Skip to main content

Advertisement

Log in

Dengue havoc: overview and eco-friendly strategies to forestall the current epidemic

  • Green Technology and Industrial Revolution 4.0 for a Greener Future
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Dengue fever is a mosquito-borne viral illness that affects over 100 nations around the world, including Africa, America, the Eastern Mediterranean, Southeast Asia, and the Western Pacific. Those who get infected by virus for the second time are at greater risk of having persistent dengue symptoms. Dengue fever has yet to be treated with a long-lasting vaccination or medication. Because of their ease of use, mosquito repellents have become popular as a dengue prevention technique. However, this has resulted in environmental degradation and harm, as well as bioaccumulation and biomagnification of hazardous residues in the ecosystem. Synthetic pesticides have caused a plethora of serious problems that were not foreseen when they were originally introduced. The harm caused by the allopathic medications/synthetic pesticides/chemical mosquito repellents has paved the door to employment of eco-friendly/green approaches in order to reduce dengue cases while protecting the integrity of the nearby environment too. Since the cases of dengue have become rampant these days, hence, starting the medication obtained from green approaches as soon as the disease is detected is advisable. In the present paper, we recommend environmentally friendly dengue management strategies, which, when combined with a reasonable number of vector control approaches, may help to avoid the dengue havoc as well as help in maintaining the integrity of the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abd Kadir SL, Yaakob H, Mohamed ZR (2013) Potential anti-dengue medicinal plants: a review. J Nat Med. 67(4):677–689

  • Abdul Ahmad SA, Palanisamy UD, Tejo BA, Chew MF, Tham HW, Syed Hassan S (2017) Geraniin extracted from the rind of Nephelium lappaceum binds to dengue virus type-2 envelope protein and inhibits early stage of virus replication. Virology J 14(1):1–3

    Google Scholar 

  • Acosta EG, Bartenschlager R (2016) The quest for host targets to combat dengue virus infections. Curr Opin Virol 20:47–54

    Google Scholar 

  • Agarwal MJ, Chanda S, Rao ME, Ganju L (2016) Effect of Hippophae Rhamnoides leaf extract against dengue virus infection in U937 cells. Virol-Mycol 5:157

  • Akram M, Adetunji CO, Egbuna C, Jabeen S, Olaniyan OT, Ezeofor NJ, Anani OA, Laila U, Găman MA, Patrick-Iwuanyanwu KC, Ifemeje JC (2021) Dengue fever: a brief overview and insights into the potential applicability of phytochemicals in its management. Negl Trop Dis Phytochemicals Drug Discov 17:417–439

    Google Scholar 

  • Alam MF, Mohammed M, Chopra S, Dua AK (2011) Toxicological properties of several medicinal plants from the Himalayas (India) against vectors of malaria, filariasis and dengue. Trop Biomed 28(2):343–350

    CAS  Google Scholar 

  • Alcon S, Talarmin A, Debruyne M, Falconar A, Deubel V, Flamand M (2002) Enzyme-linked immunosorbent assay specific to Dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections. J Clin Microbiol 40:376–381

    CAS  Google Scholar 

  • Ali-Seyed M, Vijayaraghavan K (2020) Dengue virus infections and anti-dengue virus activities of Andrographis paniculata. Asian Pac J Trop Med 13(2):49

    CAS  Google Scholar 

  • Allan W, Whelan P, Brown J, Vincent T, Carter J, Kurucz N (2020) The removal of subterranean stormwater drain sumps as mosquito breeding sites in Darwin Australia. Trop Med Infect Dis 10(5):1–9

    Google Scholar 

  • Amorim JH, Alves Rp dos S, Boscardin SB, Ferreira LC (2014) The dengue virus non-structural 1 protein: risks and benefits. Virus Res 181:53–60

    CAS  Google Scholar 

  • Anbarasu K, Manisenthil KK, Ramachandran S (2011) Antipyretic, anti-inflammatory and analgesic properties of nilavembu kudineer choornam: a classical preparation used in the treatment of chikungunya fever. Asian Pac J Trop Med 4(10):819–823

    CAS  Google Scholar 

  • Balasubramanian A, Pilankatta R, Teramoto T, Sajith AM, Nwulia E, Kulkarni A, Padmanabhan R (2019) Inhibition of dengue virus by curcuminoids. Antiviral Res 162:71–78

    CAS  Google Scholar 

  • Balkrishna A, Solleti SK, Verma S, Varshney A (2020) Validation of a novel zebrafish model of dengue virus (DENV-3) pathology using the Pentaherbal medicine Denguenil Vati. Biomolecules 10(7):971

  • Baltina LA, Tasi YT, Huang SH, Lai HC, Baltina LA, Petrova SF, Yunusov MS, Lin CW (2019) Glycyrrhizic acid derivatives as dengue virus inhibitors. Bioorg Med Chem Lett 29(20):126645

    CAS  Google Scholar 

  • Bartak M, Chodkowski M, Słońska A, Grodzik M, Szczepaniak J, Bańbura MW, Cymerys J (2022) Equid alphaherpesvirus 1 modulates actin cytoskeleton and inhibits migration of glioblastoma multiforme cell line A172. Pathogens 11(4):400

  • Batool R, Aziz E, Mahmood T, Tan BK, Chow VT (2018) Inhibitory activities of extracts of Rumex dentatus, Commelina benghalensis, Ajuga bracteosa, Ziziphus mauritiana as well as their compounds of gallic acid and emodin against dengue virus. Asian Pac J Trop Med 11(4):265

    CAS  Google Scholar 

  • Belkhir L, Elmeligi A (2019) Carbon footprint of the global pharmaceutical industry and relative impact of its major players. J Clean Prod 214:185–194

    CAS  Google Scholar 

  • Bency BJ, Helen PAM (2018) In silico identification of dengue inhibitors in Giloy (Tinospora cordifolia) and Papaya. J Emerg Technol Innov Res 5:506–511

    Google Scholar 

  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496(7446):504–507

    CAS  Google Scholar 

  • Bischof GF, Magnani DM, Ricciardi M, Shin YC, Domingues A, Bailey VK et al (2017) Use of a recombinant gamma-2 herpesvirus vaccine vector against dengue virus in rhesus monkeys. J Virol 91(16):e00525-e617

    CAS  Google Scholar 

  • Bourjot M, Leyssen P, Eydoux C, Guillemot JC, Canard B, Rasoanaivo P, Guéritte F, Litaudon M (2012) Flacourtosides A-F, phenolic glycosides isolated from Flacourtia ramontchi. J Nat Prod 75(4):752–758

    CAS  Google Scholar 

  • Bracho G (2013) Homoeopathy and ultradilutions: from basic evidences to practical applications. Powerpoint presented at 14th Japanese Homoeopathic Medical Association (JPHMA) Congress.

  • Brandão GC, Kroon EG, Souza DE, Filho JD, Oliveira AB (2013) Chemistry and antiviral activity of Arrabidaea pulchra (Bignoniaceae). Molecules 18(8):9919–9932

    Google Scholar 

  • Briassoulis G, Narlioglou M, Hatzis T (2001) Toxic encephalopathy associated with use of DEET insect repellents: a case analysis of its toxicity in children. Hum Exp Toxicol 20(1):8–14

    CAS  Google Scholar 

  • Butt N, Abbassi A, Munir SM, Ahmad SM, Sheikh QH (2008) Haematological and biochemical indicators for the early diagnosis of dengue viral infection. J Coll Physicians Surg Pak 18:282–285

    Google Scholar 

  • Byke LA, Gamarnik AV (2016) Properties and functions of the dengue virus capsid protein. Annu Rev Virol 3:263–281

    Google Scholar 

  • Castillo-Maldonado I, Moreno-Altamirano MM, Serrano-Gallardo LB (2017) Anti-dengue serotype-2 activity effect of Sambucus nigra leaves-and flowers-derived compounds. Virol Res Rev 1(3):1–5

    Google Scholar 

  • Celeiro M, Guerra E, Lamas JP, Lores M, Garcia-Jares C, Llompart M (2014) Development of a multianalyte method based on micro-matrix-solid-phase dispersion for the analysis of fragrance allergens and preservatives in personal care products. J Chromatogr A 30(1344):1–14

  • Chaiphongpachara T, Bunyuen P, Chansukh KK (2018) Development of a more effective mosquito trapping box for vector control. Sci World J 1(2018):6241703

    Google Scholar 

  • Chen YL, Ghafar NA, Ratna K, Yilong F, Lim SP, Schul W, Gu F, Maxime H, Yokohama F, Wang G, Cerny D, Fink K, Blasco F, Shi PY (2014) Activation of peripheral blood mononuclear cells by dengue virus infection depotentiates balapiravir. J Viro 88(3):1740–7

    Google Scholar 

  • Chen S, Wu Z, Wang M, Cheng A (2017) Innate immune evasion mediated by Flaviviridae non-structural proteins. Viruses 9(10):291

    Google Scholar 

  • Cheng YB, Chien YT, Lee JC, Tseng CK, Wang HC, Lo IW, Wu YH, Wang SY, Wu YC, Chang FR (2014) Limonoids from the seeds of Swietenia macrophylla with inhibitory activity against dengue virus 2. J Nat Prod 77(11):2367–2374

    CAS  Google Scholar 

  • Chew MF, Poh KS, Poh CL (2017) Peptides as therapeutic agents for dengue virus. Int J Med Sci 14(13):1342–1359

    CAS  Google Scholar 

  • Chiamenti L, Silva FP, Schallemberger K, Demoliner M, Rigotto C, Fleck JD (2019) Cytotoxicity and antiviral activity evaluation of Cymbopogon spp hydroethanolic extracts. Braz J Pharm Sci 55:e18063

  • Chowdhury N, Ghosh A, Chandra G (2008) Mosquito larvicidal activities of Solanum villosum berry extract against the dengue vector Stegomyia aegypti. BMC Complement Altern Med 8:10

    Google Scholar 

  • Chuah SK (1987) Transient ventricular arrhythmia as a cardiac manifestation in dengue haemorrhagic fever: a case report. Singapore Med J 28:569–572

    CAS  Google Scholar 

  • Clem JR, Havemann DF, Raebel MA (1993) Insect repellent (N, N-diethyl-m-toluamide) cardiovascular toxicity in an adult. Ann Pharmacother 27(3):289–293

    CAS  Google Scholar 

  • Crance JM, Scaramozzino N, Jouan A, Garin D (2003) Interferon, ribavirin, 6-azauridine and glycyrrhizin: antiviral compounds active against pathogenic flaviviruses. Antiviral Res 58(1):73–79

    CAS  Google Scholar 

  • Dando TM, Perry CM (2003) Enfuvirtide. Drugs 63(24):2755–2766 discussion 2767-8

  • Das NG, Baruah I, Talukdar PK, Das SC (2003) Evaluation of botanicals as repellents against mosquitoes. J Vector Borne Dis 40(1–2):49–53

    CAS  Google Scholar 

  • De Sf-Tischer PC, Talarico LB, Noseda MD, Guimarães SM, Damonte EB, Duarte ME (2006) Chemical structure and antiviral activity of carrageenans from Meristiella gelidium against herpes simplex and dengue virus. Carbohyd Polym 63(4):459–465

  • Dewi BE, Taufiqqurrachman I, Desti H, Sudiro M, Angelina M (2020) Inhibition mechanism of Psidium guajava leaf to dengue virus replication in vitro. InIOP Conference Series: Earth Environ Sci 462(1):012034 (IOP Publishing)

    Google Scholar 

  • Dharmarathna SLCA, Wickramasinghe S, Waduge RN, Rajapakse RPVJ, Kularatne SAM (2013) Does Carica papaya leaf-extract increase the platelet count? An experimental study in a murine model. Asian Pac J Trop Biomed 3:720–724

    CAS  Google Scholar 

  • Diamond MS, Pierson TC (2015) Molecular insight into dengue virus pathogenesis and its implications for disease control. Cell 162(3):488–92

    CAS  Google Scholar 

  • Dimitroulopoulou C et al (2015) EPHECT II: exposure assessment to household consumer products. Sci Total Environ 536:890–902

    CAS  Google Scholar 

  • Ditzen M, Pellegrino M, Vosshall LB (2008) Insect odorant receptors are molecular targets of the insect repellent DEET. Science 319(43):1838–1842

    CAS  Google Scholar 

  • Dorigatti I, McCormack C, Nedjati-Gilani G, Ferguson NM (2018) Using Wolbachia for dengue control: Insights from modelling. Trends Parasitol 34(2):102–113

  • Edwin ES, Vasantha-Srinivasan P, Senthil-Nathan S, Thanigaivel A, Ponsankar A, Pradeepa V, Selin-Rani S, Kalaivani K, Hunter WB, Abdel-Megeed A, Duraipandiyan V (2016) Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop 163:167–178

    CAS  Google Scholar 

  • El Sahili A, Lescar J (2017) Dengue virus non-structural protein 5. Viruses 9:91

  • Elsinga J, van der Veen HT, Gerstenbluth I, Burgerhof JGM, Dijkstra A, Grobusch MP, Tami A, Bailey A (2017) Community participation in mosquito breeding site control: an interdisciplinary mixed methods study in Curaçao. Parasit Vectors 10(1):434

    Google Scholar 

  • Elumalai D, Hemavathi M, Hemalatha P, Deepa CV, Kaleena PK (2016) Larvicidal activity of catechin isolated from Leucas aspera against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 115(3):1203–1212

    Google Scholar 

  • Eng-Chong T, Yean-Kee L, Chin-Fei C, Choon-Han H, Sher-Ming W, Li-Ping CT, Gen-Teck F, Khalid N, Abd Rahman N, Karsani SA, Othman S, Othman R, Yusof R (2012) Boesenbergia rotunda: from ethnomedicine to drug discovery. Evid Based Complement Alternat Med 2012:47363

  • Erbel P, Schiering N, D’Arcy A, Renatus M, Kroemer M, Lim SP et al (2006) Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol 13:372–373

    CAS  Google Scholar 

  • Eshun K, He Q (2004) Aloe vera: a valuable ingredient for the food, pharmaceutical and cosmetic industries-a review. Crit Rev Food Sci Nutr 44:91–96

    Google Scholar 

  • Fahimi H, Mohammadipour M, Haddad Kashani H, Parvini F, Sadeghizadeh M (2018) Dengue viruses and promising envelope protein domain III-based vaccines. Appl Microbiol Biotechnol 102:2977–2996

    CAS  Google Scholar 

  • Ferdousi F, Yoshimatsu S, Ma E, Sohel N, Wagatsuma Y (2015) Identification of essential containers for Aedes larval Breeding to control dengue in Dhaka. Bangladesh Trop Med Health 43(4):253–264

    Google Scholar 

  • Fraser JE, Rawlinson SM, Wang C, Jans DA, Wagstaff KM (2014) Investigating dengue virus nonstructural protein 5 (NS5) nuclear import. Methods Mol Biol 1138:301–328

    CAS  Google Scholar 

  • Georgiev, Vassil (2009) National Institute of Allergy and Infectious Diseases, NIH (1 ed). Totowa NJ.: Humana 268. ISBN 978–1–60327–297–1.

  • Goonasekera CD, Thenuwara BG, Kumarasiri RP (2012) Peritoneal dialysis in dengue shock syndrome may be detrimental. J Trop Med 2012:917947

  • Govindarajan M, Sivakumar R (2015) Laboratory evaluation of Indian medicinal plants as repellents against malaria, dengue, and filariasis vector mosquitoes. Parasitol Res 114(2):601–612

    Google Scholar 

  • Govindarajulu B, Srimathi A, Bhuvana R, Karthikeyan J (2015) Mosquito larvicidal efficacy of the leaf extracts of Annona reticulata against Aedes aegypti. Int J Curr Microbiol App Sci 4(8):131–140

  • Gubler DJ (2010) Dengue viruses. In: Mahy BW, Van Regenmortel MH (eds) Desk encyclopedia of human and medical virology. Academic Press, Boston, pp 372–382 (ISBN 978-0-12-375147-8)

    Google Scholar 

  • Guzman MG, Hermida L, Bernardo L, Ramirez R, Guillén G (2010) Domain III of the envelope protein as a dengue vaccine target. Expert Rev Vaccines 9:137–147

    CAS  Google Scholar 

  • Haritoglou C, Scholz F, Bialasiewicz A, Klauss V (2000) Ocular Manifestation Dengue Fever Ophthalmol 97:433–436

    CAS  Google Scholar 

  • Hess J, Bednarz D, Bae J, Pierce J (2011) Petroleum and health care: evaluating and managing health care’s vulnerability to petroleum supply shifts. Am J Public Health 101(9):1568–1579

    Google Scholar 

  • Hidari KIPJ, Takahashi N, Arihara M, Nagaoka M, Morita K, Suzuki T (2008) Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga. Biochem Biophys Res Commun 376:91–95

    CAS  Google Scholar 

  • Horstick O, Tozan Y, Wilder-Smith A (2015) Reviewing dengue: still a neglected tropical disease? PLoS Negl Trop Dis 9:e0003632

    Google Scholar 

  • Ichsyani M, Ridhanya A, Risanti M, Desti H, Ceria R, Putri DH, Sudiro TM, Dewi BE (2017) Antiviral effects of Curcuma longa L against dengue virus in vitro and in vivo. InIOP Conf Series: Earth and Environ Sci 1011:012005 (IOP Publishing)

    Google Scholar 

  • Impoinvil DE, Ahmad S, Troyo A, Keating J, Githeko AK, Mbogo CM et al (2007) Comparison of mosquito control rograms in seven urban sites in Africa, the Middle East, and the Americas. Health Policy 83(45):196–212

    Google Scholar 

  • Islam MT, Quispe C, Herrera-Bravo J, Sarkar C, Sharma R, Garg N, Fredes LI, Martorell M, Alshehri MM, Sharifi-Rad J, Daştan SD, Calina D, Alsafi R, Alghamdi S, Batiha GE, Cruz-Martins N (2021) Production, transmission, pathogenesis, and control of dengue virus: a literature-based undivided perspective. Biomed Res Int 2021:4224816

  • Jagadishkumar K, Jain P, Manjunath VG, Umesh L (2012) Hepatic involvement in dengue fever in children. Iran J Pediatr 22:231–236

  • Jahir A, Kahamba NF, Knols TO, Jackson G, Patty NFA, Shivdasani S, Okumu FO, Knols BGJ (2022) Mass trapping and larval source management for mosquito elimination on small Maldivian islands. Insects 13(9):805

    Google Scholar 

  • Janagal B, Singh C, Purvia R, Adlakha M (2016) Dengue in ayurvedic perspective and its management- a review article. Int Ayurvedic Med J 4(11):3386–3390

    Google Scholar 

  • Jasamai M, Yap WB, Sakulpanich A, Jaleel A (2019) Current prevention and potential treatment options for dengue infection. J Pharm Pharm Sci 22(1):440–456

    CAS  Google Scholar 

  • Jiang WL, Luo XL, Kuang SJ (2005) Effects of Alternanthera philoxeroides Griseb against dengue virus in vitro. Di Yi Jun Yi Da Xue Xue Bao Acad J First Med Coll of PLA 25(4):454–456

    Google Scholar 

  • Kabra JK, Juneja R, Madhulika J, Jain Y, Singhal T, Dar L et al (1998) Myocardial dysfunction in children with dengue haemorrhagic fever. Natl Med J India 11:59–61

    CAS  Google Scholar 

  • Kallenborn R, Fick J, Lindberg R, Moe M, Nielsen KM, Tysklind M, Vasskog T (2008) Pharmaceutical residues in Northern European environments: consequences and perspectives. Pharmaceuticals in the environment. Springer, Berlin, Heidelberg, pp 61–74

    Google Scholar 

  • Kanna SU, Krishnakumar N (2019) Anti-dengue medicinal plants: a mini review. J Pharmacogn Phytochem 8(3):4245–4249

  • Karoli R, Fatima J, Singh G, Maini S (2012) Acute pancreatitis: an unusual complication of Dengue Fever. JAPI 60:64–65

    CAS  Google Scholar 

  • Katritzky AR, Wang Z, Slavov S, Tsikolia M, Dobchev D, Akhmedov NG et al (2008) Synthesis and bioassay of improved mosquito repellents predicted from chemical structure. Proc Natl Acad Sci 105(13):7359–7364

    CAS  Google Scholar 

  • Kaushik S, Dar L, Kaushik S, Yadav JP (2021) Anti-dengue activity of super critical extract and isolated oleanolic acid of Leucas cephalotes using in vitro and in silico approach. BMC Complement Med Ther 21(1):1–5

  • Kayedi MH, Haghdoost AA, Salehnia A, Khamisabadi K (2014) Evaluation of repellency effect of essential oils of Saturejak huzestanica (Carvacrol), Myrtus communis (Myrtle), Lavendula officinalis and Salvia sclarea using standard WHO repellency tests. J Arthropodborne Dis 8(11):60–68

    Google Scholar 

  • Khachane G, Khandare K (2021) Review on dengue with homoeopathic management. Int J Hom Sci 5(3):252–255

    Google Scholar 

  • Khwairakpam AD, Damayenti YD, Deka A, Monisha J, Roy NK, Padmavathi G, Kunnumakkara AB (2018) Acorus calamus: a bio-reserve of medicinal values. J Basic Clin Physiol Pharmacol 29(2):107–122

    Google Scholar 

  • Kiat TS, Pippen R, Yusof R, Ibrahim H, Khalid N, Abd Rahman N (2006) Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease. Bioorg Med Chem Lett 16(12):3337–40

    CAS  Google Scholar 

  • Klawikkan N, Nukoolkarn V, Jirakanjanakit N, Yoksan S, Wiwat C, Thirapanmethee K (2011) Effect of Thai medicinal plant extracts against dengue virus in vitro. Chem Biodivers 19(7):e202101026

    Google Scholar 

  • Klema VJ, Ye M, Hindupur A, Teramoto T, Gottipati K, Padmanabhan R et al (2016) Dengue virus nonstructural protein 5 (NS5) assembles into a dimer with a unique methyltransferase and polymerase interface. PLOS Pathog 12:e1005451

    Google Scholar 

  • Kongkaew C, Sakunrag I, Chaiyakunapruk N, Tawatsin A (2011) Effectiveness of citronella preparations in preventing mosquito bites: systematic review of controlled laboratory experimental studies. Tropical Med Int Health 16(12):802–810

    CAS  Google Scholar 

  • Kovendan K, Murugan K, Vincent S (2012) Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 110:571–581

    Google Scholar 

  • Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM, Moore CG, Carvalho RG, Coelho GE, Van Bortel W, Hendrickx G, Schaffner F, Elyazar IR, Teng HJ, Brady OJ, Messina JP, Pigott DM, Scott TW, Smith DL et al (2015) The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4:e08347

  • Kumar S, Wahab N, Warikoo R (2011) Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L. Asian Pac J Trop Biomed 1(2):85–88

    Google Scholar 

  • Kumar S, Warikoo R, Mishra M et al (2012) Larvicidal efficacy of the Citrus limetta peel extracts against Indian strains of Anopheles stephensi Liston and Aedes aegypti L. Parasitol Res 111:173–178

    Google Scholar 

  • Kumari S, Anmol Bhatt V, Patil SS, Sharma U (2021) Cissampelos pareira L.: a review of its traditional uses, phytochemistry, and pharmacology. J Ethnopharmacol 28(274):113850

    Google Scholar 

  • Leite FC, Mello CD, Fialho LG, Marinho CF, Lima AL, Barbosa Filho JM, Kubelka CF, Piuvezam MR (2016) Cissampelos sympodialis has anti-viral effect inhibiting dengue non-structural viral protein-1 and pro-inflammatory mediators. Rev Bras 26:502–506

    CAS  Google Scholar 

  • Lim SP (2019) Dengue drug discovery: Progress, challenges and outlook. Antiviral Res 163:156–178

  • Lim SP, Noble CG, Shi P-Y (2015) The dengue virus NS5 protein as a target for drug discovery. Antiviral Res 119:57–67

    CAS  Google Scholar 

  • Lum L, Ng CJ, Khoo EM (2014) Managing dengue fever in primary care: A practical approach. Malays Fam Physician 9(2):2–10

  • Luo D, Vasudevan SG, Lescar J (2015) The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res 118:148–158

  • Ma L, Jones CT, Groesch TD, Kuhn RJ, Post CB (2004) Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci USA 101:3414–3419

    CAS  Google Scholar 

  • Mackenzie JM, Khromykh AA, Jones MK, Westaway EG (1998) Subcellular localization and some biochemical properties of the flavivirus kunjin nonstructural proteins NS2A and NS4A. Virology 245:203–215

    CAS  Google Scholar 

  • Maheswaran R, Ignacimuthu S (2012) A novel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus. Parasitol Res 110(5):1801–1813

    Google Scholar 

  • Manchanda R (2015) Dengue epidemic: What can we offer? Indian J Res Homoeopathy 9(2):137–140

  • Mangai M (2018) Pharmacological efficacy of Trichodesma indicum (Linn) R. BR., in folk medicine—an updated review. Asian J Pharma Clin Res 11:24–27

    Google Scholar 

  • Manohar PR (2013) Papaya, dengue fever and ayurveda. Anc Sci Life 32(3):131–133

    Google Scholar 

  • Marino R (2008) Homeopathy and collective health: the case of dengue epidemics. Int J High Dilution Res 7:179–185

    Google Scholar 

  • Medlock JM, Vaux AGC (2015) Impacts of the creation, expansion and management of English wetlands on mosquito presence and abundance - developing strategies for future disease mitigation. Parasit Vectors 3(8):142

    Google Scholar 

  • Meisyara D, Tarmadi D, Zulfitri A, Fajar A, Himmi SK, Kartika T, Guswenrivo I, Yusuf S (2021) Repellent activity of three essential oils against dengue and filarial vector mosquitoes. InIOP Conference Series: Earth Env Sci 918(1):012001 (IOP Publishing)

    Google Scholar 

  • Migowski E (2002) Uso de antitérmicos em doenças infecciosas virais. São Paulo, Abbott do Brasil

    Google Scholar 

  • Miller JD (1982) Anaphylaxis associated with insect repellent. N Engl J Med 307(21):1341–1342

    CAS  Google Scholar 

  • Mukherjee PK, Kumar V, Mal M, Houghton PJ (2007) Acorus calamus: scientific validation of ayurvedic tradition from natural resources. Pharm Biol 45(8):651–666

    CAS  Google Scholar 

  • Muliawan SY, Kit LS, Devi S, Hashim O, Yusof R (2006) Inhibitory potential of Quercus lusitanica extract on dengue virus type 2 replication. Southeast Asian J Tropical Med Publ Health 37:132–135

    Google Scholar 

  • Murhekar MV, Kamaraj P, Kumar MS et al (2019) Burden of dengue infection in India, 2017: a cross-sectional population based serosurvey. Lancet Glob Health 7(8):e1065–e1073

  • Nagamine T, Nakazato K, Tomioka S, Iha M, Nakajima K (2014) Intestinal absorption of fucoidan extracted from the brown seaweed. Cladosiphon Okamuranus Mar Drugs 13(1):48–64

    Google Scholar 

  • Napoleão TH, Pontual EV, Lima TA, Santos NDL, Sá RA, Coelho LCBB, Navarro DMAF, Paiva PMG (2012) Effect of Myracrodruon urundeuva leaf lectin on survival and digestive enzymes of Aedes aegypti larvae. Parasitol Res 110:609–616

    Google Scholar 

  • Nasar S, Rashid N, Iftikhar S (2020) Dengue proteins with their role in pathogenesis, and strategies for developing an effective anti-dengue treatment: a review. J Med Virol 92(8):941–955

    CAS  Google Scholar 

  • Nascimento AC, Valente LM, Gomes M, Barboza RS, Wolff T, Neris RL, Figueiredo CM, Assunção-Miranda I (2017) Antiviral activity of Faramea bahiensis leaves on dengue virus type-2 and characterization of a new antiviral flavanone glycoside. Phytochem Lett 19:220–225

    CAS  Google Scholar 

  • Nasir NH, Mohamad M, Lum LCS, Ng CJ (2017) Effectiveness of a fluid chart in outpatient management of suspected dengue fever: A pilot study. PLoS One 12(10):e0183544

  • Neudorf KD, Huang YN, Ragush CM, Yost CK, Jamieson RC, Hansen LT (2017) Antibiotic resistance genes in municipal wastewater treatment systems and receiving waters in Arctic Canada. Sci Total Environ 598:1085–1094

    CAS  Google Scholar 

  • Ocazionez RE, Meneses R, Torres FÁ, Stashenko E (2010) Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro. Mem Inst Oswaldo Cruz 105:304–309

    Google Scholar 

  • Odda J, Kristensen S, Kabasa J, Waako P (2008) Larvicidal activity of Combretum collinum Fresen against Aedes aegypti. J Vector Borne Dis 45:321–324

    Google Scholar 

  • Ono L, Wollinger W, Rocco IM, Coimbra TL, Gorin PA, Sierakowski MR (2003) In vitro and in vivo antiviral properties of sulfated galactomannans against yellow fever virus (BeH111 strain) and dengue 1 virus (Hawaii strain). Antiviral Res 60(3):201–208

    CAS  Google Scholar 

  • Onyett H (2014) Preventing mosquito and tick bites: a Canadian update. Paediatr Child Health 19(4):329–333

    Google Scholar 

  • Osorio JE, Partidos CD, Wallace D, Stinchcomb DT (2015) Development of a recombinant, chimeric tetravalent dengue vaccine candidate. Vaccine 33(50):7112–20

    CAS  Google Scholar 

  • Pal M, Kumar A, Tewari KS (2011) Chemical composition and mosquito repellent activity of the essential oil of Plectranthusincanus link. Factauniversitatis-Ser Phys Chem Technol 9(2):57–64

    CAS  Google Scholar 

  • Panraksa P, Ramphan S, Khongwichit S, Smith DR (2017) Activity of andrographolide against dengue virus. Antiviral Res 139:69–78

    CAS  Google Scholar 

  • Panya A, Jantakee K, Punwong S, Thongyim S, Kaewkod T, Yenchitsomanus PT, Tragoolpua Y, Pandith H (2021) Triphala in traditional Ayurvedic medicine inhibits dengue virus infection in Huh7 hepatoma cells. Pharmaceuticals (Basel) 14(12):1236

  • Parida MM, Upadhyay C, Pandya G, Jana AM (2002) Inhibitory potential of neem (Azadirachta indica Juss) leaves on Dengue virus type-2 replication. J Ethnopharmacol 79(2):273–278

  • Parthiban P, Kumar V (2014) Siddha medicine and clinical presentation of dengue fever at tertiary care hospital of Chennai, Tamil Nadu, India. Int J Adv Ayurveda Yoga Unani Siddha Homeopathy 3(1):209e12

    Google Scholar 

  • Patel EK, Gupta A, Oswal RJ (2012) A review on: mosquito repellent methods. IJPCBS 2(15):310–317

    CAS  Google Scholar 

  • Patwardhan B, Mashelkar RA (2009) Traditional medicine-inspired approaches to drug discovery: can Ayurveda show the way forward? Drug Disc. Today 14:804–811

    Google Scholar 

  • Perera SD, Jayawardena UA, Jayasinghe CD (2018) Potential use of Euphorbia hirta for dengue: a systematic review of scientific evidence. J Trop Med 2018:2048530

    Google Scholar 

  • Peterson CJ (2001) Insect repellents of natural origin: catnip and osage orange. Iowa State University.

  • Phasomkusolsil S, Soonwera M (2011) Comparative mosquito repellency of essential oils against Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say). Asian Pacific J Trop Biomed 1(3):113–118

    Google Scholar 

  • Pongthanapisith V, Ikuta K, Puthavathana P, Leelamanit W (2013) Antiviral protein of Momordica charantia L. inhibits different subtypes of influenza A. Evid Based Complement Alternat Med 2013:729081

  • Pujol CA, Estevez JM, Carlucci MJ, Ciancia M, Cerezo AS, Damonte EB (2002) Novel DL-galactan hybrids from the red seaweed Gymnogongrus torulosus are potent inhibitors of herpes simplex virus and dengue virus. Antiviral Chem Chemother 13(2):83–89

    CAS  Google Scholar 

  • Quispe-Bravo BE, Drozdek LAS, Jara JH, Díaz IEC, Durigon EL, Zapana EWM, Huatuco EMM, Herencia JSS (2020) In vitro activity evaluation of Lippia alba essential oil against Zika virus. bioRxiv 170720

  • Raekiansyah M, Buerano CC, Luz MA, Morita K (2018) Inhibitory effect of the green tea molecule EGCG against dengue virus infection. Adv Virol 163(6):1649–1655

    CAS  Google Scholar 

  • Raja ASM, Kawlekar S, Saxena S, Arputharaj A, Patil PG (2015) Mosquito protective textiles-a review. Int J Mosq Res 2(7):49–53

    Google Scholar 

  • Rajasekaran A, Arivukkarasu R, Mathew L (2016) A systematic comprehensive review on therapeutic potential of Andrographis paniculata (Burm. f.) Wall. Ex Nees. J Pharmacogn Phytochem 5(5):189

    CAS  Google Scholar 

  • Ramalingam S, Karupannan S, Padmanaban P, Vijayan S, Sheriff K, Palani G, Krishnasamy KK (2018) Anti-dengue activity of Andrographis paniculata extracts and quantification of dengue viral inhibition by SYBR green reverse transcription polymerase chain reaction. Ayu 39(2):87

    Google Scholar 

  • Ranjit S, Kissoon N (2011) Dengue hemorrhagic fever and shock syndromes. Pediatr Crit Care Med 12(1):90–100

    Google Scholar 

  • Rees CR, Costin JM, Fink RC, McMichael M, Fontaine KA, Isern S, Michael SF (2008) In vitro inhibition of dengue virus entry by p-sulfoxy-cinnamic acid and structurally related combinatorial chemistries. Antiviral Res 80(2):135–142

    CAS  Google Scholar 

  • Richie C (2022) Environmental sustainability and the carbon emissions of pharmaceuticals. J Med Ethics 48(5):334–337

    Google Scholar 

  • Rivino L, Kumaran EAP, Jovanovic V, Nadua K, Teo EW, Pang SW et al (2013) Differential targeting of viral components by CD4+ versus CD8+ T lymphocytes in dengue virus infection. J Virol 87:2693–2706

    CAS  Google Scholar 

  • Robin MND (2000) Lotus materia medica, 2nd edn. B Jain Publishers, New Delhi

  • Rodrigues JA, Eloy YR, Vanderlei ED, Cavalcante JF, Romanos MT, Benevides NM (2017) An anti-dengue and anti-herpetic polysulfated fraction isolated from the coenocytic green seaweed Caulerpa cupressoides inhibits thrombin generation in vitro. Acta Sci Biol Sci 39(2):149–159

    CAS  Google Scholar 

  • Rosmalena R, Elya B, Dewi BE, Fithriyah F, Desti H, Angelina M, Hanafi M, Lotulung PD, Prasasty VD, Seto D (2019) The antiviral effect of indonesian medicinal plant extracts against dengue virus in vitro and in silico. Pathogens 8(2):85

    CAS  Google Scholar 

  • Roy DN, Goswami R, Pal A (2017) The insect repellents: a silent environmental chemical toxicant to the health. Environ Toxicol Pharmacol 50:91–102

    CAS  Google Scholar 

  • Rozera R, Verma S, Kumar R, Haque A, Attri A (2019) Herbal remedies, vaccines and drugs for dengue fever: emerging prevention and treatment strategies. Asian Pac J Trop Med 12(4):147–152

    CAS  Google Scholar 

  • Sachin KS (2017) Dengue in ayurvedic perspective and its management a review article. World Journal of Pharmaceutical and Life Sciences (WJPLS) 3(2):39–42

  • Saeed-ul-Hassan S, Tariq I, Khalid A, Karim S (2013) Comparative clinical study on the effectiveness of homeopathic combination remedy with standard maintenance therapy for dengue fever. Trop J Pharm Res 12(5):767–770

  • Saleh MS, Kamisah Y (2020) Potential medicinal plants for the treatment of dengue fever and severe acute respiratory syndrome coronavirus. Biomolecules 11(1):42

  • Salehi B, Shetty MS, Anil Kumar NV et al (2019) Veronica plants-drifting from farm to traditional healing, food application, and phytopharmacology. Molecules 24(13):2454

    CAS  Google Scholar 

  • Salehi B, Rescigno A, Dettori T et al (2020) Avocado-soybean unsaponifiables: a panoply of potentialities to be exploited. Biomolecules 10(1):130

    CAS  Google Scholar 

  • Sanchez I, Gómez-Garibay F, Taboada J, Ruiz BH (2000) Antiviral effect of flavonoids on the dengue virus. Phytother Res 14(2):89–92

    CAS  Google Scholar 

  • Sani TA (2017) Cytotoxic and apoptogenic properties of Dracocephalum Kotschyi aerial part different fractions on CALU-6 and MEHR-80 lung cancer cell lines. Farmacia 65:189–199

    CAS  Google Scholar 

  • Sarala N, Paknikar S (2014) Papaya extract to treat dengue: a novel therapeutic option. Ann Med Health Sci Res 4(3):320–324

    CAS  Google Scholar 

  • Sarker MM, Khan F, Mohamed IN (2021) Dengue fever: therapeutic potential of Carica papaya L. Leaves Front Pharmacol 12:610912

    Google Scholar 

  • Schroyens F (1996) (ed). Synthesis: repertorium homeopaticum syntheticum, 6th edn. London Homeopathic Book Publishers

  • Screaton G, Mongkolsapaya J, Yacoub S, Roberts C (2015) New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol 15(12):745–759

    CAS  Google Scholar 

  • Senthil-Nathan S, Choi MY, Paik CH, Seo HY (2007) Food consumption, utilization, and detoxification enzyme activity of the rice leaf folder larvae after treatment with Dysoxylum triterpenes. Pest Biochem Physiol 88:260–267

    Google Scholar 

  • Senthil-Nathan S, Choi M, Seo H, Paik C, Kalaivani K (2009) Toxicity and behavioral effect of 3β, 24,25-trihydroxycycloartane and beddomei lactone on the rice leaffolder Cnaphalocrocis medinalis (Guene’e) (Lepidoptera: Pyralidae). Ecotoxicol Environ Saf 72:1156–1162

    CAS  Google Scholar 

  • Sharifi-Rad J, Quispe C, Herrera-Bravo J et al (2021) A pharmacological perspective on plant-derived bioactive molecules for epilepsy. Neurochem Res 46(9):2205–2225

    CAS  Google Scholar 

  • Sharifi-Rad J, Kamiloglu S, Yeskaliyeva B et al (2020) Pharmacological activities of psoralidin: a comprehensive review of the molecular mechanisms of action. Front Pharmacol 11

  • Sharma N, Mishra KP, Ganju L (2016) Salidroside exhibits anti-dengue virus activity by upregulating host innate immune factors. Adv Virol 161(12):3331–3344

    CAS  Google Scholar 

  • Sharma N, Mishra KP, Chanda S, Bhardwaj V, Tanwar H, Ganju L, Kumar B, Singh SB (2019) Evaluation of anti-dengue activity of Carica papaya aqueous leaf extract and its role in platelet augmentation. Arch Virol 164:1095–1110

    CAS  Google Scholar 

  • Shen X, Chen X, Wang J, Sun X, Dong S, Li Y, Yan Y, Wang J, Yuan Q (2021) Design and construction of an artificial pathway for biosynthesis of acetaminophen in Escherichia coli. Metab Eng 68:26–33

  • Simadibrata M (2012) Acute pancreatitis in dengue hemorrhagic fever. Acta Med Indones 44:57–61

    Google Scholar 

  • Simmons CP, Farrar JJ, Nguyen VV, Wills B (2012) “Dengue” (PDF). N Engl J Med 366(15):1423–1432

    CAS  Google Scholar 

  • Simões LR, Maciel GM, Brandão GC, Kroon EG, Castilho RO, Oliveira AB (2011) Antiviral activity of Distictella elongata (Vahl) Urb. (Bignoniaceae), a potentially useful source of antidengue drugs from the state of Minas Gerais, Brazil. Lett Appl Microbiol 6:602–607

  • Sood R, Raut R, Tyagi P, Pareek PK, Barman TK, Singhal S, Shirumalla RK, Kanoje V, Subbarayan R, Rajerethinam R, Sharma N, Kanaujia A, Shukla G, Gupta YK, Katiyar CK, Bhatnagar PK, Upadhyay DJ, Swaminathan S, Khanna N (2015) Cissampelos pareira Linn: natural source of potent antiviral activity against all four dengue virus serotypes. PLoS Negl Trop Dis 9(12):0004255

    Google Scholar 

  • Stanaway JD, Donald SS, Eduardo AU, Yara AH, Luc EC, Oliver JB et al (2016) The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis 16:712–723

    Google Scholar 

  • Sugiyanto Z, Yohan B, Hadisaputro S, Dharmana E, Suharti C, Djamiatun K, Rahmi FL, Sasmono RT (2019) Inhibitory effect of alpha-mangostin to dengue virus replication and cytokines expression in human peripheral blood mononuclear cells. Nat Prod Bioprospecting 9(5):345–349

    CAS  Google Scholar 

  • Sumithra V, Janakiraman A, Altaff K (2014) Bio-control of mosquito larvae through the black molly, Poecilia sphenops. Int J Pure Appl Zool 2(5):270–274

    Google Scholar 

  • Swaminathan S, Khanna N (2009) Dengue: recent advances in biology and current status of translational research. Curr Mol Med 9:152–173

    CAS  Google Scholar 

  • Syed Z, Leal WS (2008) Mosquitoes smell and avoid the insect repellent DEET. Proc Natl Acad Sci 105(20):13598–13603

    CAS  Google Scholar 

  • Takhampunya R, Ubol S, Houng HS, Cameron CE, Padmanabhan R (2006) Inhibition of dengue virus replication by mycophenolic acid and ribavirin. J Gen Virol 87(Pt 7):1947–1952

    CAS  Google Scholar 

  • Talarico LB, Pujol CA, Zibetti RG, Faría PC, Noseda MD, Duarte ME, Damonte EB (2005) The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell. Antiviral Res 66(2–3):103–110

    CAS  Google Scholar 

  • Tang LIC, Ling APK, Voon KGL (2012) Screening of anti-dengue activity in methanolic extracts of medicinal plants. BMC Complement Altern Med 12:3

  • Tayone WC, Tayone JC, Hashimoto M (2014) Isolation and structure elucidation of potential anti-dengue metabolites from Tawa-Tawa (Euphorbia hirta Linn.). Walailak J Sci Technol 11(10):825–832

  • Thangam TS, Kathiresan K (1993) Note: repellency of marine plant extracts against the mosquito Aedes aegypti. Int J Pharmacogn 31(4):321–323

    Google Scholar 

  • Tripathi NK, Shrivastava A (2018) Recent developments in recombinant protein-based dengue vaccines. Front Immunol 23(9):1919

    Google Scholar 

  • Tripathi AK, Upadhyay S, Bhuiyan M, Bhattacharya PR (2009) A review on prospects of essential oils as biopesticide in insect-pest management. J Pharmacogn Phytother 1(5):52–63

    CAS  Google Scholar 

  • Troost B, Smit JM (2020) Recent advances in antiviral drug development towards dengue virus. Curr Opin Virol 43:9–21

    CAS  Google Scholar 

  • Tseng CK, Lin CK, Wu YH, Chen YH, Chen WC, Young KC, Lee JC (2016) Human heme oxygenase 1 is a potential host cell factor against dengue virus replication. Sci Rep 6(1):1–6

    Google Scholar 

  • Tsoukalas D, Zlatian O, Mitroi M et al (2021) A novel nutraceutical formulation can improve motor activity and decrease the stress level in a murine model of middle-age animals. J Clin Med 10(4):624

    CAS  Google Scholar 

  • Vaughn DW, Greene S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S et al (2000) Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181:2–9

    CAS  Google Scholar 

  • Vázquez-Calvo Á, Jiménez de Oya N, Martín-Acebes MA, Garcia-Moruno E, Saiz JC (2017) Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the Flaviviruses West Nile virus, Zika virus, and dengue virus. Front Microbiol 8:1314

    Google Scholar 

  • Wahab NZ, Ibrahim N, Kamarudin MK, Lananan F, Juahir H, Ghazali A (2018) In vitro antiviral activity of Orthosiphon stamineus extract against dengue virus type 2. J Fundam Appl Sci 10(1S):541–551

    CAS  Google Scholar 

  • Wali JP, Biswas A, Chandra S, Malhotra A, Aggarwal P, Handa R, Wig N, Bahl VK (1998) Cardiac involvement in dengue haemorrhagic fever. Int J Cardiol 64(1):31–36

    CAS  Google Scholar 

  • Wang WH, Urbina AN, Chang MR, Assavalapsakul W, Lu PL, Chen YH, Wang SF (2020) Dengue hemorrhagic fever - A systemic literature review of current perspectives on pathogenesis, prevention and control. J Microbiol Immunol Infect 53(6):963–978

  • Walton WE, Jiannino JA (2005) Vegetation management to stimulate denitrification increases mosquito abundance in multipurpose constructed treatment wetlands. J Am Mosq Control Assoc 21(1):22–27

    Google Scholar 

  • Whitby K, Pierson TC, Geiss B, Lane K, Engle M, Zhou Y, Doms RW, Diamond MS (2005) Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo. J Virol 79(14):8698–8706

  • Wilder-Smith A, Quam M, Sessions O, Rocklov J, LiuHelmersson J, Franco L, Khan K (2014) The 2012 dengue outbreak in Madeira: exploring the origins. Eurosurveillance 19:20718

  • Wu R-H, Tsai M-H, Tsai K-N, Tian JN, Wu J-S, Wu S-Y et al (2017) Mutagenesis of dengue virus protein NS2A revealed a novel domain responsible for virus-induced cytopathic effect and interactions between NS2A and NS2B transmembrane segments. J Virol 91:e01836-e1916

    CAS  Google Scholar 

  • Xie ML, Phoon MC, Dong SX, Tan BK, Chow VT (2013a) Houttuynia cordata extracts and constituents inhibit the infectivity of dengue virus type 2 in vitro. Int J Integr Biol 14:78–85

    Google Scholar 

  • Xie X, Gayen S, Kang C, Yuan Z, Shi P-Y (2013b) Membrane topology and function of dengue virus NS2A protein. J Virol 87:4609–4622

    CAS  Google Scholar 

  • Yadav AS, Prabhudesai AP, Umekar MJ (2020) Ayurveda: The alternative treatment for dengue. World J Pharm Res 9(7):427–440

  • Yang HM, Ferreira CP (2008) Assessing the effects of vector control on dengue transmission. Appl Math Comput 198(12):401–413

    Google Scholar 

  • Yazar K, Johnsson S, Lind ML, Boman A, Lidén C (2011) Preservatives and fragrances in selected consumer-available cosmetics and detergents. Contact Dermatitis 64(5):265–272

  • Yepes-Perez AF, Herrera-Calderón O, Oliveros CA, Flórez-Álvarez L, Zapata-Cardona MI, Yepes L, Aguilar- Jimenez W, Rugeles MT, Zapata W (2021) The hydroalcoholic extract of uncaria tomentosa (cat's claw) inhibits the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. Evid Based Complement Alternat Med 2021:6679761

  • Yin Low JS, Chen KC, Wu KX, Mah-Lee Ng M, Hann Chu JJ (2009) Antiviral activity of emetine dihydrochloride against dengue virus infection. J Antivir Antiretrovir 1:062–071

  • Yoon JK, Kim KC, Cho Y, Gwon YD, Cho HS, Heo Y et al (2015) Comparison of repellency effect of mosquito repellents for DEET, citronella, and fennel oil. J Parasitol Res 2015:1–6

    Google Scholar 

  • Zandi K, Lim TH, Rahim NA, Shu MH, Teoh BT, Sam SS, Danlami MB, Tan KK, Abubakar S (2013) Extract of Scutellaria baicalensis inhibits dengue virus replication. BMC Complement Altern Med 13(1):1

    Google Scholar 

  • Zeidler JD, Fernandes-Siqueira LO, Barbosa GM, Da Poian AT (2017) Noncanonical roles of dengue virus non-structural proteins. Viruses 9:42

    Google Scholar 

  • Zhang XP, Zhang YY, Mai L, Liang-YL L-J, Eddy YZ (2020) Selected antibiotics and current-use pesticides in riverine runoff of an urbanized river system in association with anthropogenic stresses. Sci Total Environ 15(739):140004

    Google Scholar 

  • Zhao F, Pang W, Zhang Z, Zhao J, Wang X, Liu Y, Wang X, Feng Z, Zhang Y, Sun W et al (2016) Pomegranate extract and exercise provide additive benefits on improvement of immune function by inhibiting inflammation and oxidative stress in high-fat-diet-induced obesity rats. J Nutr Biochem 32:20–28

    CAS  Google Scholar 

  • Zou J, Xie X, Wang Q-Y, Dong H, Lee MY, Kang C et al (2015) Characterization of dengue virus NS4A and NS4B protein interaction. J Virol 89:3455–3470

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Vice-Chancellor, Maharaja Agrasen University, Himachal Pradesh, for providing facilities and constant encouragement.

Author information

Authors and Affiliations

Authors

Contributions

A.A., A.K.V., and S.S1 contributed to conceptualization of the review article; N.C., A.A., S.S1, and A.K.V involved in writing—original draft preparation; N.C., A.K.V., S.S1., and S.S4 contributed in editing and critical revision; S.S1., S.S4, and A.A involved in proposing and designing the figures and tables.

Corresponding author

Correspondence to Abhishek Awasthi.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

All authors declare they have given consent to participate in this article.

Consent for publication

All authors declare they have given consent to publish this article.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Verma, A.K., Chowdhary, N. et al. Dengue havoc: overview and eco-friendly strategies to forestall the current epidemic. Environ Sci Pollut Res 30, 124806–124828 (2023). https://doi.org/10.1007/s11356-023-30745-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-30745-9

Keywords

Navigation