Skip to main content
Log in

Black carbon: a general review of its sources, analytical methods, and environmental effects in snow and ice in the Tibetan Plateau

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Tibetan Plateau (TP) is known as the water tower of Asia, and glaciers are solid reservoirs that can regulate the amount of water. Black carbon (BC), as one of the important factors accelerating glacier melting, is causing evident environmental effects in snow and ice. However, a systematical summary of the potential sources, analytical methods, distributions, and environmental effects of BC in snow and ice on the TP’s glaciers is scarce. Therefore, this study drew upon existing research on snow and ice BC on glaciers of the TP to describe the detection methods and uncertainties associated with them to clarify the concentrations of BC in snow and ice and their climatic effects. The primary detection methods are the optical method, the thermal–optical method, the thermochemical method, and the single-particle soot photometer method. However, few studies have systematically compared the results of BC and this study found that concentrations of BC in different types of snow and ice varied by 1–3 orders of magnitude, which drastically affected the regional hydrologic process by potentially accelerating the ablation of glaciers by approximately 15% and reducing the duration of snow accumulation by 3–4 days. In general, results obtained from the various testing methods differ drastically, which limited the systematical discussion. Accordingly, a universal standard for the sampling and measurement should be considered in the future work, which will be beneficial to facilitate the comparison of the spatiotemporal features and to provide scientific data for the model-simulated climatic effects of BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data and materials are available from the corresponding author and it will be provided upon request.

References

  • Arctic Monitoring and Assessment Programme (AMAP) (2021) AMAP assessment 2021: Impacts of short-lived climate forcers on Arctic climate, air quality and human health. Tromsø, Norway. x + 375pp

  • Bond TC et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res-Atmos 118:5380–5552

    CAS  Google Scholar 

  • Cachier H, Pertuisot MH (1994) Particulate carbon in artic ice: ice archives in Antarctica and Greenland. Analusis 22:M34–M37

  • Cadle SH, Groblicki PJ (1982) An evaluation of methods for the determination of organic and elemental carbon in particulate samples. In: Wolff GT, Klimisch RL (eds) Particulate carbon: atmospheric life cycle. Springer US, Boston, MA, pp 89–109

    Google Scholar 

  • Chen JZ, Qin X, Kang SC, Du WT, Sun WJ, Liu YS (2020) Potential effect of black carbon on glacier mass balance during the past 55 years of Laohugou Glacier No. 12, Western Qilian Mountains. J Earth Sci 31:410–418

    CAS  Google Scholar 

  • Chen WQ, Wang X, Cui JC, Cao XY, Pu W, Zheng X, Ran HF, Ding JL (2021) Radiative forcing of black carbon in seasonal snow of wintertime based on remote sensing over Xinjiang, China. Atmos Environ 247:118204

    CAS  Google Scholar 

  • Chow JC, Watson JG, Chen LW, Chang MC, Robinson NF, Trimble D, Kohl S (2007) The IMPROVE_a temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. J Air Waste Manag Assoc 57:1014–1023

    CAS  Google Scholar 

  • Chýlek P, Srivastava V, Cahenzli L, Pinnick RG, Dod RL, Novakov T, Cook TL, Hinds BD (1987) Aerosol and graphitic carbon content of snow. J Geophys Res Atmos 92:9801–9809

    Google Scholar 

  • Clarke AD, Noone KJ (1985) Soot in the Arctic snowpack: a cause for perturbations in radiative transfer. Atmos Environ (1967) 19:2045–2053

  • Davies TD, Tranter M, Jickells TD, Abrahams PW, Landsberger S, Jarvis K, Pierce CE (1992) Heavily-contaminated snowfalls in the remote Scottish Highlands: a consequence of regional-scale mixing and transport. Atmos Environ Part A 26:95–112

    Google Scholar 

  • Flanner MG, Zender CS, Randerson JT, Rasch PJ (2007) Present-day climate forcing and response from black carbon in snow. J Geophys Res-Atmos 112:D11202

    Google Scholar 

  • Gao SP, Xu BQ, Wang M, Li J, Liu D, Zhao D (2020a) Measuring black carbon in snow and ice in the Tibetan Plateau by single particle soot photometer. J Glaciol Geocryol 42:1384–1390

    Google Scholar 

  • Gao SP, Xu BQ, Wang M, Li J, Liu DM, Zhao D (2020b) Measuring black carbon in snow and ice in the Tibetan Plateau by single particle soot photometer. J Glaciol Geocryol 42:1384–1390

    Google Scholar 

  • Gertler CG, Puppala SP, Panday A, Stumm D, Shea J (2016) Black carbon and the Himalayan cryosphere: a review. Atmos Environ 125:404–417

    CAS  Google Scholar 

  • Ginot P, Dumont M, Lim S, Patris N, Taupin JD, Wagnon P, Gilbert A, Arnaud Y, Marinoni A, Bonasoni P, Laj P (2014) A 10 year record of black carbon and dust from a Mera Peak ice core (Nepal): variability and potential impact on melting of Himalayan glaciers. Cryosphere 8:1479–1496

    Google Scholar 

  • Grenfell TC, Doherty SJ, Clarke AD, Warren SG (2011) Light absorption from particulate impurities in snow and ice determined by spectrophotometric analysis of filters. Appl Opt 50:2037–2048

    Google Scholar 

  • Gundel LA, Dod RL, Rosen H, Novakov T (1984) The relationship between optical attenuation and black carbon concentration for ambient and source particles. Sci Total Environ 36:197–202

    CAS  Google Scholar 

  • Han YM, Cao JJ, An ZS, Chow JC, Watson JG, Jin ZD, Fung K, Liu SX (2007) Evaluation of the thermal/optical reflectance method for quantification of elemental carbon in sediments. Chemosphere 69:526–533

    CAS  Google Scholar 

  • Hansen ADA, Novakov T (1988) Aerosol black carbon measurements over the western Atlantic Ocean. Glob Biogeochem Cycles 2:41–45

    CAS  Google Scholar 

  • He CL, Li QB, Liou KN, Takano Y, Gu Y, Qi L, Mao YH, Leung LR (2014) Black carbon radiative forcing over the Tibetan Plateau. Geophys Res Lett 41:7806–7813

    CAS  Google Scholar 

  • He D, Wu F, Xu R, Zhang G, Yang X, Wang W, Li S (2020) Characteristics of atmospheric particulates and organic carbon in Dunhuang Mogao Grottoes. J Shanghai Jiaotong Univ 39:92–98

    Google Scholar 

  • Hu ZF, Kang SC, He XB, Yan FP, Zhang YL, Chen PF, Li XF, Gao SP, Li CL (2020a) Carbonaceous matter in glacier at the headwaters of the Yangtze River: concentration, sources and fractionation during the melting process. J Environ Sci 87:389–397

    CAS  Google Scholar 

  • Hu ZF, Kang SC, Li XF, Li CL, Sillanpaa M (2020b) Relative contribution of mineral dust versus black carbon to Third Pole glacier melting. Atmos Environ 223:117288

    CAS  Google Scholar 

  • IPCC (2021) Climate Change 2021: The physical science basis. In: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409:695–697

    CAS  Google Scholar 

  • Ji ZM (2018) Advances and prospects of research on simulating transboundary black carbon and their climatic effects over the Tibetan Plateau. Prog Geogr 37:465–475

    Google Scholar 

  • Kang SC, Cong ZY, Wang X, Zhang QG, Ji ZM, Zhang YL, Xu BQ (2019) The transboundary transport of air pollutants and their environmental impacts on Tibetan Plateau. Chin Sci Bull 64:2876–2884

    Google Scholar 

  • Kang SC et al (2022) Black carbon and organic carbon dataset over the Third Pole. Earth Syst Sci Data 14:683–707

    Google Scholar 

  • Kaspari S, Painter TH, Gysel M, Skiles SM, Schwikowski M (2014) Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings. Atmos Chem Phys 14:8089–8103

    Google Scholar 

  • Kaspari SD, Schwikowski M, Gysel M, Flanner MG, Kang S, Hou S, Mayewski PA (2011) Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860-2000 AD. Geophys Res Lett 38:L04703

    Google Scholar 

  • Lavanchy VMH, Gäggeler HW, Nyeki S, Baltensperger U (1999) Elemental carbon (EC) and black carbon (BC) measurements with a thermal method and an aethalometer at the high-alpine research station Jungfraujoch. Atmos Environ 33:2759–2769

    CAS  Google Scholar 

  • Li CL, Bosch C, Kang SC, Andersson A, Chen PF, Zhang QG, Cong ZY, Chen B, Qin DH, Gustafsson Ö (2016) Sources of black carbon to the Himalayan–Tibetan Plateau glaciers. Nat Commun 7:12574

    CAS  Google Scholar 

  • Li CL, Yan FP, Kang SC, Yan CQ, Hu ZF, Chen PF, Gao SP, Zhang C, He CL, Kaspari S, Stubbins A (2021a) Carbonaceous matter in the atmosphere and glaciers of the Himalayas and the Tibetan plateau: an investigative review. Environ Int 146:106281

  • Li XF, Kang SC, He XB, Qu B, Tripathee L, Jing ZF, Paudyal R, Li Y, Zhang YL, Yan FP, Li G, Li CL (2017) Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau. Sci Total Environ 587-588:482–490

    CAS  Google Scholar 

  • Li XF, Kang SC, Sprenger M, Zhang YL, He XB, Zhang GS, Tripathee L, Li CL, Cao JJ (2020) Black carbon and mineral dust on two glaciers on the central Tibetan Plateau: sources and implications. J Glaciol 66:248–258

    Google Scholar 

  • Li Y, Kang SC, Chen JZ, Hu ZF, Wang K, Paudyal R, Liu JS, Wang XX, Qin X, Sillanpaa M (2019) Black carbon in a glacier and snow cover on the northeastern Tibetan Plateau: concentrations, radiative forcing and potential source from local topsoil. Sci Total Environ 686:1030–1038

    CAS  Google Scholar 

  • Li Y, Kang SC, Zhang XL, Chen JZ, Schmale J, Li XF, Zhang YL, Niu HW, Li ZQ, Qin X, He XB, Yang W, Zhang GS, Wang SJ, Shao LL, Tian LD (2021b) Black carbon and dust in the Third Pole glaciers: revaluated concentrations, mass absorption cross-sections and contributions to glacier ablation. Sci Total Environ 789:147746

    CAS  Google Scholar 

  • Liu Q, Tan J, Zhong Z, Gong H, Hu K, Liang S, Mi T (2019) Comparison of off-line analysis and on-line analysis for organic carbon and elemental carbon in PM2. 5. Environ Monit China 35:123–130

    Google Scholar 

  • Lu ZF, Streets DG, Zhang Q, Wang SW (2012) A novel back-trajectory analysis of the origin of black carbon transported to the Himalayas and Tibetan Plateau during 1996-2010. Geophys Res Lett 39:L01809

    Google Scholar 

  • Mao GN, Ji MK, Xu BQ, Liu YQ, Jiao NZ (2022) Variation of high and low nucleic acid-content bacteria in Tibetan ice cores and their relationship to black carbon. Front Microbiol 13:844432

    Google Scholar 

  • Matthew J, Susan K, Kang S-C, Bjorn G, Paul AM (2016) Tibetan Plateau Geladaindong black carbon ice core record (1843–1982): recent increases due to higher emissions and lower snow accumulation. Adv Clim Chang Res 7:132–138

    Google Scholar 

  • McConnell JR, Edwards R, Kok GL, Flanner MG, Zender CS, Saltzman ES, Banta JR, Pasteris DR, Carter MM, Kahl JDW (2007) 20th-century industrial black carbon emissions altered Arctic climate forcing. Science 317:1381–1384

    CAS  Google Scholar 

  • Ming J, Xiao C, Qin D, Cachier H (2006) Climate forcing of black carbon in snow and ice. Adv Clim Chang Res 2:238–241

    Google Scholar 

  • Ming J, Cachier H, Xiao C, Qin D, Kang S, Hou S, Xu J (2008) Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmos Chem Phys 8:1343–1352

    CAS  Google Scholar 

  • Ming J, Xiao C, Du ZC, Flanner M (2009a) Black carbon in snow/ice of West China and its radiative forcing. Adv Clim Chang Res 5:328–335

    Google Scholar 

  • Ming J, Xiao CD, Cachier H, Qin DH, Qin X, Li ZQ, Pu JC (2009b) Black carbon (BC) in the snow of glaciers in west China and its potential effects on albedos. Atmos Res 92:114–123

    CAS  Google Scholar 

  • Ming J, Wang PL, Zhao SY, Chen PF (2013) Disturbance of light-absorbing aerosols on the albedo in a winter snowpack of Central Tibet. J Environ Sci 25:1601–1607

    Google Scholar 

  • Niu HW, Kang SC, Zhang YL, Shi XY, Shi XF, Wang SJ, Li G, Yan XG, Pu T, He YQ (2017) Distribution of light-absorbing impurities in snow of glacier on Mt. Yulong, southeastern Tibetan Plateau. Atmos Res 197:474–484

    CAS  Google Scholar 

  • Niu HW, Kang SC, Wang HL, Zhang RD, Lu XX, Qian Y, Paudyal R, Wang SJ, Shi XF, Yan XG (2018) Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau. Atmos Chem Phys 18:6441–6460

    CAS  Google Scholar 

  • Niu HW, Kang SC, Wang HL, Du JK, Pu T, Zhang GT, Lu XX, Yan XG, Wang SJ, Shi XF (2020) Light-absorbing impurities accelerating glacial melting in southeastern Tibetan Plateau. Environ Pollut 257:113541

    CAS  Google Scholar 

  • Petzold A, Ogren JA, Fiebig M, Laj P, Li SM, Baltensperger U, Holzer-Popp T, Kinne S, Pappalardo G, Sugimoto N, Wehrli C, Wiedensohler A, Zhang XY (2013) Recommendations for reporting “black carbon” measurements. Atmos Chem Phys 13:8365–8379

    CAS  Google Scholar 

  • Pu W, Wang X, Wei HL, Zhou Y, Shi JS, Hu ZY, Jin HC, Chen QL (2017) Properties of black carbon and other insoluble light-absorbing particles in seasonal snow of northwestern China. Cryosphere 11:1213–1233

    Google Scholar 

  • Qu B, Ming J, Kang SC, Zhang GS, Li YW, Li CD, Zhao SY, Ji ZM, Cao JJ (2014) The decreasing albedo of the Zhadang glacier on western Nyainqentanglha and the role of light-absorbing impurities. Atmos Chem Phys 14:11117–11128

    CAS  Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227

    CAS  Google Scholar 

  • Schmale J, Flanner M, Kang S, Sprenger M, Zhang Q, Guo J, Li Y, Schwikowski M, Farinotti D (2017) Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon. Sci Rep 7:40501

    CAS  Google Scholar 

  • Schmid H et al (2001) Results of the “carbon conference” international aerosol carbon round robin test stage I. Atmos Environ 35:2111–2121

    CAS  Google Scholar 

  • Sun SW, Kang SC, Zhang QG, Guo JM, Sun XJ (2022) Research progress on behaviors and environmental effects of mercury in the cryosphere of the Tibetan Plateau: a critical review. Sci Cold Arid Reg 14:1–22

    Google Scholar 

  • Verma S, Ghosh S, Boucher O, Wang R, Menut L (2022) Black carbon health impacts in the Indo-Gangetic plain: exposures, risks, and mitigation. Sci Adv 8:eabo4093

    CAS  Google Scholar 

  • Wang M, Xu BQ, Kaspari SD, Gleixner G, Schwab VF, Zhao HB, Wang HL, Yao P (2015) Century-long record of black carbon in an ice core from the Eastern Pamirs: estimated contributions from biomass burning. Atmos Environ 115:79–88

    CAS  Google Scholar 

  • Wang ZL, Zhang H, Shen XS (2011) Radiative forcing and climate response due to black carbon in snow and ice. Adv Atmos Sci 28:1336–1344

    Google Scholar 

  • Xu BQ, Yao TD, Liu XQ, Wang NL (2006) Elemental and organic carbon measurements with a two-step heating-gas chromatography system in snow samples from the Tibetan Plateau. Ann Glaciol 43:257–262

    CAS  Google Scholar 

  • Xu BQ, Cao JJ, Hansen J, Yao TD, Joswia DR, Wang NL, Wu GJ, Wang M, Zhao HB, Yang W, Liu XQ, He JQ (2009a) Black soot and the survival of Tibetan glaciers. Proc Natl Acad Sci 106:22114–22118

    CAS  Google Scholar 

  • Xu BQ, Wang M, Joswiak DR, Cao JJ, Yao TD, Wu GJ, Yang W, Zhao HB (2009b) Deposition of anthropogenic aerosols in a southeastern Tibetan glacier. J Geophys Res-Atmos 114:D17209

    Google Scholar 

  • Yang JH, Kang SC, Ji ZM, Chen DL (2018) Modeling the origin of anthropogenic black carbon and its climatic effect over the Tibetan Plateau and surrounding regions. J Geophys Res-Atmos 123:671–692

    CAS  Google Scholar 

  • Yang S, Xu BQ, Cao JJ, Zender CS, Wang M (2015) Climate effect of black carbon aerosol in a Tibetan Plateau glacier. Atmos Environ 111:71–78

    CAS  Google Scholar 

  • Yao TD, Yu WS, Wu G, Xu B, Yang W, Zhao H, Wang W, Li S, Wang NL, Li Z, Liu S, You C (2019) Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings. Chin Sci Bull 64:2770–2782

    Google Scholar 

  • Zhang X (2017) The techniques on measuring carbonaceous particles in the atmosphereand seasonal snow and its application. Thesis Thesis,. Lanzhou University

    Google Scholar 

  • Zhang YL, Kang SC (2017) Research progress of light-absorbing impurities in glaciers of the Tibetan Plateau and its surroundings (in Chinese). Chin Sci Bull 62:4151–4162

    Google Scholar 

  • Zhang YL, Kang SC, Cong ZY, Schmale J, Sprenger M, Li CL, Yang W, Gao TG, Sillanpää M, Li XF, Liu Y, Chen PF, Zhang X (2017a) Light-absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan plateau. J Geophys Res Atmos 122:6915–6933

    Google Scholar 

  • Zhang YL, Kang SC, Xu M, Sprenger M, Gao TG, Cong ZY, Li CL, Guo JM, Xu ZQ, Li Y, Li G, Li XF, Liu YJ, Han HD (2017b) Light-absorbing impurities on Keqikaer Glacier in western Tien Shan: concentrations and potential impact on albedo reduction. Sci Cold Arid Reg 9:97–111

    Google Scholar 

  • Zhang YL, Kang SC, Cong ZY, Schmale J, Sprenger M, Li CL, Yang W, Gao TG, Sillanpaa M, Li XF, Liu YJ, Chen PF, Zhang XL (2017c) Light-absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan plateau. J Geophys Res-Atmos 122:6915–6933

    Google Scholar 

  • Zhang YL, Kang SC, Li CL, Gao TG, Cong ZY, Sprenger M, Liu YJ, Li XF, Guo JM, Sillanpaa M, Wang K, Chen JZ, Li Y, Sun SW (2017d) Characteristics of black carbon in snow from Laohugou No. 12 glacier on the northern Tibetan Plateau. Sci Total Environ 607:1237–1249

    Google Scholar 

  • Zhang YL, Kang SC, Sprenger M, Cong ZY, Gao TG, Li CL, Tao S, Li XF, Zhong XY, Xu M, Meng WJ, Neupane B, Qin X, Sillanpaa M (2018) Black carbon and mineral dust in snow cover on the Tibetan Plateau. Cryosphere 12:413–431

    Google Scholar 

  • Zhang YL, Gao TG, Kang SC, Sprenger M, Tao S, Du WT, Yang JH, Wang FT, Meng WJ (2020) Effects of black carbon and mineral dust on glacial melting on the Muz Taw glacier, Central Asia. Sci Total Environ 740:140056

    CAS  Google Scholar 

  • Zhang YL, Gao TG, Kang SC, Shangguan DH, Luo X (2021) Albedo reduction as an important driver for glacier melting in Tibetan Plateau and its surrounding areas. Earth Sci Rev 220:103735

    CAS  Google Scholar 

  • Zhou JM, Tie XX, Xu BQ, Zhao SY, Wang M, Li GH, Zhang T, Zhao ZZ, Liu SX, Yang S, Chang LY, Cao JJ (2018) Black carbon (BC) in a northern Tibetan mountain: effect of Kuwait fires on glaciers. Atmos Chem Phys 18:13673–13685

    CAS  Google Scholar 

  • Zhou Y, Wang X, Wu XQ, Cong ZY, Wu GM, Ji MX (2017) Quantifying light absorption of iron oxides and carbonaceous aerosol in seasonal snow across Northern China. Atmosphere 8:63

    CAS  Google Scholar 

  • Zhou Y, Guo YZ, Liu YS (2019) Areal types and their development paths in rural China. Geogr Res 38:467–481

    Google Scholar 

Download references

Funding

This study is financially supported by the Pan-Third Pole Environment Study for a Green Silk Road (Pan-TPE) (No. XDA20040501) and the Youth Innovation Promotion Association CAS (No. 2021429).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Yulan Zhang, Xiaoxiang Wang. Methodology: Xi Luo, Xiaoxiang Wang. Formal analysis and investigation: Xiaoxiang Wang, Xi Luo. Writing—original draft preparation: Xiaoxiang Wang, Xi Luo. Writing—review and editing: Pengfei Chen, Hewen Niu. Funding acquisition: Shichang Kang, Hewen Niu. Resources: Shichang Kang. Supervision: Shichang Kang, Yulan Zhang, Xi Luo.

Corresponding author

Correspondence to Xi Luo.

Ethics declarations

Ethics approval

We confirmed that no ethical approval is required.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Luo, X., Zhang, Y. et al. Black carbon: a general review of its sources, analytical methods, and environmental effects in snow and ice in the Tibetan Plateau. Environ Sci Pollut Res 31, 3413–3424 (2024). https://doi.org/10.1007/s11356-023-31439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-31439-y

Keywords

Navigation