Skip to main content

Advertisement

Log in

Effects of sediment dredging on freshwater system: a comprehensive review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

As a common geo-engineering method to control internal load of nutrients and pollutants, sediment dredging has been used in many freshwater basins and has achieved certain effects. However, dredging can disturb water bodies and substrates and cause secondary pollution. It negatively affects the water environment system mainly from the following aspects. Dredging suddenly changes the hydrological conditions and many physical indicators of the water body, which will cause variations in water physicochemical properties. For example, changes in pH, dissolved oxygen, redox potential, transparency, and temperature can lead to a series of aquatic biological responses. On the other hand, sediment resuspension and deep-layer sediment exposure can affect the cycling of nutrients (e.g., nitrogen, phosphorus), the release and valence conversion of heavy metals, and the desorption and degradation of organic pollutants in the overlying water. This can further affect the community structure of aquatic organisms. The aim of this paper is to analyze the relevant literature on freshwater sediment dredging, and to summarize the current knowledge of the potential environmental risks caused by the dredging and utilization of freshwater sediments. Based on this, the paper attempts to propose suggestions to mitigate these adverse environmental impacts. These are significant contributions to the development of environmentally friendly freshwater sediment dredging technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All authors sure that all data and materials as well as software application or custom code support the published claims and comply with field standards.

References 

  • Abdullah M, Al-Anzi FS, Al-Sharhan S (2017) Efficient fuzzy techniques for medical data clustering. In: 2017 9th IEEE-GCC Conference and Exhibition (GCCCE), pp 1–9

  • Akcil A, Erust C, Ozdemiroglu S, Fonti V, Beolchini F (2015) A review of approaches and techniques used in aquatic contaminated sedi- ments: metal removal and stabilization by chemical and biotechno- logical processes. J Clean Prod 86:24–36

    Article  CAS  Google Scholar 

  • Aldridge DC (2000) The impacts of dredging and weed cutting on a population of freshwater mussels (Bivalvia: Unionidae). Biol Cons 95:247–257

    Article  Google Scholar 

  • Baniulyte D, Favila E, Kelly JJ (2008) Shifts in microbial community composition following surface application of dredged river sediments. Microb Ecol 57:160–169

    Article  Google Scholar 

  • Barrio-Froján CRS, Boyd SE, Cooper KM, Eggleton JD, Ware S (2008) Long-term benthic responses to sustained disturbance by aggregate extraction in an area off the east coast of the United Kingdom. Estuar Coast Shelf Sci 79:204–212

    Article  Google Scholar 

  • Barrio-Froján CRS, Cooper KM, Bremner J, Defew EC, Hussin WMW, Paterson DM (2011) Assessing the recovery of functional diversity after sustained sediment screening at an aggregate dredging site in the North Sea. Estuar Coast Shelf Sci 92:358–366

    Article  Google Scholar 

  • Bengtsson L, Herschy RW, Fairbridge RW (2012) Encyclopedia of lakes and reservoirs. Monographiae Biologicae 53:10–26

    Google Scholar 

  • Bettoso N, Aleffi IF, Faresi L, D’Aietti A, Acquavita A (2020) Macrozoobenthos monitoring in relation to dredged sediment disposal: the case of the Marano and Grado Lagoon (northern Adriatic Sea, Italy). Reg Stud Mar Sci 33:8

    Google Scholar 

  • Borma LD, Simone ME, Barbosa MC (2003) Acidification and release of heavy metals in dredged sediments. Can Geotech J 40:1154–1163

    Article  Google Scholar 

  • Boyd SE, Limpenny DS, Rees HL, Cooper KM (2005) The effects of marine sand and gravel extraction on the macrobenthos at a commercial dredging site (results 6 years post-dredging). ICES J Mar Sci 62:145–162

    Article  Google Scholar 

  • Brönmark C, Hansson L-A (2002) Environmental issues in lakes and ponds: current state and perspectives. Environ Conserv 29:290–307

    Article  Google Scholar 

  • Cabrita MT (2014) Phytoplankton community indicators of changes associated with dredging in the Tagus estuary (Portugal). Environ Pollut 191:17–24

    Article  CAS  Google Scholar 

  • Cabrita MT, Raimundo J, Pereira P, Vale C (2013) Optimizing alginate beads for the immobilisation of Phaeodactylum tricornutum in estuarine waters. Mar Environ Res 87–88:37–43

    Article  Google Scholar 

  • Cabrita MT, Raimundo J, Pereira P, Vale C (2014) Immobilised Phaeodactylum tricornutum as biomonitor of trace element availability in the water column during dredging. Environ Sci Pollut Res 21:3572–3581

    Article  CAS  Google Scholar 

  • Ceia FR, Patricio J, Franco J, Pinto R, Fernandez-Boo S, Losi V, Marques JC, Neto JM (2013) Assessment of estuarine macrobenthic assemblages and ecological quality status at a dredging site in a southern Europe estuary. Ocean Coast Manag 72:80–92

    Article  Google Scholar 

  • Chen D, Dai ZJ, Xu R, Li DJ, Mei XF (2015) Impacts of anthropogenic activities on the Changjiang (Yangtze) estuarine ecosystem (1998–2012). Acta Oceanol Sin 34:86–93

    Article  Google Scholar 

  • Chen MS, Cui JZ, Lin J, Ding SM, Gong MD, Ren MY, Tsang DCW (2018) Successful control of internal phosphorus loading after sediment dredging for 6 years: a field assessment using high-resolution sampling techniques. Sci Total Environ 616:927–936

    Google Scholar 

  • Chen MS, Ding SM, Gao SS, Fu Z, Tang WY, Wu YX, Gong MD, Wang D, Wang Y (2019a) Efficacy of dredging engineering as a means to remove heavy metals from lake sediments. Sci Total Environ 665:181–190

    Article  CAS  Google Scholar 

  • Chen MS, Ding SM, Gao SS, Xu SW, Yang CY, Wu YX, Gong MD, Wang D, Wang Y (2019b) Long-term effects of sediment dredging on controlling cobalt, zinc, and nickel contamination determined by chemical fractionation and passive sampling. Chemosphere 220:476–485

    Article  CAS  Google Scholar 

  • Choppala G, Moon E, Bush R, Bolan N, Carroll N (2018) Dissolution and redistribution of trace elements and nutrients during dredging of iron monosulfide enriched sediments. Chemosphere 201:380–387

    Article  CAS  Google Scholar 

  • Coates DA, Van Hoey G, Colson L, Vincx M, Vanaverbeke J (2015) Rapid macro- benthic recovery after dredging activities in an offshore wind farm in the Belgian part of the North Sea. Hydrobiologia 756:3–18

    Article  CAS  Google Scholar 

  • Cunning R, Silverstein RN, Barnes BB, Baker AC (2019) Extensive coral mortality and critical habitat loss following dredging and their association with remotely-sensed sediment plumes. Mar Pollut Bull 145:185–199

    Article  CAS  Google Scholar 

  • Cutroneo L, Castellano M, Carbone C, Consani S, Gaino F, Tucci S, Magri S, Povero P, Bertolotto RM, Canepa G, Capello M (2015) Evaluation of the boundary condition influence on PAH concentrations in the water column during the sediment dredging of a port. Mar Pollut Bull 101:583–593

    Article  CAS  Google Scholar 

  • De Jonge M, Teuchies J, Meire P, Blust R, Bervoets L (2012) The impact of increased oxygen conditions on metal-contaminated sediments part I: effects on redox status, sediment geochemistry and metal bioavailability. Water Res 46:2205–2214

    Article  Google Scholar 

  • Degerman R, Lefébure R, Byström P, Båmstedt U, Larsson S, Andersson A (2018) Food web interactions determine energy transfer efficiency and top consumer responses to inputs of dissolved organic carbon. Hydrobiologia 805:131–146

    Article  CAS  Google Scholar 

  • Ding T, Tian YJ, Liu JB, Hou J, Guo ZN, Wang JY (2015) Calculation of the environmental dredging depth for removal of river sediments contaminated by heavy metals. Environ Earth Sci 74:4295–4302

    Article  CAS  Google Scholar 

  • Ding YQ, Sun LM, Qin BQ, Wu TF, Shen X, Wang YP (2018) Characteristics of sediment resuspension in Lake Taihu, China: a wave flume study. J Hydrol 561:702–710

    Article  CAS  Google Scholar 

  • Ding R, Guo N, Ma Y (2019) Effects of sediment dredging on crustacean zooplankton community of Shuangqiao Riverin Chaohu Basin. J Lake Sci 31:714–723 (in China)

    Article  CAS  Google Scholar 

  • Dodds W (2002) Freshwater ecology: concepts and environmental applications. Elsevier

    Google Scholar 

  • Dutta S (2016) Soil erosion, sediment yield and sedimentation of reservoir: a review. Model Earth Syst Environ 2:1–18

    Article  Google Scholar 

  • Eggleton J, Thomas KV (2004) A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30:973–980

    Article  CAS  Google Scholar 

  • Erftemeijer PLA, Lewis RRR III (2006) Environmental impacts of dredging on seagrasses: a review. Mar Pollut Bull 52:1553–72

    Article  CAS  Google Scholar 

  • Erftemeijer PLA, Riegl B, Hoeksema BW, Todd PA (2012) Environmental impacts of dredging and other sediment disturbances on corals: a review. Mar Pollut Bull 64:1737–1765

    Article  CAS  Google Scholar 

  • Fan C, Zhang Lu, Wang J, Zheng C, Gao G, Wang S (2004) Processes and mechanism of effects of sludge dredging on internal source release in lakes. Chin Sci Bull 49:1853–1859

    Article  Google Scholar 

  • Fischer J, Paukert C, Daniels M (2012) Fish community response to habitat alteration: impacts of sand dredging in the Kansas River. Trans Am Fish Soc 141:1532–1544

    Article  Google Scholar 

  • Freedman JA, Stauffer JR, Stauffer JR (2013) Gravel dredging alters diversity and structure of riverine fish assemblages. Freshw Biol 58:261–274

    Article  CAS  Google Scholar 

  • Galzin R (1981) Effects of coral sand dredging on fish fauna in the lagoon of the grand cu de sac marin Guadeloupe-French West Indies. Proceedings of the 4th International Coral Reef Symposium, Manila (Philippines)

  • Gambrell RP, Wiesepape JB, Patrick WH, Duff MC (1991) The effects of pH, redox, and salinity on metal release from a contaminated sediment. Water Air Soil Pollut 57:359–367

    Article  Google Scholar 

  • Gorokhova E, Lehtiniemi M, Postel L, Rubene G, Amid C, Lesutiene J, Uusitalo L, Strake S, Demereckiene N (2016) Indicator properties of Baltic zooplankton for classification of environmental status within marine strategy framework directive. PLoS ONE 11:e0158326

    Article  Google Scholar 

  • Grasso F, Le Hir P (2018) Influence of morphological changes on suspended sediment dynamics in a macrotidal estuary: diachronic analysis in the Seine Estuary (France) from 1960 to 2010. Ocean Dyn 69:83–100

    Article  Google Scholar 

  • Hayer C-A, Irwin ER (2008) ’Influence of gravel mining and other factors on detection probabilities of coastal plain fishes in the Mobile River Basin, Alabama. Trans Am Fish Soc 137:1606–1620

    Article  Google Scholar 

  • Haynes JM, Makarewicz JC (1982) Comparison of benthic communities in dredged and undredged areas of the St. Lawrence River, Cape Vincent, NY

  • Hess S, Wenger AS, Ainsworth TD, Rummer JL (2015) Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: impacts on gill structure and microbiome. Sci Rep 5:1–8

    Article  Google Scholar 

  • Holmer M, Ahrensberg N, Jørgensen NP (2003) Impacts of mussel dredging on sediment phosphorus dynamics in a eutrophic Danish fjord. Chem Ecol 19:343–361

    Article  CAS  Google Scholar 

  • Jing L, Li H (2016) Environmental effects of lake dredging on dissolved oxygen at sediment-water interface. J Southwest Univ National (Natural Science Edition) 42:632–37

    CAS  Google Scholar 

  • Jing LD, Bai S, Li YH, Peng Y, Wu CX, Liu JT, Liu GX, Xie ZC, Yu GL (2019) Dredging project caused short-term positive effects on lake ecosystem health: a five-year follow-up study at the integrated lake ecosystem level. Sci Total Environ 686:753–763

    Article  CAS  Google Scholar 

  • Kafilzadeh F (2015) Distribution and sources of polycyclic aromatic hydrocarbons in water and sediments of the Soltan Abad Rive, Iran. Egypt J Aquat Res 41:227–231

    Article  Google Scholar 

  • Karr JR (1981) Assessment of biotic integrity using fish communities. Fisheries 6:21–27

    Article  Google Scholar 

  • Kaur J, Jaligama G, Atkinson JF, DePinto JV, Nemura AD (2007) Modeling dissolved oxygen in a dredged Lake Erie tributary. J Great Lakes Res 33:62–82

    Article  CAS  Google Scholar 

  • Kim KJ, Kim DH, You JC et al (2011) Electrokinetic extraction of heavy metals from dredged marine sediment. Sep Purif Technol 79(2):164–169

    Article  CAS  Google Scholar 

  • Kjelland ME, Woodley CM, Swannack TM, Smith DL (2015) A review of the potential effects of suspended sediment on fishes: potential dredging-related physiological, behavioral, and transgenerational implications. Environ Syst Decis 35:334–350

    Article  Google Scholar 

  • Kleeberg A, Kohl J-G (1999) Assessment of the long-term effectiveness of sediment dredging to reduce benthic phosphorus release in shallow Lake Müggelsee (Germany). Hydrobiologia 394:153–161

    Article  CAS  Google Scholar 

  • Lafabrie C, Garrido M, Leboulanger C, Cecchi P, Grégori G, Pasqualini V, Pringault O (2013) Impact of contaminated-sediment resuspension on phytoplankton in the Biguglia lagoon (Corsica, Mediterranean Sea). Estuar Coast Shelf Sci 130:70–80

    Article  CAS  Google Scholar 

  • Layglon N, Misson B, Durieu G, Coclet C, D’Onofrio S, Dang DH, Francois D, Mullot JU, Mounier S, Lenoble V, Omanovic D, Garnier C (2020) Long-term monitoring emphasizes impacts of the dredging on dissolved Cu and Pb contamination along with ultraplankton distribution and structure in Toulon Bay (NW Mediterranean Sea, France). Mar Pollut Bull 156:10

    Article  Google Scholar 

  • Lewis MA, Weber DE, Stanley RS, Moore JC (2001) Dredging impact on an urbanized Florida bayou: effects on benthos and algal-periphyton. Environ Pollut 115:161–171

    Article  CAS  Google Scholar 

  • Liao HH, Yen JY, Guan YJ, Ke DF, Liu CX (2020) Differential responses of stream water and bed sediment microbial communities to watershed degradation. Environ Int 134:11

    Article  Google Scholar 

  • Licursi M, Gómez N (2009) Effects of dredging on benthic diatom assemblages in a lowland stream. J Environ Manage 90:973–982

    Article  CAS  Google Scholar 

  • Lind OT, Dávalos-Lind L (1991) Association of turbidity and organic carbon with bacterial abundance and cell size in a large, turbid, tropical lake. Limnol Oceanogr 36:1200–1208

    Article  CAS  Google Scholar 

  • Liu TT, Yang H (2020) Comparative analysis of the total and active bacterial communities in the surface sediment of Lake Taihu. FEMS Microbiol Ecol 96:11

    Article  Google Scholar 

  • Liu AJ, Kong FX, Wang D, Yu Y, Tao Y (2006) ’Effects of dredging on extracellular microbial enzymes in the sediment of Taihu Lake. China’, Journal of Freshwater Ecology 21:399–404

    Article  CAS  Google Scholar 

  • Liu C, Shen QS, Zhou QL, Fan CX, Shao SG (2015) Precontrol of algae-induced black blooms through sediment dredging at appropriate depth in a typical eutrophic shallow lake. Ecol Eng 77:139–145

    Article  Google Scholar 

  • Liu C, Fan CX, Shen QS, Shao SG, Zhang L, Zhou QL (2016a) Effects of riverine suspended particulate matter on post-dredging metal re-contamination across the sediment-water interface. Chemosphere 144:2329–2335

    Article  CAS  Google Scholar 

  • Liu C, Zhong JC, Wang JJ, Zhang L, Fan CX (2016b) Fifteen-year study of environmental dredging effect on variation of nitrogen and phosphorus exchange across the sediment-water interface of an urban lake. Environ Pollut 219:639–648

    Article  CAS  Google Scholar 

  • Liu C, Yiheng Du, Yin H, Fan C, Chen K, Zhong J, Xiaozhi Gu (2019) Exchanges of nitrogen and phosphorus across the sediment-water interface influenced by the external suspended particulate matter and the residual matter after dredging. Environ Pollut 246:207–216

    Article  CAS  Google Scholar 

  • Lohrer AM, Wetz JJ (2003) Dredging-induced nutrient release from sediments to the water column in a southeastern saltmarsh tidal creek. Mar Pollut Bull 46:1156–1163

    Article  CAS  Google Scholar 

  • Lu J, Li H, Chen X, Liang D (2019) Numerical study of remote sensed dredging impacts on the suspended sediment transport in China’s largest freshwater lake. Water 11:2449

    Article  Google Scholar 

  • Lurling M, Waajen G, Engels B, van Oosterhout F (2017) Effects of dredging and lanthanum-modified clay on water quality variables in an enclosure study in a hypertrophic pond. Water 9:24

    Google Scholar 

  • Manap N, Voulvoulis N (2014) Risk-based decision-making framework for the selection of sediment dredging option. Sci Total Environ 496:607–623

    Article  CAS  Google Scholar 

  • Mateo-Sagasta J, Zadeh SM, Turral H, Burke J (2017) Water pollution from agriculture: a global review. Executive summary (Rome, Italy: FAO Colombo, Sri Lanka: International Water Management)

  • Meers E, Ruttens A, Hopgood M et al (2005) Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere 61(4):561–572

    Article  CAS  Google Scholar 

  • Meng X, Jiang X, Li Z, Wang J, Cooper KM, Xie Z (2018) Responses of macroinvertebrates and local environment to short-term commercial sand dredging practices in a flood-plain lake. Sci Total Environ 631–632:1350–1359

    Article  Google Scholar 

  • Meng XL, Chen JJ, Li ZF, Liu ZY, Jiang XK, Ge YH, Cooper KM, Xie ZC (2020) Degraded functional structure of macroinvertebrates caused by commercial sand dredging practices in a flood plain lake. Environ Pollut 263:11

    Article  Google Scholar 

  • Morgan B, Rate AW, Burton ED (2012) Water chemistry and nutrient release during the resuspension of FeS-rich sediments in a eutrophic estuarine system. Science of the Total Environ 432:47–56

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) An evaluation of technologies for the heavy metal remediation of dredged sediments. J Hazard Mater 85(12):145–163

    Article  CAS  Google Scholar 

  • Nandy T, Mandal S (2020) ’Unravelling the spatio-temporal variation of zooplankton community from the river Matla in the Sundarbans Estuarine System. India’, Oceanologia 62:326–346

    Article  Google Scholar 

  • Nayar S, Goh BPL, Chou LM (2004) Environmental impact of heavy metals from dredged and resuspended sediments on phytoplankton and bacteria assessed in in situ mesocosms. Ecotoxicol Environ Saf 59:349–369

    Article  CAS  Google Scholar 

  • Netto SA, Domingos AM, Kurtz MN (2012) Effects of Artificial Breaching of a Temporarily Open/Closed Estuary on Benthic Macroinvertebrates (Camacho Lagoon, Southern Brazil). Estuaries Coasts 35:1069–1081

    Article  CAS  Google Scholar 

  • Olsen Mar, Petersen K, Lehoux AP, Leppänen M, Schaanning M, Snowball I, Øxnevad S, Lund E (2019) Contaminated sediments: review of solutions for protecting aquatic environments (Nordic Council of Ministers)

  • Paukert C, Schloesser J, Fischer J, Eitzmann J, Pitts K, Thornbrugh D (2008) Effect of instream sand dredging on fish communities in the Kansas River USA: current and historical perspectives. J Freshw Ecol 23:623–633

    Article  Google Scholar 

  • Peimin P, Guoxiang W, Chunhua H, Weiping H, Chengxin F (2000) Can we control lake eutrophicat ion by dredging? J Lake Sci 12:269–79 (in China)

    Article  Google Scholar 

  • Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161(2–3):633–640

    Article  CAS  Google Scholar 

  • Pennekamp JGS, Epskamp RJC, Rosenbrand WF et al (1996) Turbidity caused by dredging: viewed in perspective. Terra et Aqua 1996:10–17

  • Piló D, Carvalho AN, Pereira F, Coelho HE, Gaspar MB (2019) Evaluation of macrobenthic community responses to dredging through a multimetric approach: Effective or apparent recovery? Ecol Ind 96:656–668

    Article  Google Scholar 

  • Pimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, McNair M, Crist S, Shpritz L, Fitton L, Saffouri R (1995) Environmental and economic costs of soil erosion and conservation benefits. Science 267:1117–23

    Article  CAS  Google Scholar 

  • Pourabadehei M, Mulligan CN (2016) Resuspension of sediment, a new approach for remediation of contaminated sediment. Environ Pollut 213:63–75

    Article  CAS  Google Scholar 

  • Pritchard A (1969) Statistical bibliography or bibliometrics. J Doc 25:348–349

    Google Scholar 

  • Ptacnik R, Solimini AG, Brettum P (2009) Performance of a new phytoplankton composition metric along a eutrophication gradient in Nordic lakes. Hydrobiologia 633(1):75–82

    Article  CAS  Google Scholar 

  • Qi WX, Liu HJ, Qu JH, Ren HM, Xu W (2011) PAH desorption from sediments with different contents of organic carbon from wastewater receiving rivers. Environ Sci Pollut Res 18:346–354

    Article  CAS  Google Scholar 

  • Qian B, Liu L, Yan WM, Zhang Y, Xiao X (2012) In situ microsensor studies of long-term environmental effect of sediment dredging in the Shallow Lake. Asian J Chem 24:4408–4414

    CAS  Google Scholar 

  • Ramalingam S, Chandra V (2018) Influence of live microbes on suspended sediment concentration in coastal ecosystem. Mar Geol 405:108–113

    Article  CAS  Google Scholar 

  • Recknagel F, Hosomi M, Fukushima T, Kong D-S (1995) Short-and long-term control of external and internal phosphorus loads in lakes—a scenario analysis. Water Res 29:1767–1779

    Article  CAS  Google Scholar 

  • Reddy KR, Fisher MM, Wang Y, White JR, James RT (2007) Potential effects of sediment dredging on internal phosphorus loading in a shallow, subtropical lake. Lake Reservoir Manage 23:27–38

    Article  Google Scholar 

  • Rehitha TV, Ullas N, Vineetha G, Benny PY, Madhu NV, Revichandran C (2017) Impact of maintenance dredging on macrobenthic community structure of a tropical estuary. Ocean Coast Manag 144:71–82

    Article  Google Scholar 

  • Reine KJ, Dickerson DD, Clarke DG (1998) Environmental windows associated with dredging operations. US Army Engineer Research and Development Center [Environmental Laboratory]

  • Rempel LL, Church M (2009) Physical and ecological response to disturbance by gravel mining in a large alluvial river. Can J Fish Aquat Sci 66:52–71

    Article  Google Scholar 

  • Robinson JE, Newell RC, Seiderer LJ, Simpson NM (2005) Impacts of aggregate dredging on sediment composition and associated benthic fauna at an offshore dredge site in the southern North Sea. Mar Environ Res 60:51–68

    Article  CAS  Google Scholar 

  • Ruocco N, Bertocci I, Munari M, Musco L, Caramiello D, Danovaro R, Zupo V, Costantini M (2020) Morphological and molecular responses of the sea urchin Paracentrotus lividus to highly contaminated marine sediments: the case study of Bagnoli-Coroglio brownfield (Mediterranean Sea). Mar Environ Res 154:10

    Article  Google Scholar 

  • Saeki K, Okazaki M, Matsumoto S (1993) The chemical phase changes in heavy metals with drying and oxidation of the lake sediments. Water Res 27:1243–1251

    Article  CAS  Google Scholar 

  • Salomons W, Stigliani WM (2012) Biogeodynamics of pollutants in soils and sediments: risk assessment of delayed and non-linear responses. Springer Science & Business Media

    Google Scholar 

  • Schindler DW (1971) Carbon, nitrogen, and phosphorus and the eutrophication of freshwater lakes 1. J Phycol 7:321–329

    Article  CAS  Google Scholar 

  • Sew G, Calbet A, Drillet G, Todd PA (2018) Effects of concentration and size of suspended particles on the ingestion, reproduction and mortality rates of the copepod, Acartia Tonsa. Mar Environ Res 140:251–264

    Article  CAS  Google Scholar 

  • Sládecek V (1983) Rotifers as indicators of water quality. Hydrobiologia 1:169–201

    Article  Google Scholar 

  • Speth JG (1994) Towards an effective and operational international convention on desertification (International Negotiating Committee, International Convention on Desertification, United Nations, New York). In International Convention on Desertification, United Nations

  • Sui HC, Wang JH, Li Z, Zeng Q, Liu X, Ren L, Liu CY, Zhu YN, Lv LX, Che Q, Liu X (2020) Screening of ecological impact assessment indicators in urban water body restoration process itle. Ecol Ind 113:6

    Article  Google Scholar 

  • Suikkanen S, Laamanen M, Huttunen M (2007) Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuar Coast Shelf Sci 71(3/4):580–592

    Article  Google Scholar 

  • Sumi T, Hirose T (2009) Accumulation of sediment in reservoirs. In: Water storage, transport and distribution. UNESCO-IHE and EOLSS Publishers Co. Ltd., Paris, pp 224–252

  • Sun Q, Ding SM, Chen MS, Gao SS, Lu GH, Wu YX, Gong MD, Wang D, Wang Y (2019) Long-term effectiveness of sediment dredging on controlling the contamination of arsenic, selenium, and antimony. Environ Pollut 245:725–734

    Article  CAS  Google Scholar 

  • Sweka JA, Hartman KJ (2003) Reduction of reactive distance and foraging success in smallmouth bass, Micropterus dolomieu, exposed to elevated turbidity levels. Environ Biol Fishes 67:341–347

    Article  Google Scholar 

  • Szymelfenig M, Kotwicki L, Graca B (2006) Benthic re-colonization in post-dredging pits in the Puck Bay (Southern Baltic Sea). Estuarine Coastal Shelf Sci 68:489–498

    Article  Google Scholar 

  • Tao F, Jiantong L, Bangding X, Xiaoguo C, Xiaoqing Xu (2005) Mobilization potential of heavy metals: a comparison between river and lake sediments. Water Air Soil Pollut 161:209–225

    Article  Google Scholar 

  • Thomson AH, Manoylov KM (2019) Algal community dynamics within the Savannah River Estuary, Georgia under Anthropogenic Stress. Estuaries Coasts 42:1459–1474

    Article  CAS  Google Scholar 

  • Tyrrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–531

    Article  CAS  Google Scholar 

  • Vagge G, Cutroneo L, Castellano M, Canepa G, Bertolotto RM, Capello M (2018) The effects of dredging and environmental conditions on concentrations of polycyclic aromatic hydrocarbons in the water column. Mar Pollut Bull 135:704–713

    Article  CAS  Google Scholar 

  • Voutsa D, Manoli E, Samara C, Sofoniou M, Stratis I (2001) A study of surface water quality in Macedonia, Greece: speciation of nitrogen and phosphorus. Water Air Soil Pollut 129:13–32

    Article  CAS  Google Scholar 

  • Wan W, Zhang Y, Cheng G, Li X, Qin Y, He D (2020) Dredging mitigates cyanobacterial bloom in eutrophic Lake Nanhu: shifts in associations between the bacterioplankton community and sediment biogeochemistry. Environ Res 188:109799

    Article  CAS  Google Scholar 

  • Wang XY, Feng J (2007) ’Assessment of the effectiveness of environmental dredging in South Lake, China. Environ Manag 40:314–322

    Article  Google Scholar 

  • Wang J, Wang J, Zhu L, Xie H, Shao Bo, Hou X (2014) The enzyme toxicity and genotoxicity of chlorpyrifos and its toxic metabolite TCP to zebrafish Danio rerio. Ecotoxicology 23:1858–1869

    Article  CAS  Google Scholar 

  • Ward-Campbell BMS, Valere B (2018) What are the impacts of small-scale dredging activities on inland fisheries productivity? A systematic review protocol. Environ Evidence 7:1–7

  • Wasserman JC, Barros SR, Lima GB (2013) Planning dredging services in contaminated sediments for balanced environmental and investment costs. J Environ Manage 121:48–56

    Article  Google Scholar 

  • Waye-Barker GA, McIlwaine P, Lozach S, Cooper KM (2015) The effects of marine sand and gravel extraction on the sediment composition and macrofaunal community of a commercial dredging site (15 years post-dredging). Mar Pollut Bull 99:207–215

    Article  CAS  Google Scholar 

  • Wen S, Zhong J, Li X, Liu C, Yin H, Li D, Ding S, Fan C (2020) Does external phosphorus loading diminish the effect of sediment dredging on internal phosphorus loading? An in-situ simulation study. J Hazard Mater 394:122548

    Article  CAS  Google Scholar 

  • Wild SR, Jones KC (1995) Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ Pollut 88:91–108

    Article  CAS  Google Scholar 

  • Wu Z, Kong M, Cai Y, Wang X, Li K (2019) ’Index of biotic integrity based on phytoplankton and water quality index: do they have a similar pattern on water quality assessment? A Study of Rivers in Lake Taihu Basin, China. Sci Total Environ 658:395–404

    Article  CAS  Google Scholar 

  • Xu H, Guo L, Jiang H (2016) Depth-dependent variations of sedimentary dissolved organic matter composition in a eutrophic lake: implications for lake restoration. Chemosphere 145:551–559

    Article  CAS  Google Scholar 

  • Yang C, Yaqiong Wu, Zhang F, Liu L, Pan R (2016) Pollution characteristics and ecological risk assessment of heavy metals in the surface sediments from a source water reservoir. Chem Speciat Bioavailab 28:133–141

    Article  CAS  Google Scholar 

  • Yang JW, Holbach A, Wilhelms A, Krieg J, Qin YW, Zheng BH, Zou H, Qin BQ, Zhu GW, Wu TF, Norra S (2020) Identifying spatio-temporal dynamics of trace metals in shallow eutrophic lakes on the basis of a case study in Lake Taihu, China. Environ Pollut 264:11

    Article  Google Scholar 

  • Yell D, Riddell J (1995) ICE design and practice guides: Dredging. Thomas Telford Publishing, London

  • Yenilmez F, Aksoy A (2013) Comparison of phosphorus reduction alternatives in control of nutrient concentrations in Lake Uluabat (Bursa, Turkey): partial versus full sediment dredging. Limnologica 43:1–9

    Article  CAS  Google Scholar 

  • Yu JH, Fan CX, Zhong JC, Zhang L, Zhang L, Wang CH, Yao XL (2016) Effects of sediment dredging on nitrogen cycling in Lake Taihu, China: insight from mass balance based on a 2-year field study. Environ Sci Pollut Res 23:3871–3883

    Article  CAS  Google Scholar 

  • Yu JH, Chen QW, Zhang JY, Zhong JC, Fan CX, Hu LM, Shi WQ, Yu WY, Zhang YL (2019) In situ simulation of thin-layer dredging effects on sediment metal release across the sediment-water interface. Sci Total Environ 658:501–509

    Article  CAS  Google Scholar 

  • Zamor RM, Grossman GD (2007) Turbidity affects foraging success of drift-feeding rosy side dace. Trans Am Fish Soc 136:167–176

    Article  Google Scholar 

  • Zhang SY, Zhou QH, Xu D, Lin JD, Cheng SP, Wu ZB (2010a) Effects of sediment dredging on water quality and zooplankton community structure in a shallow of eutrophic lake. J Environ Sci 22:218–224

    Article  CAS  Google Scholar 

  • Zhang S, Zhou Q, Dong Xu, Lin J, Cheng S, Zhenbin Wu (2010b) Effects of sediment dredging on water quality and zooplankton community structure in a shallow of eutrophic lake. J Environ Sci 22:218–224

    Article  CAS  Google Scholar 

  • Zhang Z, Song X, Xianguo Lu, Xue Z (2013) Ecological stoichiometry of carbon, nitrogen, and phosphorus in estuarine wetland soils: influences of vegetation coverage, plant communities, geomorphology, and seawalls. J Soils Sediments 13:1043–1051

    Article  CAS  Google Scholar 

  • Zhang R, Zeng FX, Liu WJ, Zeng RJ, Jiang H (2014) Precise and economical dredging model of sediments and its field application: case study of a river heavily polluted by organic matter, nitrogen, and phosphorus. Environ Manage 53:1119–1131

    Article  Google Scholar 

  • Zhang N, Xiao X, Pei M, Liu X, Liang YT (2017) Discordant temporal turnovers of sediment bacterial and eukaryotic communities in response to dredging: nonresilience and functional changes. Appl Environ Microbiol 83:15

    Article  Google Scholar 

  • Zhong J, Fan C (2007) Advance in the study on the effectiveness and environmental impact of sediment dredging. J Lake Sci 19:1–10 (in China)

    Article  CAS  Google Scholar 

  • Zhong J, Chengxin Fan Lu, Zhang EH, Ding S, Li B, Liu G (2010) Significance of dredging on sediment denitrification in Meiliang Bay, China: a year long simulation study. J Environ Sci 22:68–75

    Article  CAS  Google Scholar 

  • Zou W, Tolonen KT, Zhu GW, Qin BQ, Zhang YL, Cao ZG, Peng K, Cai YJ, Gong ZJ (2019) Catastrophic effects of sand mining on macroinvertebrates in a large shallow lake with implications for management. Sci Total Environ 695:9

    Article  Google Scholar 

Download references

Funding

F.L. would like to acknowledge the support of the National Natural Science Foundation of China (Grant No. 42177027).

Author information

Authors and Affiliations

Authors

Contributions

JY: conceptualization, methodology, writing—original draft, investigation; FL: writing—review and editing.

Corresponding author

Correspondence to Fang Li.

Ethics declarations

Ethics approval

The submitted manuscript is original and have not been published elsewhere in any form or language.

Consent to participate

Done.

Consent for publication

All authors agreed with the content and that all gave explicit consent to submit.

Conflicts of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Li, F. Effects of sediment dredging on freshwater system: a comprehensive review. Environ Sci Pollut Res 30, 119612–119626 (2023). https://doi.org/10.1007/s11356-023-30851-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-30851-8

Keywords

Navigation