Skip to main content
Log in

Trace elements and arsenic speciation in Paracentrotus lividus from North-West Mediterranean Sea

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Levels of 14 trace elements (Al, Ti, V, Cr, Mn, Co, Ni, Zn, As, Se, Cd, Sn, Hg, and Pb) and 5 arsenic species (arsenite/As(III), arsenate/As(V), monomethylarsonic acid/MA, dimethylarsinic acid/DMA, and arsenobetaine/AsB) were assessed in the gonads of sea urchin samples (Paracentrotus lividus) from North-West Mediterranean Sea (French coast). The samples were collected from 13 sites characterized by different types and levels of chemical contamination. Trace elements levels were measured by inductively coupled plasma-mass spectrometry (ICP-MS) following microwave (acid) digestion in a closed system, whereas As speciation analysis was carried out by ion-exchange liquid chromatography coupled with ICP-MS after microwave-assisted extraction. High levels of trace elements were found in sea urchins sampled from Corsica whereas the samples from Théoule were found to be the least contaminated. From all the analyzed urchin samples, none showed Cd, Hg, or Pb concentrations above the regulatory levels set by the European Community (EC) No. 1881/2006 for seafood or bivalve mollusks. Regarding arsenic speciation, AsB was confirmed to be the predominant species. Inorganic As (As(III) + As(V)) was mainly constituted by As(III), which was quantified in all samples. Methylated As forms (MA and DMA) represent 9 to 23% of the total As.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Raw data and derived data supporting the findings of this study are available from the corresponding author on request.

References

  • Safege Aix en Provence (2014) Résumé non technique de l’étude d’impact. Aix en Provence. https://alteo-environnement-gardanne.fr/IMG/pdf/2-_resume_non_technique_de_l_etude_d_impact.pdf. Accessed 10 Nov 2023

  • Andral B, Stanisiere JY, Sauzade D, Damier E, Thebault H, Galgani F, Boissery P (2004) Monitoring chemical contamination levels in the Mediterranean based on the use of mussel caging. Mar Pollut Bull 49(9–10):704–712. https://doi.org/10.1016/j.marpolbul.2004.05.008

    Article  CAS  Google Scholar 

  • Anses (2015) Note d’appui scientifique et technique de l’Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail relatif à l’état de contamination chimique des produits de la mer en Méditerranée en lien avec les activités de transformation de minerai de bauxite de l’usine d’Alteo. Maisons-Alfort, p 44. https://www.anses.fr/fr/system/files/ERCA2015sa0107.pdf

  • Baião LF, Moura AP, Rocha C, Valente LMP, Cunha LM (2021). Dimensions for the valorisation of sea urchin (Paracentrotus lividus) gonads production through the eyes of experienced chefs. Int J Gastron Food Sci 26.https://doi.org/10.1016/j.ijgfs.2021.100438

  • Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M (2021) Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol 12:643972. https://doi.org/10.3389/fphar.2021.643972

    Article  CAS  Google Scholar 

  • Barchiesi F, Branciari R, Latini M, Roila R, Lediani G, Filippini G, Scortichini G, Piersanti A, Rocchegiani E, Ranucci D (2020) Heavy metals contamination in shellfish: benefit-risk evaluation in Central Italy. Foods 9(11). https://doi.org/10.3390/foods9111720

  • Barnes D K A, Crook AC (2001) Implications of temporal and spatial variability in Paracentrotus lividus populations to the associated commercial coastal fishery. Hydrobiologia 465:95–102. https://doi.org/10.1023/A:1014568103867

  • Bemrah N, Sirot V, Leblanc JC, Volatier JL (2009) Fish and seafood consumption and omega 3 intake in French coastal populations: CALIPSO survey. Public Health Nutr 12(5):599–608. https://doi.org/10.1017/S1368980008002681

    Article  Google Scholar 

  • Benon P, Blanc F, Bourgade B, David P, Kantin R, Leveau M, Romano JC, Sautriot D (1978) Distribution of some heavy metals in the Gulf of Fos. Mar Pollut Bull 9(3):71–75. https://doi.org/10.1016/0025-326X(78)90452-6

    Article  CAS  Google Scholar 

  • Bernier P, Guidi J-B, Böttcher ME (1997) Coastal progradation and very early diagenesis of ultramafic sands as a result of rubble discharge from asbestos excavations (northern Corsica, western Mediterranean). Mar Geol 144(1–3):163–175. https://doi.org/10.1016/s0025-3227(97)00086-8

    Article  CAS  Google Scholar 

  • Bertocci I, Dominguez R, Machado I, Freitas C, Godino JD, Sousa-Pinto I, Gonçalves M, Gaspar M (2014) Multiple effects of harvesting on populations of the purple sea urchin Paracentrotus lividus in north Portugal. Fish Res 150:60–65

    Article  Google Scholar 

  • Bouchoucha M, Chekri R, Leufroy A, Jitaru P, Millour S, Marchond N, Chafey C, Testu C, Zinck J, Cresson P, Miralles F, Mahe A, Arnich N, Sanaa M, Bemrah N, Guerin T (2019) Trace element contamination in fish impacted by bauxite red mud disposal in the Cassidaigne canyon (NW French Mediterranean). Sci Total Environ 690:16–26. https://doi.org/10.1016/j.scitotenv.2019.06.474

    Article  CAS  Google Scholar 

  • Boudeffa K, Fekrache F, Bouhayene S, Bouchareb N, Zaoui L, Benselhoub A, Bellucci S (2023) Assessment of metal trace elements in the echinoderm Paracentrotus lividus from the North-Eastern coast of Algeria. Biosyst Divers 31(2):170–176. https://doi.org/10.15421/012318

    Article  Google Scholar 

  • Boudouresque CF, Verlaque M (2001) Ecology of Paracentrotus lividus. Dev Aquac Fish Sci 32:177–216

    Article  Google Scholar 

  • Briand MJ, Herlory O, Briant N, Brach-Papa C, Boissery P, Bouchoucha M (2023) The French Mussel Watch: More than two decades of chemical contamination survey in Mediterranean coastal waters. Mar Pollut Bull 191:114901. https://doi.org/10.1016/j.marpolbul.2023.114901

    Article  CAS  Google Scholar 

  • Camacho C, Rocha AC, Barbosa VL, Anacleto P, Carvalho ML, Rasmussen RR, Sloth JJ, Almeida CM, Marques A, Nunes ML (2018) Macro and trace elements in Paracentrotus lividus gonads from South West Atlantic areas. Environ Res 162:297–307. https://doi.org/10.1016/j.envres.2018.01.018

    Article  CAS  Google Scholar 

  • Cannas D, Loi E, Serra M, Firinu D, Valera P, Zavattari P (2020) Relevance of essential trace elements in nutrition and drinking water for human health and autoimmune disease risk. Nutrients 12(7). https://doi.org/10.3390/nu12072074

  • Chevallier E, Chekri R, Zinck J, Guérin T, Noël L (2015) Simultaneous determination of 31 elements in foodstuffs by ICP-MS after closed-vessel microwave digestion: method validation based on the accuracy profile. J Food Compos Anal 41:35–41. https://doi.org/10.1016/j.jfca.2014.12.024

    Article  CAS  Google Scholar 

  • Çoğun HY, Yüzereroğlu TA, Firat Ö, Gök G, Kargin F (2006) Metal concentrations in fish species from the northeast Mediterranean Sea. Environ Monit Assess 121(1–3):431–438. https://doi.org/10.1007/s10661-005-9142-0

    Article  CAS  Google Scholar 

  • Copat C, Bella F, Castaing M, Fallico R, Sciacca S, Ferrante M (2012) Heavy metals concentrations in fish from Sicily (Mediterranean Sea) and evaluation of possible health risks to consumers. Bull Environ Contam Toxicol 88(1):78–83. https://doi.org/10.1007/s00128-011-0433-6

    Article  CAS  Google Scholar 

  • Corrias F, Atzei A, Addis P, Secci M, Russo M, Angioni A (2020) Integrated environmental evaluation of heavy metals and metalloids bioaccumulation in invertebrates and seaweeds from different marine coastal areas of Sardinia, Mediterranean Sea. Environ Pollut 266(Pt 2):115048. https://doi.org/10.1016/j.envpol.2020.115048

    Article  CAS  Google Scholar 

  • Dauvin JC (2010) Towards an impact assessment of bauxite red mud waste on the knowledge of the structure and functions of bathyal ecosystems: the example of the Cassidaigne canyon (north-western Mediterranean Sea). Mar Pollut Bull 60(2):197–206. https://doi.org/10.1016/j.marpolbul.2009.09.026

    Article  CAS  Google Scholar 

  • De Zoysa HKS, Jinadasa BKKK, Edirisinghe EMRKB, Jayasinghe GDTM (2018) The association of test diameter and gonad weight with some toxic trace metals level in black sea urchin (Stomopneustes variolaris). Agric Food Sec 7(1).https://doi.org/10.1186/s40066-018-0211-3

  • Dural M, Lugal Göksu MZ, Özak AA, Derici B (2006) Bioaccumulation of some heavy metals in different tissues of Dicentrarchus labrax L, 1758, Sparus aurata L, 1758 and Mugil cephalus L, 1758 from the ÇamlIk Lagoon of the eastern cost of Mediterranean (Turkey). Environ Monit Assess 118(1–3):65–74. https://doi.org/10.1007/s10661-006-0987-7

    Article  CAS  Google Scholar 

  • El Idrissi O, Marengo M, Aiello A, Gobert S, Pasqualini V, Ternengo S (2020) Seasonal change in trace element concentrations of Paracentrotus lividus: its use as a bioindicator. Ecol Indic 112. https://doi.org/10.1016/j.ecolind.2019.106063

  • European Commission (2006) Comission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. O. J. o. t. E. Union 364:5–24

  • FAO (2016) The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. Rome, 200 pp

  • FAO (2022) The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. FAO, Rome. https://doi.org/10.4060/cc0461en

  • Fernández-Boán M, Freire J, Parma AM, Fernández L, Orensanz JM (2013) Monitoring the fishing process in the sea urchin diving fishery of Galicia. ICES J Mar Sci: Journal Du Conseil. https://doi.org/10.1093/icesjms/fss207

    Article  Google Scholar 

  • Fontanier C, Fabri MC, Buscail R, Biscara L, Koho K, Reichart GJ, Cossa D, Galaup S, Chabaud G, Pigot L (2012) Deep-sea foraminifera from the Cassidaigne Canyon (NW Mediterranean): assessing the environmental impact of bauxite red mud disposal. Mar Pollut Bull 64(9):1895–1910. https://doi.org/10.1016/j.marpolbul.2012.06.016

    Article  CAS  Google Scholar 

  • Fontanier C, Mamo B, Mille D, Duros P, Herlory O (2020) Deep-sea benthic foraminifera at a bauxite industrial waste site in the Cassidaigne Canyon (NW Mediterranean): ten months after the cessation of red mud dumping. Comptes Rendus Géosci 352(1):87–101. https://doi.org/10.5802/crgeos.5

    Article  Google Scholar 

  • Ghosn M, Chekri R, Mahfouz C, Khalaf G, Amara R, Jitaru P (2019) Levels of Pb, Cd, Hg and As in fishery products from the Eastern Mediterranean and human health risk assessment due to their consumption. Int J Environ Res 13(3):443–455. https://doi.org/10.1007/s41742-019-00185-w

    Article  CAS  Google Scholar 

  • Gianguzza P, Chiantore M, Bonaviri C, Cattaneo-Vietti R, Vielmini I, Riggio S (2006) The effects of recreational Paracentrotus lividus fishing on distribution patterns of sea urchins at Ustica Island MPA (Western Mediterranean, Italy). Fish Res 81(1):37–44. https://doi.org/10.1016/j.fishres.2006.06.002

    Article  Google Scholar 

  • Guendouzi Y, Soualili DL, Boulahdid M, Boudjenoun M, Mezali K (2017) Seasonal variation in bioavailability of trace metals in the echinoid Paracentrotus lividus (Lamarck, 1816) from Algerian coastal waters: effect of physiological indices. Reg Stud Mar Sci 14:112–117. https://doi.org/10.1016/j.rsma.2017.05.010

    Article  Google Scholar 

  • Guidetti P, Terlizzi A, Boero F (2004) Effects of the edible sea urchin, Paracentrotus lividus, fishery along the Apulian rocky coast (SE Italy, Mediterranean Sea). Fish Res 66(2–3):287–297. https://doi.org/10.1016/S0165-7836(03)00206-6

    Article  Google Scholar 

  • Hackethal C, Kopp JF, Sarvan I, Schwerdtle T, Lindtner O (2021) Total arsenic and water-soluble arsenic species in foods of the first German total diet study (BfR MEAL Study). Food Chem 346:128913. https://doi.org/10.1016/j.foodchem.2020.128913

    Article  CAS  Google Scholar 

  • Hossain MB, Bhuiyan NZ, Kasem A, Hossain MK, Sultana S, Nur AU, Yu J, Albeshr MF, Arai T (2022) Heavy metals in four marine fish and shrimp species from a subtropical coastal area: accumulation and consumer health risk assessment. Biology (Basel) 11(12). https://doi.org/10.3390/biology11121780

  • Lafabrie C, Pergent G, Kantin R, Pergent-Martini C, Gonzalez JL (2007) Trace metals assessment in water, sediment, mussel and seagrass species–validation of the use of Posidonia oceanica as a metal biomonitor. Chemosphere 68(11):2033–2039. https://doi.org/10.1016/j.chemosphere.2007.02.039

    Article  CAS  Google Scholar 

  • Le Direach J (1987) La pêche des oursins en Méditerranée: historique, techniques, législation, production. Colloque international sur Paracentrotus lividus et les oursins comestibles. GIS Posidonie Publ., Marseille

    Google Scholar 

  • Leufroy A, Noel L, Dufailly V, Beauchemin D, Guerin T (2011) Determination of seven arsenic species in seafood by ion exchange chromatography coupled to inductively coupled plasma-mass spectrometry following microwave assisted extraction: method validation and occurrence data. Talanta 83(3):770–779. https://doi.org/10.1016/j.talanta.2010.10.050

    Article  CAS  Google Scholar 

  • Lischka S, Arroyo-Abad U, Mattusch J, Kuhn A, Piechotta C (2013) The high diversity of arsenolipids in herring fillet (Clupea harengus). Talanta 110:144–152. https://doi.org/10.1016/j.talanta.2013.02.051

    Article  CAS  Google Scholar 

  • Liu S, Xiao Q, Wang F, Zhong S, Chen Y, Guo Y, Su K, Huang M, Chen X, Zhu Z, Lu S (2022) Arsenic speciation in shellfish from South China Sea: levels, estimated daily intake and health risk assessment. Mar Pollut Bull 178:113651. https://doi.org/10.1016/j.marpolbul.2022.113651

    Article  CAS  Google Scholar 

  • Mamede R, Duarte IA, Caçador I, Tanner SE, Silva M, Jacinto D, Fonseca VF, Duarte B (2022) Elemental fingerprinting of sea urchin (Paracentrotus lividus) gonads to assess food safety and trace its geographic origin. J Food Compos Anal 114. https://doi.org/10.1016/j.jfca.2022.104764

  • Ministry of Health of the People’s Republic of China (2012) GB 2762–2012 Maximum levels of contaminants in food. National Standard of the People’s Republic of China. Beijing

  • National Research Council (1989) Diet and health: implications for reducing chronic disease risk. The National Academies Press, Washington, DC

    Google Scholar 

  • Nawrocka A, Durkalec M, Michalski M, Posyniak A (2022) Simple and reliable determination of total arsenic and its species in seafood by ICP-MS and HPLC-ICP-MS. Food Chem 379:132045. https://doi.org/10.1016/j.foodchem.2022.132045

    Article  CAS  Google Scholar 

  • Olmedo P, Pla A, Hernandez AF, Barbier F, Ayouni L, Gil F (2013) Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers. Environ Int 59:63–72. https://doi.org/10.1016/j.envint.2013.05.005

    Article  CAS  Google Scholar 

  • Ouchene H, Chahouri A, Hafidi N, Elouizgani H, Hermas J (2021) Seasonal changes in gonad index, biochemical composition and heavy metal determination of sea urchin Paracentrotus lividus gonads from the south coast of Morocco. Ocean Sci J 56(4):344–354. https://doi.org/10.1007/s12601-021-00038-8

    Article  CAS  Google Scholar 

  • Pais A, Chessa LA, Serra S, Ruiu A, Meloni G, Donno Y (2007) The impact of commercial and recreational harvesting for Paracentrotus lividus on shallow rocky reef sea urchin communities in North-western Sardinia, Italy. Estuar Coast Shelf Sci 73(3):589–597

    Article  Google Scholar 

  • Pastorelli AA, Baldini M, Stacchini P, Baldini G, Morelli S, Sagratella E, Zaza S, Ciardullo S (2012) Human exposure to lead, cadmium and mercury through fish and seafood product consumption in Italy: a pilot evaluation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29(12):1913–1921. https://doi.org/10.1080/19440049.2012.719644

    Article  CAS  Google Scholar 

  • Rouane-Hacene O, Boutiba Z, Benaissa M, Belhaouari B, Francour P, Guibbolini-Sabatier ME, Faverney CR (2018) Seasonal assessment of biological indices, bioaccumulation, and bioavailability of heavy metals in sea urchins Paracentrotus lividus from Algerian west coast, applied to environmental monitoring. Environ Sci Pollut Res Int 25(12):11238–11251. https://doi.org/10.1007/s11356-017-8946-0

    Article  CAS  Google Scholar 

  • Salvo A, Potorti AG, Cicero N, Bruno M, Lo Turco V, Di Bella G, Dugo G (2014) Statistical characterisation of heavy metal contents in Paracentrotus lividus from Mediterranean Sea. Nat Prod Res 28(10):718–726. https://doi.org/10.1080/14786419.2013.878937

    Article  CAS  Google Scholar 

  • Salvo A, Cicero N, Vadala R, Mottese AF, Bua D, Mallamace D, Giannetto C, Dugo G (2016) Toxic and essential metals determination in commercial seafood: Paracentrotus lividus by ICP-MS. Nat Prod Res 30(6):657–664. https://doi.org/10.1080/14786419.2015.1038261

    Article  CAS  Google Scholar 

  • Sarly MS, Pedro CA, Bruno CS, Raposo A, Quadros HC, Pombo A, Goncalves SC (2023) Use of the gonadal tissue of the sea urchin Paracentrotus lividus as a target for environmental contamination by trace metals. Environ Sci Pollut Res Int 30(38):89559–89580. https://doi.org/10.1007/s11356-023-28472-2

    Article  CAS  Google Scholar 

  • Scanu S, Soetebier S, Piazzolla D, Tiralongo F, Mancini E, Romano N, Marcelli M (2015) Concentrations of As, Cd, Cr, Ni, and Pb in the echinoid Paracentrotus lividus on the coast of Civitavecchia, northern Tyrrhenian Sea, Italy. Reg Stud Mar Sci 1:7–17. https://doi.org/10.1016/j.rsma.2015.02.001

    Article  Google Scholar 

  • Sirot V, Guerin T, Volatier JL, Leblanc JC (2009) Dietary exposure and biomarkers of arsenic in consumers of fish and shellfish from France. Sci Total Environ 407(6):1875–1885. https://doi.org/10.1016/j.scitotenv.2008.11.050

    Article  CAS  Google Scholar 

  • Storelli MM (2008) Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food Chem Toxicol 46(8):2782–2788. https://doi.org/10.1016/j.fct.2008.05.011

    Article  CAS  Google Scholar 

  • Ternengo S, Marengo M, El Idrissi O, Yepka J, Pasqualini V, Gobert S (2018) Spatial variations in trace element concentrations of the sea urchin, Paracentrotus lividus, a first reference study in the Mediterranean Sea. Mar Pollut Bull 129(1):293–298. https://doi.org/10.1016/j.marpolbul.2018.02.049

    Article  CAS  Google Scholar 

  • Warnau M, Biondo R, Temara A, Bouquegneau J-M, Jangoux M, Dubois P (1998) Distribution of heavy metals in the echinoid Paracentrotus lividus from the Mediterranean Posidonia oceanica ecosystem: seasonal and geographical variations. J Sea Res 39(3–4):267–280. https://doi.org/10.1016/S1385-1101(97)00064-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Axelle Leufroy: Conceptualization, Data curation, Formal analysis, Methodology, Validation, Roles/writing — original draft

Marc Bouchoucha: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Project administration, Resources, Validation, Writing — review and editing

Gilles Riviere: Conceptualization, Investigation, Project administration, Validation, Writing — review and editing

Thierry Guérin: Investigation, Project administration, Validation, Writing — review and editing

Petru Jitaru: Conceptualization, Funding acquisition, Investigation, Project administration, Resources, Supervision, Validation, Roles/writing — original draft, Writing — review and editing

Corresponding author

Correspondence to Axelle Leufroy.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

All authors gave explicit consent to participate.

Consent to publish

All authors gave explicit consent to submit.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leufroy, A., Bouchoucha, M., Riviere, G. et al. Trace elements and arsenic speciation in Paracentrotus lividus from North-West Mediterranean Sea. Environ Sci Pollut Res 30, 121851–121864 (2023). https://doi.org/10.1007/s11356-023-30941-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-30941-7

Keywords

Navigation