:1–18

    Google Scholar 

  • Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. EEB 87:58–68

    CAS  Google Scholar 

  • Feng W, Xiao K, Zhou W, Zhu D, Zhou Y, Yuan Y, Xiao N, Wan X, Hua Y, Zhao J (2017) Analysis of utilization technologies for Eichhornia crassipes biomass harvested after restoration of wastewater. Bioresour Technol 223:287–295

    CAS  PubMed  Google Scholar 

  • Ferri JM, Garcia-Garcia D, Carbonell-Verdu A, Fenollar O, Balart R (2018) Poly (lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. J Appl Polym Sci 135(4):45751

    Google Scholar 

  • Gerardo B, Cabral Pinto M, Nogueira J, Pinto P, Almeida A, Pinto E, Marinho-Reis P, Diniz L, Moreira PI, Simões MR, Freitas S (2020) Associations between trace elements and cognitive decline: an exploratory 5-year follow-up study of an elderly cohort. Int J Environ Res Public Health 17:1–18

    Google Scholar 

  • Ghosh GC, Khan MJ, Chakraborty TK, Zaman S, Kabir AE, Tanaka H (2020) Human health risk assessment of elevated and variable iron and manganese intake with arsenic-safe groundwater in Jashore, Bangladesh. Sci Rep 10(1):5206

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    PubMed  Google Scholar 

  • Gong X, Huang D, Liu Y, Zeng G, Wang R, Wei J, Huang C, Xu P, Wan J, Zhang C (2018) Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: for heavy metals stabilization and dye adsorption. Bioresour Technol 253:64–71

    CAS  PubMed  Google Scholar 

  • Goswami C, Majumder A, Misra AK, Bandyopadhyay K (2014) Arsenic uptake by Lemna minor in hydroponic system. Int Phytoremediat 16:1221–1227

    CAS  Google Scholar 

  • Gujre N, Rangan L, Mitra S (2021) Occurrence, geochemical fraction, ecological and health risk assessment of cadmium, copper and nickel in soils contaminated with municipal solid wastes. Chemosphere 271:129573

    CAS  PubMed  Google Scholar 

  • Guo L, Ding Y, Xu Y, Li Z, Jin Y, He K, Fang Y, Zhao H (2017) Responses of Landoltia punctata to cobalt and nickel: removal, growth, photosynthesis, antioxidant system and starch metabolism. Aquat Toxicol 190:87–93

    CAS  PubMed  Google Scholar 

  • Gupta C, Prakash D (2013) Duckweed: an effective tool for phyto-remediation. Toxicol Environ Chem 95(8):1256–1266

    CAS  Google Scholar 

  • Hemalatha M, Mohan SV (2022) Duckweed biorefinery–potential to remediate dairy wastewater in integration with microbial protein production. Bioresour Technol 346:126499

    CAS  PubMed  Google Scholar 

  • Hill JM, Hutton B, Steffins K, Rieucau G (2021) Floating along marsh edges: the impact of invasive water hyacinth (Eichornia crassipes) on estuarine species assemblages and predation risk. J Exp Mar Biol Ecol 544:151618

    Google Scholar 

  • Horemans N, Van Hees M, Van Hoeck A, Saenen E, De Meutter T, Nauts R, Blust R, Vandenhove H (2015) Uranium and cadmium provoke different oxidative stress responses in Lemna minor L. Plant Biol 17:1791–1100

  • Hou W, Chen X, Song G, Wang Q, Chang CC (2007) Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol Biochem 45:62–69

    ADS  CAS  PubMed  Google Scholar 

  • Hu H, Li X, Wu S, Yang C (2020a) Sustainable livestock wastewater treatment via phytoremediation: current status and future perspectives. Bioresour Technol 315:123809

    CAS  PubMed  Google Scholar 

  • Hu Y, Li J, Lou B, Wu R, Wang G, Lu C, Wang H, Pi J, Xu Y (2020b) The role of reactive oxygen species in arsenic toxicity. Biomolecules 10:240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Lu L, Tian S, Li S, Liu X, Gao X, Zhou W, Lin X (2019) Cadmium -induced nitric oxide burst enhances Cd tolerance at early stage in roots of a hyperaccumulator Sedum alfredii partially by altering glutathione metabolism. Sci Total Environ 650(2):2761–2770

    ADS  CAS  PubMed  Google Scholar 

  • IARC (2019) International agency for research on cancer. https://www.iarc.who.int. Accessed 17 Mar 2022

  • Iwashita T, Tanaka Y, Tamaki H, Yoneda Y, Makino A, Tateno Y, Li Y, Toyama T, Kamagata Y, Mori K (2020) Comparative analysis of microbial communities in fronds and roots of three duckweed species: Spirodela polyrhiza, Lemna minor, and Lemna aequinoctialis. Microbes Environ 35(3):ME20081

    PubMed  PubMed Central  Google Scholar 

  • Jafari N, Akhavan M (2011) Effect of pH and heavy metal concentration on phytoaccumulation of zinc by three duckweed species. Am Eurasian J Agric Environ Sci 10:34–41

    Google Scholar 

  • Jyothi NO. (2020). Heavy metal sources and their effects on human health.

    Google Scholar 

  • Kafle A, Timilsina A, Gautam A, Adhikari K, Bhattarai A, Aryal N (2022) Phytoremediation: mechanisms, plant selection and enhancement by natural and synthetic agents. Environ Adv 8:100203

    CAS  Google Scholar 

  • Kalcikova G et al (2016) The impact of humic acid on chromium phytoextraction by aquatic macrophyte Lemna minor. Chemosphere 147:311–317

  • Kara YE, Kara IZ (2005) Removal of cadmium from water using duckweed (Lemna trisulca L.). Int J Agric Biol 7:660–662

    CAS  Google Scholar 

  • Karim N (2018) Copper and human health-a review. J Bahria Univ Med Dent Coll 8(2):117–122

    MathSciNet  Google Scholar 

  • Kaur L et al (2013) Effect of pH on Nickel Removal by Lemna minor. J Solid Waste Technol Manag 39(3):161–172

  • Kaur M et al (2019) An integrated approach for efficient conversion of Lemna minor to biogas. Energy Convers Manag 180:25–35

  • Khellaf N, Zerdaoui M (2010) Growth response of the duckweed Lemna gibba L. to copper and nickel phytoaccumulation. Ecotoxicol 19:1363–1368

    CAS  Google Scholar 

  • Kotamraju A, Logan M, Lens PN (2023) Integrated bioprocess for Se (Vi) remediation using duckweed: coupling selenate removal to biogas production. J Hazard Mater 459:132134

    CAS  PubMed  Google Scholar 

  • Krishna KB, Polprasert C (2008) An integrated kinetic model for organic and nutrient removal by duckweed-based wastewater treatment (DUBWAT) system. Ecol Eng 34(3):243–250

    Google Scholar 

  • Kumar S, Deswal S (2020) Phytoremediation capabilities of Salvinia molesta, water hyacinth, water lettuce, and duckweed to reduce phosphorus in rice mill wastewater. Int J Phytoremediat 22:1097–1109

    CAS  Google Scholar 

  • Ladislas S, El-Mufleh A, Gérente C, Chazarenc F, Andrès Y, Béchet B (2012) Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water Air Soil Pollut 223:877–888

    ADS  CAS  Google Scholar 

  • Lahive E, O’Callaghan MJ, Jansen MA, O’Halloran J (2011) Uptake and partitioning of zinc in Lemnaceae. Ecotoxicol 20:1992–2002

    CAS  Google Scholar 

  • Lalawmpuii RPK (2023) Role of water-energy-food nexus in environmental management and climate action. Energy Nexus 11:100230

    Google Scholar 

  • Landolt E (1986) The family of Lemnaceae - a monographic study. In: Biosystematic investigations in the family of duckweeds (Lemnaceae). Veröffentlichungen des Geobotanischen Institutes der Eidg. Technische Hochschule, Stiftung Rübel, vol 1, Zurichhttps. https://agris.fao.org

  • Lange LD, Westinga E (1979) The distinction between Lemna gibba L. and Lemna minor L. on the basis of vegetative characters. Acta Bot Neerl 28:169–176

    Google Scholar 

  • Leão GA, de Oliveira JA, Felipe RT, Farnese FS, Gusman GS (2014) Anthocyanins, thiols, and antioxidant scavenging enzymes are involved in Lemna gibba tolerance to arsenic. J Plant Interact 9:143–151

    Google Scholar 

  • Leblebici Z, Aksoy A (2011) Growth and lead accumulation capacity of Lemna minor and Spirodela polyrhiza (Lemnaceae): interactions with nutrient enrichment. Water Air Soil Pollut 214(1–4):175–184

    ADS  CAS  PubMed  Google Scholar 

  • Les DH, Crawford DJ (1999) Landoltia (Lemnaceae), a new genus of duckweeds. Novon 9:530–533

    Google Scholar 

  • Les DH, Crawford DJ, Landolt E, Gabel JD, Kimball RT (2002) Phylogeny and systematics of Lemnaceae, the duckweed family. Syst Bot 27:221–240

    Google Scholar 

  • Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L (2017) Cobalt toxicity in humans—a review of the potential sources and systemic health effects. Toxicology 387:43–56

    CAS  PubMed  Google Scholar 

  • Li F, He X, Srishti A, Song S, Tan HT, Sweeney DJ, Ghosh S, Wang CH (2021) Water hyacinth for energy and environmental applications: s review. Bioresour Technol 327:124809

    CAS  PubMed  Google Scholar 

  • Li J, Lens PNL, Otero-Gonzalez L, Laing GD (2020) Production of selenium and zinc enriched Lemna and Azolla as potential micronutrient enriched bioproducts. Water Res 172:115522

    CAS  PubMed  Google Scholar 

  • Liu C, Dai Z, Sun H (2017) Potential of duckweed (Lemna minor) for removal of nitrogen and phosphorus from water under salt stress. J Environ Manage 187:497–503

    CAS  PubMed  Google Scholar 

  • Liu Y, Xu H, Yu C, Zhou G (2021) Multifaceted roles of duckweed in aquatic phytoremediation and bioproducts synthesis. Gcb Bioenergy 13(1):70–82

    Google Scholar 

  • Luo ZB, He J, Polle A, Rennenberg H (2016) Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency. Biotechnol Adv 34:1131–1148

    CAS  PubMed  Google Scholar 

  • Lv X, Li S, Yang Q, Zhang S, Su J, Cheng SB, Lai Y, Chen J, Zhan J (2022) Robust, reliable and quantitative sensing of aqueous arsenic species by surface-enhanced Raman spectroscopy: the crucial role of surface silver ions for good analytical practice. Spectrochim Acta - A: Mol Biomol Spectrosc 281:121600

    CAS  PubMed  Google Scholar 

  • Ma Y, Prasad MN, Rajkumar M, Freitas HJ (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258

    CAS  PubMed  Google Scholar 

  • Ma YB, Zhu M, Yu CJ, Wang Y, Liu Y, Li ML, Sun YD, Zhao JS, Zhou GK (2018) Large-scale screening and characterization of Lemna aequinoctialis and Spirodela polyrhiza strains for starch production. Plant Biol 20(2):357–336

    CAS  PubMed  Google Scholar 

  • Mandal BK (2023) Changing concept of arsenic toxicity with development of speciation techniques. In: Handbook of arsenic toxicology. Academic Press, pp 193–222

    Google Scholar 

  • Mao H, Wang J, Wang Z, Zan Y, Lyons G, Zou C (2014) Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China. J Soil Sci Plant Nutr 14(2):459–470

    Google Scholar 

  • Marín CM, Oron G (2007) Boron removal by the duckweed Lemna gibba: a potential method for the remediation of boron-polluted waters. Water Res 41(20):4579–4584

    Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14(3):277–282

    CAS  PubMed  Google Scholar 

  • Miranda A, Muradov N, Gujar A, Stevenson T, Nugegoda D, Ball A, Mouradov A (2014) Application of aquatic plants for the treatment of selenium-rich mining wastewater and production of renewable fuels and petrochemicals. J Sustain Bioenergy Syst 4(1):97–112

    Google Scholar 

  • Miretzky P, Saralegui A, Cirelli AF (2006) Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere 62(2):247–254

    ADS  CAS  PubMed  Google Scholar 

  • Mkandawire M, Dudel E (2005) Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony Germany. Sci Total Environ 336:81–89

    ADS  CAS  PubMed  Google Scholar 

  • Mkandawire M, Lyubun Y, Kosterin P, Dudel E (2004b) Toxicity of arsenic species to Lemna gibba L. and the influence of phosphate on arsenic bioavailability. Environ Toxicol 19:26–34

    ADS  CAS  PubMed  Google Scholar 

  • Mkandawire M, Taubert B, Gert DE (2004a) Capacity of Lemna gibba L. (duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Int J Phytoremed 6(4):347–362

    CAS  Google Scholar 

  • Moraga G, Huysveld S, Mathieux F, Blengini GA, Alaerts L, Van Acker K, De Meester S, Dewulf J (2019) Circular economy indicators: what do they measure? Resour Conserv Recycl 146:452–461

    PubMed  PubMed Central  Google Scholar 

  • Moreno-Rubio N, Ortega-Villamizar D, Marimon-Bolívar W, Bustillo-Lecompte C, Tejeda-Benítez LP (2023) Potential of Lemna minor and Eichhornia crassipes for the phytoremediation of water contaminated with Nickel (II). Environ Monit Assess 195(1):119

    CAS  Google Scholar 

  • Mu D, Liu H, Lin W, Shukla P, Luo J (2020) Simultaneous biohydrogen production from dark fermentation of duckweed and waste utilization for microalgal lipid production. Bioresour Technol 302:122879

    CAS  PubMed  Google Scholar 

  • Muradov N, Taha M, Miranda AF, Kadali K, Gujar A, Rochfort S, Stevenson T, Ball AS, Mouradov A (2014) Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production. Biotechnol Biofuels 7(1):1–17

    Google Scholar 

  • Noraee Z, Jafari A, Ghaderpoori, M. et al (2019) Use of metal-organic framework to remove chromium (VI) from aqueous solutions. J Environ Health Sci Engineer 17:701–709

  • Nyarko E, Boateng CM, Asamoah O, Edusei MO, Mahu E (2023) Potential human health risks associated with ingestion of heavy metals through fish consumption in the Gulf of Guinea. Toxicol Rep 10:117–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Obek E, Sasmaz A (2011) Bioaccumulation of aluminum by Lemna gibba L. from secondary treated municipal wastewater effluents. Bull Environ Contam Toxicol 86(2):217–220

    CAS  PubMed  Google Scholar 

  • Okereafor U, Makhatha M, Mekuto L, Uche-Okereafor N, Sebola T, Mavumengwana V (2020) Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. Int J Environ Res Public Health 17(7):2204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oladoye PO, Olowe OM, Asemoloye MD (2022) Phytoremediation technology and food security impacts of heavy metal contaminated soils: a review of literature. Chemosphere 288:132555

    CAS  PubMed  Google Scholar 

  • Oláh V, Irfan M, Szabó ZB et al (2023) Species- and metal-specific responses of the ionome of three duckweed species under chromate and nickel treatments. Plants 12:180

    PubMed  PubMed Central  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    ADS  CAS  Google Scholar 

  • Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Inter J Surgery 88:105906

    Google Scholar 

  • Pang YL, Quek YY, Lim S, Shuit SH (2023) Review on phytoremediation potential of floating aquatic plants for heavy metals: a promising approach. Sustainability 15:1290

    CAS  Google Scholar 

  • Parnian A, Chorom M, Jaafarzadeh N, Dinarvand M (2016) Use of two aquatic macrophytes for the removal of heavy metals from synthetic medium. Ecohydrol Hydrobiol 16:194–200

    Google Scholar 

  • Pottipati S, Jat N, Kalamdhad AS (2023) Bioconversion of Eichhornia crassipes into vermicompost on a large scale through improving operational aspects of in-vessel biodegradation process: microbial dynamics. Bioresour Technol 374:128767

    CAS  PubMed  Google Scholar 

  • Prasad MNV, Malec P, Waloszek A, Bojko M, Strzałka K (2001) Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci 161:881–889

    CAS  Google Scholar 

  • Qu L, Huang H, Xia F, et al (2018) Risk analysis of heavy metal concentration in surface waters across the ruralurban interface of the Wen-Rui Tang River, China. Environ Pollut 237:639–649

  • Radić S, Babić M, Škobić D, Roje V, Pevalek-Kozlina B (2010) Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxicol Environ Saf 73:336–342

    PubMed  Google Scholar 

  • Rahaman MS, Rahman MM, Mise N, Sikder MT, Ichihara G, Uddin MK, Kurasaki M, Ichihara S (2021) Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ Pollut 289:117940

    CAS  PubMed  Google Scholar 

  • Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83(5):633–646

    ADS  CAS  PubMed  Google Scholar 

  • Rahman MA, Hasegawa H, Ueda K, Maki T, Okumura C, Rahman MM (2007) Arsenic accumulation in duckweed (Spirodela polyrhiza L.): a good option for phytoremediation. Chemosphere 69(3):493–499

    ADS  CAS  PubMed  Google Scholar 

  • Rai PK (2007) Wastewater management through biomass of Azolla pinnata: an eco-sustainable approach. Ambio 36(5):426–428

  • Rai PK (2008) Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int J Phytoremediation 10(5):430–439

    CAS  PubMed  Google Scholar 

  • Rai PK (2018) Heavy metal phyto-technologies from Ramsar wetland plants: green approach. Chem Ecol 34(8):786–796

    CAS  Google Scholar 

  • Rai PK (2019) Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environ Technol Innov 15:100393

    Google Scholar 

  • Rai PK (2021) Heavy metals and arsenic phytoremediation potential of invasive alien wetland plants Phragmites karka and Arundo donax: Water-Energy-Food (WEF) Nexus linked sustainability implications. Bioresour Technol Rep 15:100741

    CAS  Google Scholar 

  • Rai PK, Kim KH, Lee SS, Lee JH (2020) Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. Sci Total Environ 705:135858

    ADS  CAS  PubMed  Google Scholar 

  • Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365–385

    CAS  PubMed  Google Scholar 

  • Rai PK, Mishra A, Tripathi BD (2010) Heavy metals and microbial pollution of river Ganga: a case study on water quality at Varanasi. Aquat Ecosyst Health 13(4):352–361

    CAS  Google Scholar 

  • Rai PK, Song H, Kim KH (2023b) Nanoparticles modulate heavy-metal and arsenic stress in food crops: hormesis for food security/safety and public health. Sci Total Environ 902:166064

    ADS  CAS  PubMed  Google Scholar 

  • Rai PK, Sonne C, Kim KH (2023c) Heavy metals and arsenic stress in food crops: elucidating antioxidative defense mechanisms in hyperaccumulators for food security, agricultural sustainability, and human health. Sci Total Environ 874:162327

    ADS  CAS  PubMed  Google Scholar 

  • Rai PK, Tripathi BD (2007) Removal of heavy metals by the nuisance cyanobacteria Microcystis in continuous cultures: an eco-sustainable technology. Environ Sci 4(1):53–59

    Google Scholar 

  • Rai PK, Tripathi BD (2009) Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from GB Pant Sagar of Singrauli Industrial region, India. Environ Monit Assess 148(1-4):75–84

    CAS  PubMed  Google Scholar 

  • Rai PK et al (2023a) The environmental, socio-economic, and health effects of invasive alien plants: review on Tithonia diversifolia (Hemsl.) A. Gray in Asteraceae. S Afr J Bot 162:461–480

    Google Scholar 

  • Razzak SA, Faruque MO, Alsheikh Z, Alsheikhmohamad L, Alkuroud D, Alfayez A, Hossain SZ, Hossain MM (2022) A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ Adv 7:100168

    CAS  Google Scholar 

  • Rezania S, Taib SM, Din MF, Dahalan FA, Kamyab H (2016) Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599

    CAS  PubMed  Google Scholar 

  • Sahmoune MN (2018) Performance of Streptomyces rimosus biomass in biosorption of heavy metals from aqueous solutions. Microchem J 141:87–95

    CAS  Google Scholar 

  • Sanga VF, Fabian C, Kimbokota F (2023) Heavy metal pollution in leachates and its impacts on the quality of groundwater resources around Iringa municipal solid waste dumpsite. Environ Sci Pollut Res 30:8110–8122

    CAS  Google Scholar 

  • Sarker A et al (2022) Heavy metals contamination and associated health risks in food webs—a review focuses on food safety and environmental sustainability in Bangladesh. Environ Sci Pollut Res 29:3230–3245

    CAS  Google Scholar 

  • Sasmaz KM (2023) Removal of Ag, Au, and As from acid mine water using Lemna gibba and Lemna minor—a performance analysis. Water 15(7):1293

    Google Scholar 

  • Selvarani AJ, Padmavathy P, Srinivasan A, Jawahar P (2015) Performance of duckweed (Lemna minor) on different types of wastewater treatment. Int J Fish Aquat Stud 2(4):208–212

    Google Scholar 

  • Shaji E et al (2021) Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geosci Front 12:101079

    CAS  Google Scholar 

  • Sharma JK, Kumar N, Singh NP, Santal AR (2023) Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: an approach for a sustainable environment. Front Plant Sci 14:1076876

    PubMed  PubMed Central  Google Scholar 

  • Sharma P, Pandey AK, Udayan A, Kumar S (2021) Role of microbial community and metal-binding proteins in phytoremediation of heavy metals from industrial wastewater. Bioresour Technol 326:124750

    CAS  PubMed  Google Scholar 

  • Sharma R, Lenaghan SC (2022) Duckweed: a potential phytosensor for heavy metals. Plant Cell Rep 41:2231–2243

    CAS  PubMed  Google Scholar 

  • Sharma S, Malaviya P (2016) Bioremediation of tannery wastewater by chromium resistant novel fungal consortium. Ecol Eng 91:419–425

    Google Scholar 

  • Sheng PX, Tan LH, Chen JP, Ting YP (2004) Biosorption performance of two brown algae for removal of chromium and cadmium. J Disper Sci Technol 25:681–688

    Google Scholar 

  • Shi J, Zhao D, Ren F, Huang L (2023) Spatiotemporal variation of soil heavy metals in China: the pollution status and risk assessment. Sci Total Environ 871:161768

    ADS  CAS  PubMed  Google Scholar 

  • Silva CS, Moutinho C, Ferreira da Vinha A, Matos C (2019) Trace minerals in human health: iron, zinc, copper, manganese and fluorine. Int J Sci Res Methodol 13(3):57–80

    Google Scholar 

  • Singh A, Vyas D, Malaviya P (2016) Two-stage phyto-microremediation of tannery effluent by Spirodela polyrrhiza (L.) Schleid. and chromium resistant bacteria. Bioresource Technol 216:883–893

    CAS  Google Scholar 

  • Singh D, Gupta R, Tiwari. (2012a) A. Potential of duckweed (Lemna minor) for removal of lead from wastewater by phytoremediation. J Pharm Res 5:1578–1582

    Google Scholar 

  • Singh D, Tiwari A, Gupta R (2012b) Phytoremediation of lead from wastewater using aquatic plants. J Agric Technol 8(1):1–11

    Google Scholar 

  • Singh MK, Dwivedi S, Yadav SS, Yadav RS, Khattri S (2020) Anti-diabetic effect of Emblica-officinalis (Amla) against arsenic induced metabolic disorder in mice. Indian J Clin Biochem 35(2):179–187

    CAS  PubMed  Google Scholar 

  • Singh MM, Rai PK (2016) Microcosm investigation of Fe (iron) removal using macrophytes of Ramsar lake: a phytoremediation approach. Int J Phytoremediat 18(12):1231–1236

    CAS  Google Scholar 

  • Sreelal G, Jayanthi R (2017) Review on phytoremediation technology for removal of soil contaminant. Indian J Sci Res 14:127–130

    CAS  Google Scholar 

  • Stegen, S, Kaparaju P (2020) Effect of temperature on oil quality obtained through pyrolysis of sugarcane bagasse. Fuel 276:118112

  • Su C, Wang J, Chen Z, Meng J, Yin G, Zhou Y, Wang T (2023) Sources and health risks of heavy metals in soils and vegetables from intensive human intervention areas in South China. Sci Total Environ. 857:159389

    ADS  CAS  PubMed  Google Scholar 

  • Subramanyam K, Du Laing G, Van Damme EJ (2019) Sodium selenate treatment using a combination of seed priming and foliar spray alleviates salinity stress in rice. Fron Plant Sci 10(116):1–17

    Google Scholar 

  • Suzuki W, Sugawara M, Miwa K, Morikawa M (2014) Plant growth-promoting bacterium Acinetobacter calcoaceticus P23 increases the chlorophyll content of the monocot Lemna minor (duckweed) and the dicot Lactuca sativa (lettuce). J Biosci Bioeng 118(1):41–44

    CAS  PubMed  Google Scholar 

  • Tang J, Chen C, Chen L, Daroch M, Cui Y (2017) Effects of pH, initial Pb 2+ concentration, and polyculture on lead remediation by three duckweed species. Environ Sci Pollut Res 24:23864–23871

    CAS  Google Scholar 

  • Tang Y, Chen L, Wei X, Yao Q, Li T (2013) Removal of lead ions from aqueous solution by the dried aquatic plant, Lemna perpusilla Torr. J Hazard Mater 244:603–612

    PubMed  Google Scholar 

  • Tchounwou PB (2012) Heavy metal toxicity and the environment. Mol, Clin Environ Toxicol: volume Environ Toxicol 3:133–164

    Google Scholar 

  • Teixeira S, Vieira MN, Marques JE, Pereira R (2014) Bioremediation of an iron rich mine effluent by Lemna minor. Int J Phytoremediat 16:1228–1240

    CAS  Google Scholar 

  • Thakuria A et al (2023) Phytoremediation of toxic chemicals in aquatic environment with special emphasis on duckweed mediated approaches. Int J Phytoremed 25(13):1699–1713

    MathSciNet  Google Scholar 

  • Török A, Gulyás Z, Szalai G, Kocsy G, Majdik C (2015) Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization. J Hazard Mater 299:371–378

    PubMed  Google Scholar 

  • Toyama T, Kuroda M, Ogata Y, Hachiya Y, Quach A, Tokura K, Tanaka Y, Mori K, Morikawa M, Ike M (2017) Enhanced biomass production of duckweeds by inoculating a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23, in sterile medium and non-sterile environmental waters. Water Sci Technol 76(6):1418–1428

    CAS  PubMed  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJ (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    CAS  PubMed  Google Scholar 

  • Tscheikner-Gratl F, Bellos V, Schellart A, Moreno-Rodenas A, Muthusamy M, Langeveld J, Clemens F, Benedetti L, Rico-Ramirez MA, de Carvalho RF, Breuer L (2019) Recent insights on uncertainties present in integrated catchment water quality modelling. Water Res 150:368–379

    CAS  PubMed  Google Scholar 

  • Türker OC, Baran T (2018) A combination method based on chitosan adsorption and duckweed (Lemna gibba L.) phytoremediation for boron (B) removal from drinking water. Int J Phytoremediat 20:175–183

    Google Scholar 

  • Ubuza LJA et al (2020) Assessment of the potential of duckweed (Lemna minor L.) in treating lead-contaminated water through phytoremediation in stationary and recirculated set-ups. Environ Eng Res 25(6):977–982

  • Ud DI et al (2023) Heavy metal(loid)s contamination and potential risk assessment via groundwater consumption in the district of Hangu, Pakistan. Environ Sci Pollut Res 30:33808–33818

    Google Scholar 

  • UNEP (2019) Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation. an introductory guide to decision-makers. Newsletter and Technical Publications Freshwater Management Series No. 2 United Nations Environment Programme Division of Technology, Industry, and Economics. UNEP; U.S. Environmental Protection Agency; Environment Canada. https://digitallibrary.un.org/search

  • Uysal Y, Taner F (2009) Effect of pH, temperature, and lead concentration on the bioremoval of lead from water using Lemna minor. Int J Phytoremediat 11:591–608

    CAS  Google Scholar 

  • Van Hoeck A, Horemans N, Nauts R, Van Hees M, Vandenhove H, Blust R (2017) Lemna minor plants chronically exposed to ionising radiation: RNA -seq analysis indicates a dose rate dependent shift from acclimation to survival strategies. Plant Sci 257:84–95

    PubMed  Google Scholar 

  • Verma R, Suthar S (2014) Synchronized urban wastewater treatment and biomass production using duckweed Lemna gibba L. Ecol Eng 64:337–343

    Google Scholar 

  • Verma R, Suthar S (2015) Lead and cadmium removal from water using duckweed – Lemna gibba L.: impact of pH and initial metal load. Alex Eng J 54:1297–1304

    Google Scholar 

  • Vig N, Ravindra K, Mor S (2023) Heavy metal pollution assessment of groundwater and associated health risks around coal thermal power plant, Punjab, India. Int. J. Environ. Sci. Technol. 20:6259–6274

    CAS  Google Scholar 

  • Vishnoi SR, Srivastava PN (2008) Phytoremediation-green for environmental clean. In: In: The 12th World Lake Conference, pp 1016–1021

    Google Scholar 

  • Wang X, Hu L, Wu D, Huang T, Zhang B, Cai G, Gao G, Liu Z, Huang X, Zhong Z (2022) Large-scale screening and characterization of Cd accumulation and ultrastructural deformation in duckweed. Sci Total Environ 832:154948

    ADS  CAS  PubMed  Google Scholar 

  • WHO. (2003). Iron in drinking water. Assessed from. https://www.who.int/water_sanitati on_health/dwq/chemicals/iron.pdf. (Accessed 25th September, 2022)

  • WHO. (2010). Exposure to cadmium: a major public health concern. http://www.who.int/ipcs/features/cadmium.pdf. (Accessed 29th June, 2022)

  • WHO (2011) Guidelines for drinking-water quality. World Health Organization 216:303–304

    Google Scholar 

  • WHO. (2021). Mercury and human health: educational course. https://www.who.int/europe/publications/i/item/9789289055888 (Accessed 17th July, 2022)

  • Wu TY, Yang MC, Hsu YC (2015) Improvement of cytocompatibility of polylactide by filling with marine algae powder. Mater Sci Eng 50:309–316

    CAS  Google Scholar 

  • Xu H, Yu C, Xia X, Li M, Li H, Wang Y, Wang S, Wang C, Ma Y, Zhou G (2018) Comparative transcriptome analysis of duckweed (Landoltia punctata) in response to cadmium provides insights into molecular mechanisms underlying hyperaccumulation. Chemosphere 190:154–165

    ADS  CAS  PubMed  Google Scholar 

  • Xu X, Gu X, Wang Z, Shatner W, Wang Z (2019) Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae. Renew Sustain Energy Rev 110:65–82

    CAS  Google Scholar 

  • Yadav A, Sharma V, Tsai ML, Chen CW, Sun PP, Nargotra P, Wang JX, Dong CD (2023) Development of lignocellulosic biorefineries for the sustainable production of biofuels: towards circular bioeconomy. Bioresour Technol 381:129145

  • Yadav D, Barbora L, Bora D, Mitra S, Rangan L, Mahanta P (2017) An assessment of duckweed as a potential lignocellulosic feedstock for biogas production. Int Biodeterior Biodegrad 119:253–259

    CAS  Google Scholar 

  • Yamakawa Y, Jog R, Morikawa M (2018) Effects of co-inoculation of two different plant growth-promoting bacteria on duckweed. Plant Growth Regul 86(2):287–296

    CAS  Google Scholar 

  • Yang C, Li R, Cui C, Wu J, Ding Y, Wu Y, Zhang B (2017) The pyrolysis of duckweed over a solid base catalyst: py-GC/MS and TGA analysis. Energy Sources Part A 39(2):177–183

    CAS  Google Scholar 

  • Yang GL, Huang L, Yang X et al (2023a) Transcriptomic and functional analyses of two cadmium hyper-enriched duckweed strains reveal putative cadmium tolerance mechanisms. Int J Mol Sci 24:12157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang GL, Zheng MM, Liao HM, Tan AJ, Feng D, Lv SM (2022) Influence of cadmium and microplastics on physiological responses, ultrastructure and rhizosphere microbial community of duckweed. Ecotoxicol Environ Saf 243:114011

    CAS  PubMed  Google Scholar 

  • Yang X et al (2023b) Physiological response, microbial diversity characterization, and endophytic bacteria isolation of duckweed under cadmium stress. Sci Total Environ 902:166056

    ADS  CAS  PubMed  Google Scholar 

  • Yin Y et al (2015) The influence of light intensity and photoperiod on duckweed biomass and starch accumulation for bioethanol production. Bioresour Technol 187:84–90

    CAS  PubMed  Google Scholar 

  • Yoksan R, Boontanimitr A, Klompong N, Phothongsurakun T (2022) Poly (lactic acid)/thermoplastic cassava starch blends filled with duckweed biomass. Int J Biol Macromol 203:369–378

    CAS  PubMed  Google Scholar 

  • Zeller MA, Hunt R, Sharma S (2013) Sustainable bioderived polymeric materials and thermoplastic blends made from floating aquatic macrophytes such as “duckweed”. J Appl Polym Sci 127(1):375–386

    CAS  Google Scholar 

  • Zhang T, Lu Q, Su C, Yang Y, Hu D, Xu Q (2017) Mercury induced oxidative stress, DNA damage, and activation of antioxidative system and Hsp70 induction in duckweed (Lemna minor). Ecotoxicol Environ Saf 143:46–56

    ADS  CAS  PubMed  Google Scholar 

  • Zhao H, Appenroth K, Landesman L, Salmeán AA, Lam E (2012) Duckweed rising at Chengdu: summary of the 1st international conference on duckweed application and research. Plant Mol Biol 78:627–632

    CAS  PubMed  Google Scholar 

  • Zhao Z, Shi H, Duan D, Li H, Lei T, Wang M (2015) The influence of duckweed species diversity on eco-physiological tolerance to copper exposure. Aquat Toxicol 164:92–98

    CAS  PubMed  Google Scholar 

  • Zhou Q, Li X, Lin Y, Yang C, Tang W, Wu S, Li D, Lou W (2019) Effects of copper ions on removal of nutrients from swine wastewater and on release of dissolved organic matter in duckweed systems. Water Res 158:171–181

    CAS  PubMed  Google Scholar 

  • Zhou Y, Anton S, Olena K, Jianming Xu, Nikolai B. (2023) Duckweeds for phytoremediation of polluted water. Plants 12(3):589

  • Zimmo O (2003) Nitrogen transformations and removal mechanisms in algal and duckweed waste stabilization ponds (Ph.D. thesis). International Institute for Infrastructural Hydraulic and Environmental Engineering, Delft, Netherlands

    Google Scholar 

Download references

Funding

We are thankful to the ‘Department of Science and Technology (DST)-Nexus project WTI; no. DST/TMD/EWO/WTI/2K19/EWFH/2019(C)’ for financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

PKR: conceptualization, investigation, methodology, data curation, formal analysis, and writing—review and editing. ESN: investigation, data curation, formal analysis, and writing—review.

Corresponding author

Correspondence to Prabhat Kumar Rai.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Competing interests

The authors declare no competing interest

Additional information

Responsible Editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, P.K., Nongtri, E.S. Heavy metals/-metalloids (As) phytoremediation with Landoltia punctata and Lemna sp. (duckweeds): coupling with biorefinery prospects for sustainable phytotechnologies. Environ Sci Pollut Res 31, 16216–16240 (2024). https://doi.org/10.1007/s11356-024-32177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32177-5

Keywords

Navigation