Skip to main content

Advertisement

Log in

Evaluation of metal pollution characteristics using water and moss in the Luanchuan molybdenum mining area, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Luanchuan is rich in molybdenum resources, and mining activities are frequent, but over-mining can cause serious metal pollution to the local environment. To explore the degree of metal pollution caused by mining activities, the content characteristics and spatial distribution of metals in mining areas were studied by measuring the concentrations of Fe, Mn, Zn, Ba, Mo, Cu, Cr, Co, V, and W in surface water and mosses of mining areas. In addition, the metal pollution index (HPI), contamination factor (CF), and pollution load index (PLI) were used to evaluate metal pollution, and factor analysis was used to analyze the sources of metals. The results of the analysis of surface water at the mine site indicate the most abundant element in surface water, with a maximum concentration of 3713.8 μg/L, and its content far exceeds the water quality standard of Class III of the Environmental Quality Standard for Surface Water. The results of the HPI analysis showed that nearly 90% of the surface water was moderately contaminated (HPI ≥ 15). The results of the analysis of atmospheric deposition at the mine site confirm that the metal elements with a high threat to the atmospheric environment are Mo and W. The results of PLI indicate that the level of atmospheric deposition pollution in the study area is severe (PLI > 4). Factor analysis indicated that rock weathering and mining activities were the main sources of metals. This study provides a theoretical basis for the investigation and control of metal pollution in similar metal mining areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data underlying this article are available in the article and in its online supplementary material.

References  

  • Balabanova B, Stafilov T, Šajn R, Bačeva K (2011) Distribution of chemical elements in attic dust as reflection of their geogenic and anthropogenic sources in the vicinity of the copper mine and flotation plant. Arch Environ Con Tox 61:173–184

    Article  CAS  Google Scholar 

  • Bekteshi L, Lazo P, Qarri F, Stafilov T (2015) Application of the normalization process in the survey of atmospheric deposition of metals in Albania through moss biomonitoring. Ecol Indic 56:50–59

    Article  CAS  Google Scholar 

  • Calabrese SD, Alessandro W, Bellomo S, Brusca L, Martin RS, Saiano F, Parello F (2015) Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 1 – major and trace element composition. CHEMOSPHERE 119:1447–1455

    Article  CAS  Google Scholar 

  • Cao H, Zhang S, Santosh M, Zheng L, Tang L, Li D, Zhang X, Zhang Y (2015) The Luanchuan Mo–W–Pb–Zn–Ag magmatic–hydrothermal system in the East Qinling metallogenic belt, China: constrains on metallogenesis from C-H–O–S–Pb isotope compositions and Rb–Sr isochron ages. J Asian Earth Sci 111:751–780

    Article  Google Scholar 

  • Carballeira JAFX, Ndez A (2001) Evaluation of contamination, by different elements, in terrestrial mosses. Arch Environ Con Tox 40:461–468

    Article  Google Scholar 

  • Castillo S, de la Rosa JD, Sánchez De La Campa AM, González-Castanedo Y, Fernández-Caliani JC, Gonzalez I, Romero A (2013) Contribution of mine wastes to atmospheric metal deposition in the surrounding area of an abandoned heavily polluted mining district (Rio Tinto mines, Spain). Sci Total Environ 449:363–372

    Article  CAS  Google Scholar 

  • Chen F, Taylor WD, Anderson WB, Huck PM (2013) Application of fingerprint-based multivariate statistical analyses in source characterization and tracking of contaminated sediment migration in surface water. Environ Pollut 179:224–231

    Article  CAS  Google Scholar 

  • Chen Y, Cui J, Yang J, Zhang Z, Yuan M, Song C, Yang H, Liu H, Wang C, Zhang H, Zeng X, Yuan S (2015) Biomonitoring heavy metal contaminations by moss visible parameters. J Hazard Mater 296:201–209

    Article  CAS  Google Scholar 

  • Chen M, Li F, Tao M, Hu L, Shi Y, Liu Y (2019) Distribution and ecological risks of metals in river sediments and overlying water in typical mining areas of China. Mar Pollut Bull 146:893–899

    Article  CAS  Google Scholar 

  • China MEP (2002) Environmental quality standards for surface water. Ministry of Environmental Protection of China, Beijing

    Google Scholar 

  • China MEP (2009) Water and wastewater analysis methods. China Environmental Science Press, Beijing

    Google Scholar 

  • China MEP (2013) Water quality digestion of total metals-nitric acid digestion method. China Environmental Science Press, Beijing

    Google Scholar 

  • Comess S, Donovan G, Gatziolis D, Deziel NC (2021) Exposure to atmospheric metals using moss bioindicators and neonatal health outcomes in Portland. Oregon ENVIRON POLLUT 284:117343

    Article  CAS  Google Scholar 

  • Concas A, Ardau C, Cristini A, Zuddas P, Cao G (2006) Mobility of metals from tailings to stream waters in a mining activity contaminated site. Chemosphere 63:244–253

    Article  CAS  Google Scholar 

  • Cowden P, Aherne J (2019) Assessment of atmospheric metal deposition by moss biomonitoring in a region under the influence of a long standing active aluminium smelter. Atmos Environ 201:84–91

    Article  CAS  Google Scholar 

  • Dołhańczuk-Śródka A, Ziembik Z, Kříž J, Hyšplerova L, Wacławek M (2015) Pb-210 isotope as a pollutant emission indicator / Izotop Pb-210 Jako Znacznik Emisji Zanieczyszczeń. Ecol Chem Eng S 22:73–81

    Google Scholar 

  • Du Y, Chen L, Ding P, Liu L, He Q, Chen B, Duan Y (2019) Different exposure profile of metal and health risk between residents near a Pb-Zn mine and a Mn mine in Huayuan county, South China. Chemosphere 216:352–364

    Article  CAS  Google Scholar 

  • Duffus JH (2002) “Heavy metals” - a meaningless term? (IUPAC technical report). Pure Appl Chem 74:793–807

    Article  CAS  Google Scholar 

  • Fei J, Min X, Wang Z, Pang Z, Liang Y, Ke Y (2017) Health and ecological risk assessment of metals pollution in an antimony mining region: a case study from South China. Environ Sci Pollut R 24:27573–27586

    Article  CAS  Google Scholar 

  • Gerdol R, Bragazza L, Marchesini R, Alber R, Bonetti L, Lorenzoni G, Achilli M, Buffoni A, De Marco N, Franchi M, Pison S, Giaquinta S, Palmieri F, Spezzano P (2000) Monitoring of metal deposition in Northern Italy by moss analysis. Environ Pollut 108:201–208

    Article  CAS  Google Scholar 

  • Guo C, Chen Y, Xia W, Qu X, Yuan H, Xie S, Lin L (2020) Eutrophication and metal pollution patterns in the water suppling lakes of China’s south-to-north water diversion project. Sci Total Environ 711:134543

    Article  CAS  Google Scholar 

  • Han Z, Wan D, Tian H, He W, Wang Z, Liu Q (2019) Pollution assessment of heavy metals in soils and plants around a molybdenum mine in Central China. Pol J Environ Stud 28:123–133

    Article  CAS  Google Scholar 

  • Huo M, Yang J, Zhang X (2007) Development present situation of molybdenum ore in China and disposal of tailings. Express Inform Min Industr 8:1–3

    Google Scholar 

  • Jiang Y, Fan M, Hu R, Zhao J, Wu Y (2018) Mosses are better than leaves of vascular plants in monitoring atmospheric metal pollution in urban areas. Int J Environ Res Public Health 15:1105

    Article  Google Scholar 

  • Kapusta P, Stanek M, Szarek-Łukaszewska G, Godzik B (2019) Long-term moss monitoring of atmospheric deposition near a large steelworks reveals the growing importance of local non-industrial sources of pollution. Chemosphere 230:29–39

    Article  CAS  Google Scholar 

  • Karaouzas I, Kapetanaki N, Mentzafou A, Kanellopoulos TD, Skoulikidis N (2021) Metal contamination status in Greek surface waters: a review with application and evaluation of pollution indices. Chemosphere 263:128192

    Article  CAS  Google Scholar 

  • LaxmiMohanta V, Naz A, Kumar Mishra B (2020) Distribution of metals in the water, sediments, and fishes from Damodar river basin at steel city, India: a probabilistic risk assessment. HUM ECOL RISK ASSESS 26:406–429

    Article  CAS  Google Scholar 

  • Lazo P, Stafilov T, Qarri F, Allajbeu S, Bekteshi L, Frontasyeva M, Harmens H (2019) Spatial distribution and temporal trend of airborne trace metal deposition in Albania studied by moss biomonitoring. Ecol Indic 101:1007–1017

    Article  CAS  Google Scholar 

  • Li R, Tang X, Guo W, Lin L, Zhao L, Hu Y, Liu M (2020) Spatiotemporal distribution dynamics of metals in water, sediment, and zoobenthos in mainstream sections of the middle and lower Changjiang River. Sci Total Environ 714:136779

    Article  CAS  Google Scholar 

  • Liu H, Wang Y, Pang S, Wang X, He J, Zhang J, Rodriguez-Dono A (2022) Mining footprint of the underground longwall caving extraction method: a case study of a typical industrial coal area in China. J Hazard Mater 425:127762

    Article  CAS  Google Scholar 

  • Mahapatra B, Dhal NK, Dash AK, Panda BP, Panigrahi KCS, Pradhan A (2019) Perspective of mitigating atmospheric metal pollution: using mosses as biomonitoring and indicator organism. ENVIRON SCI POLLUT R 26:29620–29638

    Article  Google Scholar 

  • Miranda LS, Ayoko GA, Egodawatta P, Goonetilleke A (2022) Adsorption-desorption behavior of metals in aquatic environments: influence of sediment, water and metal ionic properties. J HAZARD MATER 421:126743

    Article  CAS  Google Scholar 

  • Mohan SV, Nithila P, Reddy SJ (1996) Estimation of metals in drinking water and development of metal pollution index. Journal of Environmental Science and Health. Part a: Environ Sci Eng Toxicol 31:283–289

    Google Scholar 

  • Mokhtari AR, Feiznia S, Jafari M, Tavili A, Ghaneei-Bafghi M, Rahmany F, Kerry R (2018) Investigating the role of wind in the dispersion of metals around mines in arid regions (a case study from Kushk Pb–Zn Mine, Bafgh, Iran). B Environ Contam Tox 101:124–130

    Article  CAS  Google Scholar 

  • Mróz T, Szufa K, Frontasyeva MV, Tselmovich V, Ostrovnaya T, Kornaś A, Olech MA, Mietelski JW, Brudecki K (2018) Determination of element composition and extraterrestrial material occurrence in moss and lichen samples from King George Island (Antarctica) using reactor neutron activation analysis and SEM microscopy. Environ Sci Pollut Res Int 25:436–446

    Article  Google Scholar 

  • Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Tovar PJ, Bech J (2008) Abandoned mine sites as a source of contamination by metals: a case study in a semi-arid zone. J Geochem Explor 96:183–193

    Article  CAS  Google Scholar 

  • Prasad B, Bose J (2001) Evaluation of the metal pollution index for surface and spring water near a limestone mining area of the lower Himalayas. Environ Geol 41:183–188

    Article  CAS  Google Scholar 

  • Punia A (2021) Role of temperature, wind, and precipitation in metal contamination at copper mines: a review. Environ Sci Pollut R 28:4056–4072

    Article  CAS  Google Scholar 

  • Qarri F, Lazo P, Bekteshi L, Stafilov T, Frontasyeva M, Harmens H (2015) The effect of sampling scheme in the survey of atmospheric deposition of metals in Albania by using moss biomonitoring. Environ Sci Pollut R 22:2258–2271

    Article  CAS  Google Scholar 

  • Qiao P, Yang S, Wei W, Li P, Cheng Y, Liang S, Lei M, Chen T (2021) Effectiveness of predicting spatial contaminant distributions at industrial sites using partitioned interpolation method. Environ Geochem Hlth 43:23–36

    Article  CAS  Google Scholar 

  • Qu L, Huang H, Xia F, Liu Y, Dahlgren RA, Zhang M, Mei K (2018) Risk analysis of metal concentration in surface waters across the rural-urban interface of the Wen-Rui Tang River, China. Environ Pollut 237:639–649

    Article  CAS  Google Scholar 

  • Rahman MM, Dong Z, Naidu R (2015) Concentrations of arsenic and other elements in groundwater of Bangladesh and West Bengal, India: potential cancer risk. Chemosphere 139:54–64

    Article  CAS  Google Scholar 

  • Ran H, Guo Z, Yi L, Xiao X, Zhang L, Hu Z, Li C, Zhang Y (2021) Pollution characteristics and source identification of soil metal(loid)s at an abandoned arsenic-containing mine. China J Hazard Mater 413:125382

    Article  CAS  Google Scholar 

  • Ren X, Wang J, Zhong Q, Bi Q, Zhu R, Du J (2021) Radionuclide and trace metal accumulation in a variety of mosses used as bioindicators for atmospheric deposition. Sci Total Environ 797:149224

    Article  CAS  Google Scholar 

  • Ruhela M, Sharma K, Bhutiani R, Chandniha SK, Kumar V, Tyagi K, Ahamad F, Tyagi I (2022) GIS-based impact assessment and spatial distribution of air and water pollutants in mining area. Environ Sci Pollut R 29:31486–31500

    Article  CAS  Google Scholar 

  • Sabovljević MS, Weidinger M, Sabovljević AD, Stanković J, Adlassnig W, Lang I (2020) Metal accumulation in the acrocarp moss Atrichum undulatum under controlled conditions. ENVIRON POLLUT 256:113397

    Article  Google Scholar 

  • Sánchez De La Campa AM, Sánchez-Rodas D, González Castanedo Y, de la Rosa JD (2015) Geochemical anomalies of toxic elements and arsenic speciation in airborne particles from Cu mining and smelting activities: Influence on air quality. J Hazard Mater 291:18–27

    Article  Google Scholar 

  • Sappa G, Ergul S, Ferranti F (2014) Geochemical modeling and multivariate statistical evaluation of trace elements in arsenic contaminated groundwater systems of Viterbo Area, (Central Italy). Springerplus 3:237

    Article  Google Scholar 

  • Sharifi Z, Hossaini SMT, Renella G (2016) Risk assessment for sediment and stream water polluted by metals released by a municipal solid waste composting plant. J Geochem Explor 169:202–210

    Article  CAS  Google Scholar 

  • Shukla K, Kumar P, Mann GS, Khare M (2020) Mapping spatial distribution of particulate matter using Kriging and Inverse Distance Weighting at supersites of megacity Delhi. Sustain Cities Soc 54:101997

    Article  Google Scholar 

  • Singh UK, Kumar B (2017) Pathways of metals contamination and associated human health risk in Ajay River basin, India. Chemosphere 174:183–199

    Article  CAS  Google Scholar 

  • Smith KS (2007) Strategies to predict metal mobility in surficial mining environments. Rev Eng Geol 17:25–45

    Google Scholar 

  • Song Z, Song G, Tang W, Yan D, Zhao Y, Zhu Y, Wang J, Ma Y (2021) Molybdenum contamination dispersion from mining site to a reservoir. Ecotox Environ Safe 208:111631

    Article  CAS  Google Scholar 

  • Steenstra P, Strigul N, Harrison J (2020) Tungsten in Washington State surface waters. Chemosphere 242:125151

    Article  CAS  Google Scholar 

  • Sun Z, Xie X, Wang P, Hu Y, Cheng H (2018) Metal pollution caused by small-scale metal ore mining activities: a case study from a polymetallic mine in South China. Sci Total Environ 639:217–227

    Article  CAS  Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen 33:566–575

    Article  Google Scholar 

  • Uugwanga MN, Kgabi NA (2021) Metal pollution index of surface and groundwater from around an abandoned mine site, Klein Aub. Phys Chem Earth Parts a/b/c 124:103067

    Article  Google Scholar 

  • Varol M (2011) Assessment of metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364

    Article  CAS  Google Scholar 

  • Varol M (2013) Dissolved metal concentrations of the Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin, Turkey. Chemosphere 93:954–962

    Article  CAS  Google Scholar 

  • Wang B, Tian Z (2000) The exploitation and utilization of Luanchuan molybdenum ore field. China Molybdenu Mindustry 5:5–9

    Google Scholar 

  • Wang G, Li R, Carranza EJM, Zhang S, Yan C, Zhu Y, Qu J, Hong D, Song Y, Han J, Ma Z, Zhang H, Yang F (2015) 3D geological modeling for prediction of subsurface Mo targets in the Luanchuan district, China. Ore Geol Rev 71:592–610

    Article  Google Scholar 

  • Wang X, Zhang L, Zhao Z, Cai Y (2018) Metal pollution in reservoirs in the hilly area of southern China: distribution, source apportionment and health risk assessment. Sci Total Environ 634:158–169

    Article  CAS  Google Scholar 

  • Wang S, Li B, Zhang X, Wang P, Chao W, Ye H, Yang Y (2019) Genesis of the Huoshenmiao Mo deposit in the Luanchuan ore district, China: constraints from geochronology, fluid inclusion, and H-O–S isotopes. Geosci Front 10:331–349

    Article  CAS  Google Scholar 

  • Wang H, Zhang H, Tang HY, Wen JW, Li AN (2021) Heavy metal pollution characteristics and health risk evaluation of soil around a tungsten-molybdenum mine in Luoyang. China. Environ Earth Sci 80:293

    Article  Google Scholar 

  • WHO World Health Organisation (2017) Guidelines for drinking-water quality: fourth edition incorporating the first addendum. World Health Organization, Geneva

  • Wijngaard RR, van der Perk M, van der Grift B, de Nijs T, Bierkens M (2017) The impact of climate change on metal transport in a lowland catchment. Water Air Soil Poll 228:107

  • Wróbel A, Dołhańczuk-Śródka A, Kłos A, Ziembik Z (2015) The activity concentration of post-Chernobyl 137Cs in the area of the Opole Anomaly (southern Poland). Environ Monit Assess 187:4084

  • Wu J, Lu J, Zhang C, Zhang Y, Lin Y, Xu J (2020) Pollution, sources, and risks of metals in coastal waters of China. Hum Ecol Risk Assess 26:2011–2026

    Article  CAS  Google Scholar 

  • Xiao J, Han X, Sun S, Wang L, Rinklebe J (2021) Metals in different moss species in alpine ecosystems of Mountain Gongga, China: geochemical characteristics and controlling factors. Environ Pollut 272:115991

    Article  CAS  Google Scholar 

  • Xie F, Yu M, Yuan Q, Meng Y, Qie Y, Shang Z, Luan F, Zhang D (2022) Spatial distribution, pollution assessment, and source identification of metals in the Yellow River. J HAZARD MATER 436:129309

    Article  CAS  Google Scholar 

  • Yang F, Wang G, Cao H, Li R, Tang L, Huang Y, Zhang H, Xue F, Jia W, Guo N (2017) Timing of formation of the Hongdonggou Pb-Zn polymetallic ore deposit, Henan Province, China: evidence from Rb-Sr isotopic dating of sphalerites. Geosci Front 8:605–616

    Article  Google Scholar 

  • Yang W, Ding K, Zhang P, Qiu H, Cloquet C, Wen H, Morel J, Qiu R, Tang Y (2019) Cadmium stable isotope variation in a mountain area impacted by acid mine drainage. Sci Total Environ 646:696–703

    Article  CAS  Google Scholar 

  • Yang L, Wei T, Li S, Lv Y, Miki T, Yang L, Nagasaka T (2021) Immobilization persistence of Cu, Cr, Pb, Zn ions by the addition of steel slag in acidic contaminated mine soil. J HAZARD MATER 412:125176

    Article  CAS  Google Scholar 

  • Yin S, Wu Y, Xu W, Li Y, Shen Z, Feng C (2016) Contribution of the upper river, the estuarine region, and the adjacent sea to the metal pollution in the Yangtze Estuary. Chemosphere 155:564–572

    Article  CAS  Google Scholar 

  • Yin K, Shi Z, Zhang M, Li Y (2020) Effects of mining on the molybdenum absorption and translocation of plants in the Luanchuan molybdenum mine. PeerJ 8:e9183

    Article  Google Scholar 

  • Yu C, Zhao W, Gao X, Cheng S, Xie D, Ma P (2018) Distribution characteristics and health risk assessment of metals in drinking water sources from the Luhun Reservoir. Environ Sci 39:89–98

    CAS  Google Scholar 

  • Zeider K, Van Overmeiren N, Rine KP, Sandhaus S, Eduardo Sáez A, Sorooshian A, Muñoz HC, Ramírez-Andreotta MD (2021) Foliar surfaces as dust and aerosol pollution monitors: an assessment by a mining site. SCI TOTAL ENVIRON 790:148164

    Article  CAS  Google Scholar 

  • Zeng Q, Liu J, Qin K, Fan H, Chu S, Wang Y, Zhou L (2013) Types, characteristics, and time-space distribution of molybdenum deposits in China. Int Geol Rev 55:1311–1358

    Article  Google Scholar 

  • Zhan Q, Gao X, Meng L, Zhao T (2021) Ore genesis and fluid evolution of the Sandaozhuang supergiant W-Mo skarn deposit, southern margin of the North China Craton: insights from scheelite, garnet and clinopyroxene geochemistry. Ore Geol Rev 139:104551

    Article  Google Scholar 

  • Zhang Y, Tong CF (2018) Stomach content characteristics and feeding preference of Chiromantes dehaani in the salt marsh of Yangtze estuary. Chin J Ecol 37:2059–2066

    Google Scholar 

  • Zhang C, Qiao Q, Piper JDA, Huang B (2011) Assessment of metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environ Pollut 159:3057–3070

    Article  CAS  Google Scholar 

  • Zhang Z, Wang G, Ma Z, Gong X (2018) Interactive 3D modeling by integration of geoscience datasets for exploration targeting in Luanchuan Mo polymetallic district, China. Nat Resour Res 27:315–346

    Article  Google Scholar 

  • Zhu G, Wu X, Ge J, Liu F, Zhao W, Wu C (2020) Influence of mining activities on groundwater hydrochemistry and metal migration using a self-organizing map (SOM). J Clean Prod 257:120664

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (No. 2020YFC1908801).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HS; methodology: SX and LR; formal analysis and investigation: SX and LR; writing—original draft preparation: SX and JC; writing—review and editing: MZ and GS; funding acquisition: HS; resources: BX; supervision: HS.

Corresponding author

Correspondence to Shilong He.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 82 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., He, S., Li, R. et al. Evaluation of metal pollution characteristics using water and moss in the Luanchuan molybdenum mining area, China. Environ Sci Pollut Res 31, 5384–5398 (2024). https://doi.org/10.1007/s11356-023-31457-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-31457-w

Keywords

Navigation