Skip to main content
Log in

Interference mechanism of benzo[a]pyrene exposure on the taste substance metabolisms in Ruditapes philippinarum

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Aquatic animals are popular for their unique umami and high-quality protein. However, under the realistic background of increasing marine pollution, whether it affects the aquatic animal tastes, and what the interference mechanism is still remains unknown. Benzo[a]pyrene (B[a]P) is a typical Polycyclic aromatic hydrocarbons (PAHs) with high toxicity. In this study, we investigated the effects of B[a]P (0, 0.8, 4 and 20 μg/L) on the content and taste evaluation of Ruditapes philippinarum taste substances, and clarified the interference mechanism of B[a]P on taste substance metabolisms with transcriptome analysis. The results demonstrated that B[a]P significantly altered the contents and taste activity values (TAVs) of free amino acids (FAAs), 5′-nucleotides, organic acids, flavor peptides, organic bases, sugars and inorganic ions, as well as the gene expressions within their synthesis and decomposition, indicating that B[a]P affected these taste substance contents by interfering with their metabolisms, thereby changing the clam tastes (decreases of umami and sweetness, and increase of bitter taste). This study provided scientific basis for quality assurance of bivalve cultivation and control of marine pollution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Baumard P, Budzinski H, Garrigues P (1998) Polycyclic aromatic hydrocarbons (PAHs) in sediments and mussels of the Western Mediterranean Sea. Environ Toxicol Chem 17(5):765–776

    Article  CAS  Google Scholar 

  • Bi SJ, Chen LP, Sun ZK, Wen YQ, Xue QQ, Xue CH, Li ZJ, Sun C, Wei ZH, Liu HY (2021) Investigating influence of aquaculture seawater with different salinities on non-volatile taste-active compounds in Pacific oyster (Crassostrea gigas). J Food Meas Charact 15(2):2078–2087

    Article  Google Scholar 

  • Bonsignore M, Manta DS, Sharif EAA, D’Agostino F, Traina A, Quinci EM, Giaramita L, Monastero C, Benothman M, Sprovieri M (2018) Marine pollution in the Libyan coastal area: environmental and risk assessment. Mar Pollut Bull 128:340–352

    Article  CAS  PubMed  Google Scholar 

  • Borneff J, Kunt H (1965) Kanzerogene Substanzen in Wasser und Boden. XVII. Uber die Herkunft und Bewerteung der polyzyklischen, aromatischen Kohlenwaserstoffe im Wasser. Archiv fur Hygiene und Bakteriologie 149(3):226–243

    CAS  PubMed  Google Scholar 

  • Cappello T, Maisano M, Mauceri A, Fasulo S (2017) H-1 NMR-based metabolomics investigation on the effects of petrochemical contamination in posterior adductor muscles of caged mussel Mytilus galloprovincialis. Ecotoxicol Environ Saf 142:417–422

    Article  CAS  PubMed  Google Scholar 

  • Chen DW, Su J, Liu XL, Yan DM, Lin Y (2012) Taste evaluation of non-volatile taste compounds in bivalve mollusks from Beibu Gluf, Guangxi. Food Science 33(10):165–168

    CAS  Google Scholar 

  • Chen H, Diao XD, Wang HH, Zhou HL (2018) An integrated metabolomic and proteomic study of toxic effects of Benzo[a]pyrene on gills of the pearl oyster Pinctada martensii. Ecotoxicol Environ Saf 156:330–336

    Article  CAS  PubMed  Google Scholar 

  • Chen LH, Zeng WH, Rong YZ, Lou B (2021) Characterisation of taste-active compositions, umami attributes and aroma compounds in Chinese shrimp. Int J Food Sci Technol 56(12):6311–6321

    Article  CAS  Google Scholar 

  • Chen WW, Li X, Zhao Y, Chen SJ, Yao HZ, Wang H, Wang CL, Wu QY (2022) Effects of short-term low salinity stress on non-volatile flavor substances of muscle and hepatopancreas in Portunus trituberculatus. J Food Compos Anal 109:104520

    Article  CAS  Google Scholar 

  • Costello C, Cao L, Gelcich S, Cisneros-Mata MA, Free CM, Froehlich HE, Golden CD, Ishimura G, Maier J, Macadam-Somer I, Mangin T, Melnychuk MC, Miyahara M, de Moor CL, Naylor R, Nostbakken L, Ojea E, O'Reilly E, Parma AM, Plantinga AJ, Thilsted SH, Lubchenco J (2020) The future of food from the sea. Nature 588(7836):95-+

  • Fan LC, Xiao T, Xian CN, Ding W, Wang XC (2022) Effect of short-term frozen storage on taste of gonads of female Eriocheir sinensis and the classification of taste quality combined with sensory evaluation and fuzzy logic model. Food Chem 378:132105

    Article  CAS  PubMed  Google Scholar 

  • Fasulo S, Iacono F, Cappello T, Corsaro C, Maisano M, DAgata A, Giannetto A, Domenico E, Parrino V, Paro G (2012) Metabolomic investigation of Mytilus galloprovincialis (Lamarck 1819) caged in aquatic environments. Ecotoxicol Environ Saf 84:139-146

  • Grigorakis K (2007) Compositional and organoleptic quality of farmed and wild gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) and factors affecting it: a review. Aquaculture 272(1):55–75

    Article  Google Scholar 

  • Guo H, Liang Z, Zheng PH, Li L, Xian JA, Zhu XW (2021) Effects of nonylphenol exposure on histological changes, apoptosis and time-course transcriptome in gills of white shrimp Litopenaeus vannamei. Sci Total Environ 781:146731

    Article  CAS  PubMed  ADS  Google Scholar 

  • Huang GX, Lai CH, Li JS, Wei FW, Chen YQ (2012) The extract and determined of trimethylamine N-oxide in six sort aquatic animals. Food Sci Technol 37(7):305–307

    CAS  Google Scholar 

  • Ji Y, Hebbring S, Zhu H, Jenkins GD, Biernacka J, Snyder K, Drews M, Fiehn O, Zeng Z, Schaid D, Mrazek DA, Kaddurah-Daouk R, Weinshilboum RM (2011) Glycine and a glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response biomarkers in depression: pharmacometabolomics-informed pharmacogenomics. Clin Pharmacol Ther 89(1):97–104

    Article  CAS  PubMed  Google Scholar 

  • Ji CL, Wu HF, Wei L, Zhao JM, Yu JB (2013) Proteomic and metabolomic analysis reveal gender-specific responses of mussel Mytilus galloprovincialis to 2,2 ’,4,4 ’-tetrabromodiphenyl ether (BDE 47). Aquat Toxicol 140:449–457

    Article  PubMed  Google Scholar 

  • Jiang QC, Zhang WY (2021) Gradual effects of gradient concentrations of polystyrene nanoplastics on metabolic processes of the razor clams. Environ Pollut 286:117631

    Article  Google Scholar 

  • Job V, Marcone GL, Pilone MS, Pollegioni L (2002) Glycine oxidase from Bacillus subtilis: characterization of a new flavoprotein. J Biol Chem 277(9):6985–6993

    Article  CAS  PubMed  Google Scholar 

  • Johanns M, Ruys SPD, Houddane A, Vertommen D, Herinckx G, Hue L, Proud CG, Rider MH (2017) Direct and indirect activation of eukaryotic elongation factor 2 kinase by AMP-activated protein kinase. Cell Signal 36:212–221

    Article  CAS  PubMed  Google Scholar 

  • Kanzari F, Syakti AD, Asia L, Malleret L, Piram A, Mille G, Doumenq P (2014) Distributions and sources of persistent organic pollutants (aliphatic hydrocarbons, PAHs, PCBs and pesticides) in surface sediments of an industrialized urban river (Huveaune), France. Sci Total Environ 478:141–151

    Article  CAS  PubMed  ADS  Google Scholar 

  • Li JS, Yang J, Yan LJ, Lai CH (2012a) Research progress in the fish flavor and product processing related with trimethylamine oxide. Sci Technol Food Ind 33(3):388–390

    CAS  Google Scholar 

  • Li XG, Deng W, Zhou X, Tang XL, Guo XY, Wang Y (2012b) Distribution of PAHs in surface seawater of Qingdao coast area and their preliminary apportionment. Huanjing Kexue 33(3):741–745

    PubMed  Google Scholar 

  • Li BS, Song K, Meng J, Li L, Zhang GF (2017) Integrated application of transcriptomics and metabolomics provides insights into glycogen content regulation in the Pacific oyster Crassostrea gigas. BMC Genomics 18:713

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Morigen (2018) The aspartate-mediated coordination of cell proliferation. Chin J Cell Biol 40(4):573-584

  • Liu Y, Gong XG, Xu YJ, Zhang J, An HG, Zhang XZ (2014) Determination and comparative analysis of flavor-enhancing nucleo-tides and amino acids in three common shellfish from offshore Yantai. J Fish Sci China 21(2):351–360

    CAS  Google Scholar 

  • Liu CS, Meng FT, Tang XM, Shi YH, Wang AM, Gu ZF, Pan Z (2018) Comparison of nonvolatile taste active compounds of wild and cultured mud crab Scylla paramamosain. Fish Sci 84:897–907

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu D, Insel PA (2013) Hydrolysis of extracellular ATP by ectonucleoside triphosphate diphosphohydrolase (ENTPD) establishes the set point for fibrotic activity of cardiac fibroblasts. J Biol Chem 288:19040–19049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiti A, Daschakraborty S (2021) Effect of TMAO on the structure and phase transition of lipid membranes: potential role of TMAO in stabilizing cell membranes under osmotic stress. J Phys Chem B 125:1167–1180

    Article  CAS  PubMed  Google Scholar 

  • Pejaver RK, Watson AH (1994) Glutathione synthetase deficiency - a family report. J R Soc Med 87(3):171–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rampazzo C, Mazzon C, Reichard P, Bianchi V (2002) 5’-Nucleotidases: specific assays for five different enzymes in cell extracts. Biochem Biophys Res Commun 293(1):258–263

    Article  CAS  PubMed  Google Scholar 

  • Sakagishi Y (1995) Alanine aminotransferase (ALT). Nihon rinsho. Jpn J Clin Med 53:1146–1150

    CAS  Google Scholar 

  • Sampaleanu LM, Yu BMN, Howell PL (2002) Mutational analysis of duck delta 2 crystallin and the structure of an inactive mutant with bound substrate provide insight into the enzymatic mechanism of argininosuccinate lyase. J Biol Chem 277(6):4166–4175

    Article  CAS  PubMed  Google Scholar 

  • Sarria-Villa R, Ocampo-Duque W, Paez M, Schuhmacher M (2016) Presence of PAHs in water and sediments of the Colombian Cauca River during heavy rain episodes, and implications for risk assessment. Sci Total Environ 540:455–465

    Article  CAS  PubMed  ADS  Google Scholar 

  • Smith TM, Kirley TL (2006) The calcium activated nucleotidases: a diverse family of soluble and membrane associated nucleotide hydrolyzing enzymes. Purinergic Signal 2(2):327–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun LN, Sun JC, Xu QZ, Li XN, Zhang LB, Yang HS (2017) Metabolic responses to intestine regeneration in sea cucumbers Apostichopus japonicus. Comp Biochem Physiol D-Genom Proteom 22:32–38

    CAS  Google Scholar 

  • Tang JH, Wang X, Yin J, Han YR, Yang J, Lu XY, Xie TC, Akbar S, Lyu K, Yang Z (2019) Molecular characterization of thioredoxin reductase in waterflea Daphnia magna and its expression regulation by polystyrene microplastics. Aquat Toxicol 208:90–97

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Chen AH, Yao GZ, Cao Y, Wu YP, Zhang Y, Cai YX (2016) Comparison and analysis of umami substances of four Meretrix meretrix populations. Mar Sci 40(9):45–52

    Google Scholar 

  • Wang HY, Wang YC, Kuan PL, Tseng YC (2018) Glutamate-glutamine metabolism in Euryhaline Tilapia (Oreochromis mossambicus) muscle under salinity challenges. J Taiwan Fish Res 26(2):33–45

    CAS  Google Scholar 

  • Wu JW, Egusa A, Nishimura T (2022) Carnosine synthase deficiency in mice affects protein metabolism in skeletal muscle. Biochem Biochem Res Commun 612:22–29

    Article  CAS  Google Scholar 

  • Xiao DF, Zeng LM, Yao K, Kong XF, Wu GY, Yin YL (2016) The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications. Amino Acids 48(9):2067–2080

    Article  CAS  PubMed  Google Scholar 

  • Xie F, Xiao P, Chen D, Xu L, Zhang B (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80:75–84

    Article  CAS  Google Scholar 

  • Yan XW (2005) The culture biology and technology and selective breeding in Manila clam Ruditapes philippinarum. Institute of Oceanology, Chinese Academy of Science

    Google Scholar 

  • Yao LL, Pan LQ, Guo RM, Miao JL (2017) Expression profiles of different glutathione S-transferase isoforms in scallop Chlamys farreri exposed to benzo a pyrene and chrysene in combination and alone. Ecotoxicol Environ Saf 142:480–488

    Article  CAS  PubMed  Google Scholar 

  • Yong-Kook K, Young-Sang J, Jong-Chul P, Jungju S, Man-Sik C (2012) Characterizing the effect of heavy metal contamination on marine mussels using metabolomics. Mar Pollut Bull 64(9):1874–1879

    Article  Google Scholar 

  • Yu N, Ding QQ, Li EC, Qin JG, Wang XD (2018) Growth, energy metabolism and transcriptomic responses in Chinese mitten crab (Eriocheir sinensis) to benzo[a]pyrene (BaP) toxicity. Aquat Toxicol 203:150–158

    Article  CAS  PubMed  Google Scholar 

  • Zhang MX, Wang XC, Liu Y (2012) Determination of the carnosine and glutathione from Takifugu obscurus by thin layer chromatography and high performance liquid chromatography. Nat Product Res Dev 24:928–932

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (32273106).

Author information

Authors and Affiliations

Authors

Contributions

Yaqi Bi: Conceptualization, Methodology, Investigation, Formal analysis, Resources, Writing—original draft. Aimin Song: Conceptualization, Methodology, Resources. Luqing Pan: Conceptualization, Resources. Jingjing Miao: Conceptualization, Resources, Writing—review & editing. Yueyao Zhou: Conceptualization, Writing—review & editing. Zeyuan Li: Investigation.

Corresponding author

Correspondence to Luqing Pan.

Ethics declarations

Ethics approval and consent to participate

All experimental procedures were conducted in conformity with institutional guidelines for the care and use of laboratory animals, and protocols were approved by the Institutional Animal Care and Use Committee in Ocean University of China, Qingdao, China.

Consent for publication

Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Bruno Nunes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Firstly analyzed the effects of POPs on change features of bivalve taste substances.

• Firstly clarified the impact mechanism of POPs on bivalve taste substance metabolism.

• Affirmed the impact difference of POPs on taste substances in different sex bivalves.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, Y., Song, A., Pan, L. et al. Interference mechanism of benzo[a]pyrene exposure on the taste substance metabolisms in Ruditapes philippinarum. Environ Sci Pollut Res 31, 12019–12035 (2024). https://doi.org/10.1007/s11356-024-31906-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-31906-0

Keywords

Navigation