Skip to main content
Log in

Biogeochemical and microscopic studies of soil and Phragmites australis (Cav.) Trin. ex Steud. plants affected by coal mine dumps

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Developed areas of the coal industry are subjected to long-term anthropogenic impacts from the input and accumulation of overburdened coal material, containing potentially toxic heavy metals and metalloids (HMM). For the first time, comprehensive studies of soils and plants in the territory of the Donetsk coal basin were carried out using X-ray fluorescence, atomic absorption analysis, and electron microscopy. The observed changes in the soil redox conditions were characterized by a high sulfur content, and formations of new microphases of S-containing compounds: FeS2, PbFe6(SO4)4(OH)12, ZnSO4·nH2O, revealed the presence of technogenic salinization, increased Сorg content, and low pH contents. Exceedances of soil maximum permissible concentrations of Pb, Zn, Cu, and As in areas affected by coal dumps were apparent. As a consequence of long-term transformation of the environment with changes in properties and chemical pollution, a phytotoxic effect was revealed in Phragmites australis (Cav.) Trin. ex Steud, accompanied by changes in ultrastructural and organization features of roots and leaves such as increases in root diameters and thickness of leaf blades. The changes in the ultrastructure of cell organelles: a violation of the grana formation process, an increase in the number of plastoglobules, a decrease in the number of mitochondrial cristae, and a reduction in the electron density of the matrix in peroxisomes were also observed. The accumulation of large electron-dense inclusions and membrane fragments in cell vacuoles was observed. Such ultrastructural changes may indicate the existence of a P. australis ecotype due to its long-term adaptation to the disturbed environment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be available on request.

References

  • Achten C, Hofmann T (2009) Native polycyclic aromatic hydrocarbons (PAH) in coals – a hardly recognized source of environmental contamination. Sci Total Environ 407(8):2461–2473. https://doi.org/10.1016/j.scitotenv.2008.12.008

    Article  CAS  Google Scholar 

  • Ahmad SS, Reshi ZA, Shah MA, Rashid I, Ara R, Andrabi SM (2014) Phytoremediation potential of Phragmites australis in Hokersar wetland-a Ramsar site of Kashmir Himalaya. Int J Phytoremediat 16(12):1183–1191. https://doi.org/10.1080/15226514.2013.821449

    Article  CAS  Google Scholar 

  • Alekseenko VA., Bech J, Alekseenko AV, Shvydkaya NV, Roca N. 2017. Environmental impact of disposal of coal mining wastes on soils and plants in the Rostov Region, Russia. J Geochem Exploration. doi: https://doi.org/10.1016/j.gexplo.2017.06.003

  • Bech J, Roca N, Barceló J, Duran P, Tume P, Poschenrieder C (2012) Soil and plant contamination by lead mining in Bellmunt (Western Mediterranean Area). J Geochem Explor 113:94–99. https://doi.org/10.1016/j.gexplo.2011.10.001

    Article  CAS  Google Scholar 

  • Batool R, Hameed M, Ashraf M, Ahmad MS, Fatima S (2015) Physio-anatomical responses of plants to heavy metals. In: Öztürk M, Ashraf M, Aksoy A, Ahmad M (eds) Phytoremediation for Green Energy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7887-0_5

    Chapter  Google Scholar 

  • Batugin AS, Kobylkin AS, Musina VR (2019) Effect of geodynamic setting on spontaneous combustion of coal waste dumps. Eurasian Min 2:64–69. https://doi.org/10.17580/em.2019.02.14

    Article  Google Scholar 

  • Bezuglova OS, Nevidomskaya DG, Prokof’eva TV, Inozemtsev SA (2007) Changes in the morphological properties of chernozems of Rostov oblast in the area of landfills. Eurasian Soil Sci 40(2):223–233. https://doi.org/10.1134/S1064229307020135

    Article  Google Scholar 

  • Bhuiyan MAH, Parvez L, Islam MA, Dampare SB, Suzuki S (2010) Heavy metal pollution of coal mine affected agricultural soils in the northern part of Bangladesh. J Hazard Mater 173:384–392. https://doi.org/10.1016/j.jhazmat.2009.08.085

    Article  CAS  Google Scholar 

  • Bonanno G (2013) Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicol Environ Saf 97:124–130. https://doi.org/10.1016/j.ecoenv.2013.07.017

    Article  CAS  Google Scholar 

  • Bonanno G, Lo GR (2010) Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Indic 10:639–645. https://doi.org/10.1016/j.ecolind.2009.11.002

    Article  CAS  Google Scholar 

  • Cardwell AJ, Hawker DW, Greenway M (2003) Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere 48:653–663

    Article  Google Scholar 

  • Chaplygin V, Dudnikova T, Chernikova N, Fedorenko A, Mandzhieva S, Fedorenko G, Sushkova S, Nevidomskaya D, Minkina T, Sathishkumar P, Rajput VD (2022) Phragmites australis Cav. as a bioindicator of hydromorphic soils pollution with heavy metals and polyaromatic hydrocarbons. Chemosphere 308(2):136409. https://doi.org/10.1016/j.chemosphere.2022.136409

    Article  CAS  Google Scholar 

  • Corriveau MC, Jamieson HE, Parsons MB, Campbell JL, Lanzirotti A (2011) Direct characterization of airborne particles associated with arsenic-rich mine tailings: particle size, mineralogy and texture. Appl Geochem 26:1639–1648

    Article  CAS  Google Scholar 

  • Csavina J, Field J, Taylor MP, Gao S, Landázuri A, Betterton EA, Sáez AE (2012) A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci Total Environ 433:58–73

    Article  CAS  Google Scholar 

  • Demirezen D, Aksoy A (2006) Common hydrophytes as bioindicators of iron and manganese pollutions. Ecol Indic 6:388–393. https://doi.org/10.1016/j.ecolind.2005.04.004

    Article  CAS  Google Scholar 

  • Du Laing G, Tack FMG, Verloo MG (2003) Performance of selected destruction methods for the determination of heavy metals in reed plants (Phragmites australis). Anal Chim Acta 497:191–198. https://doi.org/10.1016/j.aca.2003.08.044

    Article  CAS  Google Scholar 

  • Elam RJ. 2017. The effects of coal dust particulates on growth performance and photomorphogenic responses of Brassica rapa (Doctoral dissertation, University of Cincinnati)

  • Esmaeilzadeh M, Karbassi A, Moattar F (2016) Heavy metals in sediments and their bioaccumulation in Phragmites australis in the Anzali wetland of Iran. Chin J Oceanol Limnol 34:810–820. https://doi.org/10.1007/s00343-016-5128-8

    Article  CAS  Google Scholar 

  • Fedorenko GM, Fedorenko AG, Minkina TM, Mandzhieva SS, Sushkova SN, Rajput VD (2018) Method for hydrophytic plant sample preparation for light and electron microscopy (studies on Phragmites australis Cav). Methods X 5:1213–1220. https://doi.org/10.1016/j.mex.2018.09.009

    Article  Google Scholar 

  • Feng Y, Wang J, Bai Z, Reading L (2019) Effects of surface coal mining and land reclamation on soil properties: a review. Earth-Sci Rev 191:12–25. https://doi.org/10.1016/j.earscirev.2019.02.015

    Article  CAS  Google Scholar 

  • Fernando S, Henriques M, Webb E (1989) Comparative study of two grasses from different habitats by scanning electron microscopy. Cytologia. 54:299–305

    Article  Google Scholar 

  • Gajić G, Mitrović M, Pavlović P (2019) Ecorestoration of fly ash deposits by native plant species at thermal power stations in Serbia. Phytomanagement of Polluted Sites. 113–177. doi:https://doi.org/10.1016/b978-0-12-813912-7.00004-1

  • Ghazaryan KA, Movsesyan HS, Hrant E, Khachatryan NP (2018) Geochemistry of potentially toxic trace elements in soils of mining area: a case study from Zangezur copper and molybdenum combine, Armenia. Bull Environ Contam Toxicol 101:732–737. https://doi.org/10.1007/s00128-018-2443-0

    Article  CAS  Google Scholar 

  • GN 2.1.7.2041-06 (2006) Maximum permissible concentrations (MPCs) of chemical substances in the soil. Moscow (in Russian)

  • Håkanson L (1980) An ecological risk index for aquatic pollution control – a sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Harguinteguy CA, Pignata ML, Fernandez-Cirelli A (2015) Nickel, lead and zinc accumulation and performance in relation to their use in phytoremediation of macrophytes Myriophyllum aquaticum and Egeria densa. Ecol Eng 82:512–516. https://doi.org/10.1016/j.ecoleng.2015.05.039

    Article  Google Scholar 

  • Harguinteguy SA, Cofré MN, Fernández-Cirelli A, Pignata ML (2016) The macrophytes Potamogeton pusillus L. and Myriophyllum aquaticum (Vell.) Verdc. as potential bioindicators of a river contaminated by heavy metals. Microchem J 124:228–234. https://doi.org/10.1016/j.microc.2015.08.014

    Article  CAS  Google Scholar 

  • Hayes SM, White SA, Thompson T L, Maier R.M, Chorover J. 2009. Changes in lead and zinc lability during weathering-induced acidification of desert mine tailings: coupling chemical and micro-scale analyses. Appl Geochem 24: 2234-2245.

  • ISO 10381-1: 2002. Soil quality. Sampling. Part 1. Guidance on the design of sampling programmes

  • IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World soil resources reports, issue 106, FAO: Rome, Italy, 2015

  • Kabata-Pendias A (2011) Trace elements in soils and plants, Fourth edn. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Kasimov NS, Vlasov DV (2015) Clarkes of chemical elements as comparison standards in ecogeochemistry. Vestnik Moskovskogo universiteta. Seriia 5. Geografiya. 2:7–17

    Google Scholar 

  • Kisku GC, Kumar V, Sahu P, Kumar P, Narendra KN (2018) Characterization of coal fly ash and use of plants growing in ash pond for phytoremediation of metals from contaminated agricultural land. Int J Phytoremediat 20(4):330–337. https://doi.org/10.1080/15226514.2017.1381942

    Article  CAS  Google Scholar 

  • León-Mejía G, Machado MN, Okuro RT, Silva LFO, Telles C, Dias J, Niekraszewicz L, Silva J, Henriques JAP, Zin WA (2018) Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Sci Total Environ 625:589–599. https://doi.org/10.1016/j.scitotenv.2017.12.283

    Article  CAS  Google Scholar 

  • Li MS (2006) Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Sci Total Environ 357:38–53. https://doi.org/10.1016/j.scitotenv.2005.05.003

    Article  CAS  Google Scholar 

  • Martínez-Sánchez MJ, García-Lorenzo ML, Pérez-Sirvent C, Bech J (2012) Trace element accumulation in plants from an aridic area affected by mining activities. J Geochem Explor 123:8–12. https://doi.org/10.1016/j.gexplo.2012.01.007

    Article  CAS  Google Scholar 

  • Milke J, Gałczynska M, Wróbel J (2020) The importance of biological and ecological properties of Phragmites Australis (Cav.) Trin. Ex Steud. In Phytoremendiation of aquatic ecosystems – the review. Water. 12: 1770; doi:10.3390/w12061770

  • Minkina TM, Nevidomskaya DG, Pol’shina TN, Fedorov YA, Mandzhieva SS, Chaplygin VA, Bauer TV, Burachevskaya MV (2017) Heavy metals in the soil-plant system of the Don River estuarine region and the Taganrog Bay coast. J. Soils Sedim 17:1474–1491. https://doi.org/10.1007/s11368-016-1381-x

    Article  Google Scholar 

  • Minkina T, Fedorenko G, Nevidomskaya D, Fedorenko A, Chaplygin V, Mandzhieva S (2018) Morphological and anatomical changes of Phragmites australis Cav. due to the uptake and accumulation of heavy metals from polluted soils. Sci Total Environ 636:392–401. https://doi.org/10.1016/j.scitotenv.2018.04.306

    Article  CAS  Google Scholar 

  • Minkina TM, Fedorenko GM, Nevidomskaya DG, Fedorov YA, Pol’shina TN, Fedorenko AG, Chaplygin VA, Mandzhieva SS, Ghazaryan KA, Movsesyan HS, Hassan TM (2021a) Adaptive potential of Typha laxmannii Lepech. to a heavy metal contaminated site. Plant Soil 465:273–287. https://doi.org/10.1007/s11104-021-05011-x

    Article  CAS  Google Scholar 

  • Minkina TM, Fedorenko GM, Nevidomskaya DG, Polshina TN, Fedorenko AG, Chaplygin VA, Mandzhieva SS, Sushkova SN, Hassan TM (2021b) Bioindication of soil pollution in the delta of the Don River and the coast of the Taganrog Bay with heavy metals based on anatomical, morphological and biogeochemical studies of macrophyte (Typha australis Schum. & Thonn). Environ Geochem Health 43(4):1563–1581. https://doi.org/10.1007/s10653-019-00379-3

    Article  CAS  Google Scholar 

  • Minkina T, Fedorenko A, Nevidomskaya D, Fedorenko G, Pol'shina T, Sushkova S, Chaplygin V, Beschetnikov V, Dudnikova T, Chernikova N, Lychagin M, Rajput VD (2022) Uptake of potentially toxic elements and polycyclic aromatic hydrocarbons from the hydromorphic soil and their cellular effects on the Phragmites australis. Environ Pollut 309:119727. https://doi.org/10.1016/j.envpol.2022.119727

    Article  CAS  Google Scholar 

  • Mitra M, Agarwal P, Roy S (2023) Plant response to heavy metal stress: an insight into the molecular mechanism of transcriptional regulation. Plant Transcription Factors. Academic Press, 2023. 337-367

  • Molas J (2002) Changes of chloroplast ultrastructure and total chlorophyllconcentration in cabbage leaves caused by excess of organic Ni (II) complex. Environ Exp Bot 47:115–126

    Article  CAS  Google Scholar 

  • MU 2.1.7.730-99 Guidelines. Hygienic evaluation of soil in residential areas. Moscow, Rospotrebnadzor, 1999. (in Russian)

  • Nádudvari Á, Kozielska B, Abramowicz A, Fabiańska M, Ciesielczuk J, Cabała J, Krzykawski T (2021) Heavy metal- and organic-matter pollution due to self-heating coal-waste dumps in the Upper Silesian Coal Basin (Poland). J Hazard Mater 412:125244. https://doi.org/10.1016/j.jhazmat.2021.125244

    Article  CAS  Google Scholar 

  • Néel C, Bril H, Courtin-Nomade A, Dutreuil J-P (2003) Factors affecting natural development of soil on 35-year-old sulphide-rich mine tailings. Geoderma. 111(1-2):1–20. https://doi.org/10.1016/s0016-7061(02)00237-9

    Article  Google Scholar 

  • Oliveira MLS, Da Boit K, Schneider I, Teixeira E, Crissien T, Silva LFO (2018) Study of coal cleaning rejects by FIB and sample preparation for HR–TEM: mineral surface chemistry and nanoparticle-aggregation control for health studies. J Clean Prod 188:662–669. https://doi.org/10.1016/j.jclepro.2018.04.050

    Article  CAS  Google Scholar 

  • Oveka M, Takac T (2014) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32:73–86. https://doi.org/10.1016/j.biotechadv.2013.11.011

    Article  CAS  Google Scholar 

  • Pandey SK, Tanushree Bhattacharya T, Chakraborty S (2016) Metal phytoremediation potential of naturally growing plants on fly ash dumpsite of Patratu thermal power station, Jharkhand, India. Int J Phytoremediat 18(1):87–93. https://doi.org/10.1080/15226514.2015.1064353

    Article  CAS  Google Scholar 

  • PND F 16.1.42-04 (2010) The methodology for measuring the mass fraction of metals and metal oxides in powder soil samples by X-ray fluorescence analysis. Moscow, Russia (in Russian)

  • Provisional maximum permissible concentrations (MPCs) of some chemical elements and gossypol in forage for agricultural animals. 1991. Moscow (in Russian)

  • Raj D, Chowdhury A, Maiti SK (2017) Ecological risk assessment of mercury and other heavy metals in soils of coal mining area: a case study from the eastern part of a Jharia coal field, India. Hum Ecol Risk Assess 23:767–787. https://doi.org/10.1080/10807039.2016.1278519

    Article  CAS  Google Scholar 

  • Robson TC, Braungardt CB, Keith-Roach MJ, Rieuwerts JS, Worsfold PJ (2013) Impact of arsenopyrite contamination on agricultural soils and crops. J Geochem Explor 125:102–109. https://doi.org/10.1016/j.gexplo.2012.11.013

    Article  CAS  Google Scholar 

  • Root RA, Hayes SM, Hammond CM, Maier RM, Chorover J (2015) Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate. Appl Geochem 62:131–149. https://doi.org/10.1016/j.apgeochem.2015.01.005

    Article  CAS  Google Scholar 

  • Roussel C, Néel C, Bril H (2000) Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings. Sci Total Environ 263:209–219. https://doi.org/10.1016/S0048-9697(00)00707-5

    Article  CAS  Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M et al (2015) Crop production and global environmental issues. Springer, Cham, pp 1–25

    Book  Google Scholar 

  • Shein EV (2009) The particle-size distribution in soils: problems of the methods of study, interpretation of the results, and classification. Eurasian Soil Sci 42(3):284–291. https://doi.org/10.1134/S1064229309030053

    Article  Google Scholar 

  • Silva LFO, Oliveira MLS, Gonçalves JO, Dotto GL (2020) Identification of mercury and nanoparticles in roots with different oxidation states of an abandoned coal mine. Environ Sci Pollut Res Int 27(19):24380–24386. https://doi.org/10.1007/s11356-020-08737-w

    Article  CAS  Google Scholar 

  • Sleptsov Y (2020) Problem of Slagheaps of Donbass. In E3S Web of Conferences. 217: 04005. https://doi.org/10.1051/e3sconf/202021704005

  • Stoláriková-Vaculíková M, Romeo S, Minnocci A, Luxová M, Vaculík M, Lux A, Sebastiani L (2015) Anatomical, biochemical and morphological responses of poplar Populus deltoides clone Lux to Zn excess. Environ Exp Bot 109:235–243

    Article  Google Scholar 

  • Titov AF, Akimova TV, Venzhik YV (2007) Effect of root heating on the stability of barley leaf cells and the ultrastructure of chloroplasts and mitochondria. Dokl Biol Sci 415(1):324–327

    Article  CAS  Google Scholar 

  • Vardanyan LG, Ingole BS (2006) Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolin (India) lake systems. Environ Int 32:208–218. https://doi.org/10.1016/j.envint.2005.08.013

    Article  CAS  Google Scholar 

  • Vorobeva LA (2006) Theory and practice chemical analysis of soils. Moscow, GEOS (In Russian)

    Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere. 50:775–780

    Article  CAS  Google Scholar 

  • Wong MH. Lan CY, Gao L, Chen HM. (1999) Current approaches to managing and remediating metal contaminated soils in China. In: Proc. 5th Int. Conf. Biogeochem. Trace Elements, Vienna, Austria

  • World Coal Association, “World Coal Association”, World Coal Association website, accessed 2022. https://www.worldcoal.org/coal-facts/

  • Wu J, Wang L, Ma F, Zhao L, Huang X (2019) The speciation and distribution characteristics of Cu in Phragmites australis (Cav.) Trin ex. Steudel. Plant Biol 21(5):873–881. https://doi.org/10.1111/plb.12989

    Article  CAS  Google Scholar 

  • Liu Y, Li X, Liu M, Cao B, Tan H, Wang J, Li X (2012) Responses of three different ecotypes of reed (Phragmites communis Trin.) to their natural habitats: leaf surface micro-morphology, anatomy, chloroplast ultrastructure and physio-chemical characteristics. Plant Physiol Biochem 51:159–167

    Article  CAS  Google Scholar 

  • Zhan-yi W, Jian-Ying G, Cheng-Jie W, Ming-Jiu W, Jia H (2016) Coal dust reduce the rate of root growth and photosynthesis of five plant species in inner Mongolian grassland. J Residuals Sci Technol 13(2):S63–S73. https://doi.org/10.12783/issn.1544-8053/13/2/S11

    Article  Google Scholar 

  • Zakrutkin VE, Gibkov EV, Ivanik VM (2015) Changes in the hydrochemical characteristics of Eastern-Donbass rivers in the context of mass closing down of unprofitable coal producers. Water Res 42(6):788–797. https://doi.org/10.1134/S0097807815050164

    Article  CAS  Google Scholar 

  • Zakrutkin VE, Reshetnyak VN, Reshetnyak OS (2020) Assessment of the heavy metal pollution level of the river sediments in the East Donbass (Rostov Region, Russia). Water Ecol 3(25):32–40. https://doi.org/10.23968/2305-3488.2020.25.3.32-40

    Article  Google Scholar 

  • Yadav V, Arif N, Kováč J, Singh VP, Tripathi DK, Chauhan DK, Vaculík M (2021) Structural modifications of plant organs and tissues by metals and metalloids in the environment: A review. Plant Physiol Biochem 159:100–112

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out in the laboratory «Soil Health» of the Southern Federal University with the financial support of the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2022-1122 and no. 075-15-2023-587, and by the Russian Foundation for Basic Research and SC RA, project no. 20-55-05014.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Grigoriy Fedorenko, Dina Nevidomskaya, Aleksei Fedorenko, and Victor Chaplygin, Tatiana Minkina, Svetlana Sushkova, Saglara Mandzhieva, and Vishnu D. Rajput. The first draft of the manuscript was written by Tatiana Minkina, Svetlana Sushkova, Saglara Mandzhieva, Yuri Litvinov, Karen Ghazaryan, Hasmik Movsesyan, Yuri Popov, Christopher Rensing, Vishnu D. Rajput, Ming H. Wong, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vishnu D. Rajput.

Ethics declarations

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minkina, T., Fedorenko, G., Nevidomskaya, D. et al. Biogeochemical and microscopic studies of soil and Phragmites australis (Cav.) Trin. ex Steud. plants affected by coal mine dumps. Environ Sci Pollut Res 31, 406–421 (2024). https://doi.org/10.1007/s11356-023-31064-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-31064-9

Keywords

Navigation