Skip to main content

Advertisement

Log in

Looking at moss through the bioeconomy lens: biomonitoring, bioaccumulation, and bioenergy potential

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The field of bioeconomy has been experiencing a surge in interest in recent years as society increasingly recognizes the potential of utilizing renewable biological resources to create sustainable solutions for economic growth, resource management, and environmental protection. Despite its potential, there is a notable lack of studies exploring the utilization of moss as a viable resource within the bioeconomy framework. Aligned with this objective, this paper conducts a keyword analysis using the VOSviewer application to explore the applicability of mosses as a bioeconomy resource. While biomonitoring using mosses has been studied extensively, this paper shifts its focus to discuss advancements in this area. Moreover, it evaluates the viability of moss utilization for bioenergy production and concisely summarizes their application in microbial fuel cells. The review also highlights challenges pertinent to moss utilization and presents future prospects. The overarching goal of this review paper is to assess the potential and utilization prospects of mosses within the realms of bioaccumulation, air purification, and bioenergy. By offering a comprehensive summary of moss applications, performance, and viability across diverse sectors, this paper endeavors to promote the versatile application of mosses in various contexts. It repositions the discussion on mosses, accentuating their utilization potential prior to exploring conclusions and future prospects.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

References

  • Ahmad A, Banat F, Alsafar H, Hasan SW (2022) Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. Sci Total Environ 806:150585

    Article  CAS  Google Scholar 

  • Ahn D (2019) Production of air purification verification system using moss. J Korea Acad Coop Soc 20:587–591

    Google Scholar 

  • Alam A (2018) Bryomonitoring of environmental pollution. Biot Abiotic Stress Toler Plants:349–366

  • Aravind Kumar J, Krithiga T, Sathish S et al (2022) Persistent organic pollutants in water resources: fate, occurrence, characterization and risk analysis. Sci Total Environ 831:154808. https://doi.org/10.1016/j.scitotenv.2022.154808

    Article  CAS  Google Scholar 

  • Asakawa Y, Ludwiczuk A (2013) Bryophytes: Liverworts, mosses, and hornworts: extraction and isolation procedures. In: Metabolomics tools for natural product discovery. Springer, pp 1–20

    Google Scholar 

  • Augusto S, Máguas C, Branquinho C (2013) Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses–a review. Environ Pollut 180:330–338

    Article  CAS  Google Scholar 

  • Bargagli R, Bargagli R (1998) Trace elements in terrestrial plants: an ecophysiological approach to biomonitoring and biorecovery. Springer

    Google Scholar 

  • Basile A, Sorbo S, Pisani T et al (2012a) Bioacumulation and ultrastructural effects of Cd, Cu, Pb and Zn in the moss Scorpiurum circinatum (Brid.) Fleisch. & Loeske. Environ Pollut 166:208–211

    Article  CAS  Google Scholar 

  • Basile DP, Anderson MD, Sutton TA (2012b) Pathophysiology of acute kidney injury. Compr Physiol 2:1303

    Article  Google Scholar 

  • Beike AK, Jaeger C, Zink F et al (2014) High contents of very long-chain polyunsaturated fatty acids in different moss species. Plant Cell Rep 33:245–254

    Article  CAS  Google Scholar 

  • Bellino A, Baldantoni D (2021) Biomonitoring of freshwater ecosystems in the area of the “Cilento Vallo di Diano e Alburni” National Park (Italy). Chem Monit Stn Futur 36

  • Benítez Á, Torres S, Morocho R et al (2020) Platyhypnidium aquaticum as bioindicator of metal and metalloid contamination of river water in a neotropical mountain city. Plants 9:974

    Article  Google Scholar 

  • Bombelli P, Dennis RJ, Felder F et al (2016) Electrical output of bryophyte microbial fuel cell systems is sufficient to power a radio or an environmental sensor. R Soc open Sci 3:160249

    Article  Google Scholar 

  • Boquete MT, Aboal JR, Carballeira A, Fernández JA (2017) Do mosses exist outside of Europe? A biomonitoring reflection. Sci Total Environ 593:567–570

    Article  Google Scholar 

  • Botaka NM (2019) The role of PPAL in the moss Physcomitrella patens. University University

    Google Scholar 

  • Bulgariu L, Bulgariu D, Macoveanu M (2010) Kinetics and equilibrium study of nickel (II) removal using peat moss. Environ Eng Manag J 9:667–674

    Article  CAS  Google Scholar 

  • Campbell C, Kelly DL, Smyth N et al (2023) Investigation of the copper requirements of the metallophyte liverworts Cephaloziella nicholsonii Douin and C. massalongoi (Spruce) Müll. Frib. Plants 12:2265

    Article  CAS  Google Scholar 

  • Capozzi F, Carotenuto R, Giordano S, Spagnuolo V (2018) Evidence on the effectiveness of mosses for biomonitoring of microplastics in fresh water environment. Chemosphere 205:1–7

    Article  CAS  Google Scholar 

  • Capozzi F, Di Palma A, Adamo P et al (2019) Indoor vs. outdoor airborne element array: A novel approach using moss bags to explore possible pollution sources. Environ Pollut 249:566–572. https://doi.org/10.1016/j.envpol.2019.03.012

    Article  CAS  Google Scholar 

  • Carballeira C, Carballeira A, Aboal JR, Fernández JA (2019) Biomonitoring freshwater FISH farms by measuring nitrogen concentrations and the δ15N signal in living and devitalized moss transplants. Environ Pollut 245:1014–1021. https://doi.org/10.1016/j.envpol.2018.11.087

    Article  CAS  Google Scholar 

  • Carrieri V, Varela Z, Aboal JR et al (2022) Suitability of aquatic mosses for biomonitoring micro/meso plastics in freshwater ecosystems. Environ Sci Eur 34:72. https://doi.org/10.1186/s12302-022-00653-9

    Article  CAS  Google Scholar 

  • Castresana PA, Martinez SM, Freeman E et al (2019) Electricity generation from moss with light-driven microbial fuel cells. Electrochim Acta 298:934–942

    Article  CAS  Google Scholar 

  • Čeburnis D, Valiulis D (1999) Investigation of absolute metal uptake efficiency from precipitation in moss. Sci Total Environ 226:247–253

    Article  Google Scholar 

  • Çek N, Erensoy A, Ak N et al (2022) High-efficiency, environment-friendly moss-enriched microbial fuel cell. Int J Chem React Eng 20(11):1131–1140

    Article  Google Scholar 

  • Chakrabortty S, Paratkar GT (2006) Biomonitoring of trace element air pollution using mosses. Aerosol air Qual Res 6:247–258

    Article  CAS  Google Scholar 

  • Chen Y, Mu T (2019) Application of deep eutectic solvents in biomass pretreatment and conversion. Green Energy Environ 4:95–115

    Article  Google Scholar 

  • Clough WS (1975) The deposition of particles on moss and grass surfaces. Atmos Environ 9:1113–1119

    Article  Google Scholar 

  • Coupal B, Lalancette J-M (1976) The treatment of waste waters with peat moss. Water Res 10:1071–1076. https://doi.org/10.1016/0043-1354(76)90038-5

    Article  CAS  Google Scholar 

  • de Caritat P, Reimann C, Bogatyrev I et al (2001) Regional distribution of Al, B, Ba, Ca, K, La, Mg, Mn, Na, P, Rb, Si, Sr, Th, U and Y in terrestrial moss within a 188,000 km2 area of the central Barents region: influence of geology, seaspray and human activity. Appl Geochemistry 16:137–159. https://doi.org/10.1016/S0883-2927(00)00026-3

    Article  Google Scholar 

  • Debén S, Fernández JA, Carballeira A, Aboal JR (2016) Using devitalized moss for active biomonitoring of water pollution. Environ Pollut 210:315–322

    Article  Google Scholar 

  • Demirbas A (2009) Thermochemical conversion of mosses and algae to gaseous products. Energy Sources, Part A 31:746–753

    Article  CAS  Google Scholar 

  • Demirbaş A (2006) Oily products from mosses and algae via pyrolysis. Energy Sources, Part A 28:933–940

    Article  Google Scholar 

  • Ekwealor JTB, Fisher KM (2020) Life under quartz: hypolithic mosses in the Mojave Desert. PLoS One 15:e0235928

    Article  CAS  Google Scholar 

  • Erensoy A, Mulayim S, Orhan A et al (2022) The system design of the peat-based microbial fuel cell as a new renewable energy source: the potential and limitations. Alexandria Eng J 61:8743–8750. https://doi.org/10.1016/j.aej.2022.02.020

    Article  Google Scholar 

  • Fernández JÁ, Pérez-Llamazares A, Carballeira A, Aboal JR (2013) Temporal variability of metal uptake in different cell compartments in mosses. Water, Air, Soil Pollut 224:1–9

    Article  Google Scholar 

  • Fernandez JA, Vazquez MD, Lopez J, Carballeira A (2006) Modelling the extra and intracellular uptake and discharge of heavy metals in Fontinalis antipyretica transplanted along a heavy metal and pH contamination gradient. Environ Pollut 139:21–31

    Article  CAS  Google Scholar 

  • Frahm J-P (2008) Feinstaubreduktion an Straßenrändern durch Moosmatten. Fachtagung Luftqualität an Straßen 46

  • Fuchsman C (2012) Peat: industrial chemistry and technology. Elsevier

    Google Scholar 

  • Gao G, Zeng H, Zhou Q (2022) Biomonitoring atmospheric pollution of polycyclic aromatic hydrocarbons using mosses. Atmosphere (Basel) 14:26

    Article  Google Scholar 

  • Geffert JL, Frahm J-P, Barthlott W, Mutke J (2013) Global moss diversity: spatial and taxonomic patterns of species richness. J Bryol 35:1–11

    Article  Google Scholar 

  • Giráldez P, Varela Z, Aboal JR, Fernández JÁ (2021) Testing different methods of estimating edaphic inputs in moss biomonitoring. Sci Total Environ 778:146332. https://doi.org/10.1016/j.scitotenv.2021.146332

    Article  CAS  Google Scholar 

  • Glime JM (2007) Economic and ethnic uses of bryophytes. Flora North Am 27:14–41

    Google Scholar 

  • Gong GY, Kang JS, Jeong KJ et al (2019) Effect of several native moss plants on particulate matter, volatile organic compounds and air composition. J People, Plants, Environ 22:31–38

    Article  Google Scholar 

  • González AG, Pokrovsky OS (2014) Metal adsorption on mosses: toward a universal adsorption model. J Colloid Interface Sci 415:169–178

    Article  Google Scholar 

  • Groombridge B (1992) Global biodiversity: status of the earth’s living resources: a report. IUCN Library System

    Google Scholar 

  • Hansen CE, Rossi P (1990) Polyunsaturated fatty acids in cultured moss cells. In: Plant lipid biochemistry, structure and utilization: the proceedings of the Ninth International Symposium on Plant Lipids, Held at Wye College, Kent, July 1990. Portland Press, p 384

    Google Scholar 

  • Hao D-C, Gu XJ, Xiao PG (2015) Medicinal plants: chemistry, biology and omics. Woodhead Publishing

    Google Scholar 

  • Harmens H, Foan L, Simon V, Mills G (2013) Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review. Environ Pollut 173:245–254

    Article  CAS  Google Scholar 

  • Haynes A, Popek R, Boles M et al (2019) Roadside moss turfs in South East Australia capture more particulate matter along an urban gradient than a common native tree species. Atmosphere (Basel) 10:224

    Article  CAS  Google Scholar 

  • Herbaut M, Zoghlami A, Habrant A et al (2018) Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance. Biotechnol Biofuels 11:1–17

    Article  Google Scholar 

  • Hossain N (2019) Characterization of novel moss biomass, Bryum dichotomum Hedw. as Solid Fuel Feedstock. BioEnergy Res 13(1):50–60

    Article  Google Scholar 

  • Hossain N (2020) Characterization of novel moss biomass, Bryum dichotomum Hedw. as solid fuel feedstock. BioEnergy Res 13:50–60

    Article  CAS  Google Scholar 

  • Hossain T, Jones D, Hartley D et al (2021) The nth-plant scenario for blended feedstock conversion and preprocessing nationwide: biorefineries and depots. Appl Energy 294:116946

    Article  Google Scholar 

  • Hubenova Y, Mitov M (2011) Bacterial mutalism in the mosses roots applicable in Bryophyta-microbial fuel cell. Commun Agric Appl Biol Sci 76:63–65

    Google Scholar 

  • Itouga M, Hayatsu M, Sato M et al (2017) Protonema of the moss Funaria hygrometrica can function as a lead (Pb) adsorbent. PLoS One 12:e0189726

    Article  Google Scholar 

  • Iyyappan J, Baskar G, Deepanraj B et al (2022) Promising strategies of circular bioeconomy using heavy metal phytoremediated plants–a critical review. Chemosphere 137097

  • Julinova P, Beckovsky D (2019) Perspectives of moss species in urban ecosystems and vertical living-architecture: A review. Adv Eng Mater Struct Syst Innov Mech Appl:2370–2375

  • Kabutey FT, Zhao Q, Wei L et al (2019) An overview of plant microbial fuel cells (PMFCs): Configurations and applications. Renew Sustain Energy Rev 110:402–414

    Article  Google Scholar 

  • Kandasamy S, Narayanan M, He Z et al (2021) Current strategies and prospects in algae for remediation and biofuels: an overview. Biocatal Agric Biotechnol 35:102045. https://doi.org/10.1016/j.bcab.2021.102045

    Article  CAS  Google Scholar 

  • Kļaviņa L (2018) Composition of mosses, their metabolites and environmental stress impacts

  • Klavina L, Kviesis J (2015) Solid Phase Extraction of Bryophyte Lipids. Mater Sci Appl Chem 32

  • Kobuljanovna US (2022) Active and passive moss biomonitoring for water and air pollution control. Texas J Multidiscip Stud 7:315–323

    Google Scholar 

  • Krishna MVB, Karunasagar D, Arunachalam J (2003) Study of mercury pollution near a thermometer factory using lichens and mosses. Environ Pollut 124:357–360

    Article  Google Scholar 

  • La Farge C, Williams KH, England JH (2013) Regeneration of Little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments. Proc Natl Acad Sci 110:9839–9844

    Article  Google Scholar 

  • Lee DJ, Choi MB (2020) Ecological value of global terrestrial plants. Ecol Modell 438:109330

    Article  Google Scholar 

  • Lee SH, Ahn J, Park SJ et al (2020) The flora of land plants (bryophytes and vascular plants) in Wangpicheon Ecosystem and Landscape Conservation Area (ELCA), Korea. Korean J Plant Taxon 50:279–317

    Article  Google Scholar 

  • Leitão A (2016) Bioeconomy: the challenge in the management of natural resources in the 21st century. Open J Soc Sci 4:26–42

    Google Scholar 

  • Lubbad SH, Al-Batta SN (2020) Ultrafast remediation of lead-contaminated water applying sphagnum peat moss by dispersive solid-phase extraction. Int J Environ Stud 77:382–397

    Article  CAS  Google Scholar 

  • Lubbad SH, Mousa EA (2020) Softening of tap water via calcium removal using sphagnum peat moss sorbent by batch and flow-through approaches. Int J Environ Stud 77:222–235

    Article  CAS  Google Scholar 

  • Mahapatra B, Dhal NK, Dash AK et al (2019) Perspective of mitigating atmospheric heavy metal pollution: using mosses as biomonitoring and indicator organism. Environ Sci Pollut Res 26:29620–29638

    Article  Google Scholar 

  • Martins RJE, Pardo R, Boaventura RAR (2004) Cadmium (II) and zinc (II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness. Water Res 38:693–699

    Article  CAS  Google Scholar 

  • Messager ML, Davies IP, Levin PS (2021) Development and validation of in-situ and laboratory X-ray fluorescence (XRF) spectroscopy methods for moss biomonitoring of metal pollution. MethodsX 8:101319. https://doi.org/10.1016/j.mex.2021.101319

    Article  CAS  Google Scholar 

  • Mitra S (2017) High content of dicranin in anisothecium spirale (Mitt.) Broth., a moss from Eastern Himalayas and its chemotaxonomic significance. Lipids 52(2):173–178

  • Monaci F, Ancora S, Bianchi N et al (2021) Combined use of native and transplanted moss for post-mining characterization of metal(loid) river contamination. Sci Total Environ 750:141669. https://doi.org/10.1016/j.scitotenv.2020.141669

    Article  CAS  Google Scholar 

  • Moscariello C, Matassa S, Esposito G, Papirio S (2021) From residue to resource: The multifaceted environmental and bioeconomy potential of industrial hemp (Cannabis sativa L.). Resour Conserv Recycl 175:105864

    Article  CAS  Google Scholar 

  • Nieboer E, Tsuji LJS, Martin ID, Liberda EN (2013) Human biomonitoring issues related to lead exposure. Environ Sci Process Impacts 15:1824–1829

    Article  CAS  Google Scholar 

  • Oishi Y, Shin K-C, Tayasu I (2021) Lead isotope ratios in moss for the assessment of transboundary pollutants in the Yatsugatake Mountains, central Japan. Ecol Res 36:401–408. https://doi.org/10.1111/1440-1703.12205

    Article  CAS  Google Scholar 

  • Økland T, Økland RH, Steinnes E (1999) Element concentrations in the boreal forest moss Hylocomium splendens: variation related to gradients in vegetation and local environmental factors. Plant Soil 209:71–83. https://doi.org/10.1023/A:1004524017264

    Article  Google Scholar 

  • Okoli CP, Diagboya PN, Anigbogu IO et al (2017) Competitive biosorption of Pb (II) and Cd (II) ions from aqueous solutions using chemically modified moss biomass (Barbula lambarenensis). Environ Earth Sci 76:1–10

    Article  CAS  Google Scholar 

  • Papadia P, Barozzi F, Migoni D et al (2020) Aquatic mosses as adaptable bio-filters for heavy metal removal from contaminated water. Int J Mol Sci 21:4769

    Article  CAS  Google Scholar 

  • Pérez-Llamazares A, Aboal JR, Carballeira A, Fernández JA (2011) Cellular location of K, Na, Cd and Zn in the moss Pseudoscleropodium purum in an extensive survey. Sci Total Environ 409:1198–1204

    Article  Google Scholar 

  • Poddar Sarkar M, Biswas Raha A, Datta J, Mitra S (2021) Chemotaxonomic and evolutionary perspectives of Bryophyta based on multivariate analysis of fatty acid fingerprints of Eastern Himalayan mosses. Protoplasma:1–13. https://doi.org/10.1007/s00709-021-01723-0

  • Pošćić F, Fellet G, Fagnano M et al (2019) Linking phytotechnologies to bioeconomy; varietal screening of high biomass and energy crops for phytoremediation of Cr and Cu contaminated soils. Ital J Agron 14:43–49

    Article  Google Scholar 

  • Prasad MNV (2015) Bioremediation and bioeconomy. Elsevier

    Google Scholar 

  • Qarri F, Lazo P, Allajbeu S et al (2019) The evaluation of air quality in Albania by moss biomonitoring and metals atmospheric deposition. Arch Environ Contam Toxicol 76:554–571

    Article  CAS  Google Scholar 

  • Ramachandran V, Shriram MK, Mathew ER et al (2021) Oil spill remediation and valorization of oil-soaked peat sorbent to biofuel by hydrothermal liquefaction. Biomass Convers Biorefinery:1–13

  • Rasmussen TE (2002) Biofiltration of indoor air: The role of mosses and their associated microbial communities in a complex eco-system biofilter. Plagiomnium cuspidatum, Taxiphyllum deplanatum

    Google Scholar 

  • Resemann HC, Lewandowska M, Gömann J, Feussner I (2019) Membrane lipids, waxes and oxylipins in the moss model organism Physcomitrella patens. Plant Cell Physiol 60:1166–1175

    Article  CAS  Google Scholar 

  • Rossi CEHP (1990) Arachidonic and eicosapentaenoic acids in brachytheciaceae and hypnaceae moss species. Phytochemistry 29:3749–3754

    Article  Google Scholar 

  • Roy P, Dutta A, Gallant J (2018) Hydrothermal carbonization of peat moss and herbaceous biomass (Miscanthus): a potential route for bioenergy. Energies 11:2794

    Article  Google Scholar 

  • Sandhi A, Landberg T, Greger M (2018) Phytofiltration of arsenic by aquatic moss (Warnstorfia fluitans). Environ Pollut 237:1098–1105

    Article  CAS  Google Scholar 

  • Sari A, Tuzen M (2009) Removal of mercury (II) from aqueous solution using moss (Drepanocladus revolvens) biomass: equilibrium, thermodynamic and kinetic studies. J Hazard Mater 171:500–507

    Article  CAS  Google Scholar 

  • Sarma PJ, Mohanty K (2019) An insight into plant microbial fuel cells. Bioelectrochem Interf Eng:137–148

  • Saxena DK, Harinder I (2004) Bryophytes and mankind. Resonance 9:56–65

    Article  Google Scholar 

  • Sergeeva A, Zinicovscaia I, Vergel K et al (2021) The effect of heavy industry on air pollution studied by active moss biomonitoring in Donetsk Region (Ukraine). Arch Environ Contam Toxicol 80:546–557. https://doi.org/10.1007/s00244-021-00834-2

    Article  CAS  Google Scholar 

  • Sharma P, Gaur VK, Sirohi R et al (2021) Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresour Technol 325:124684

    Article  CAS  Google Scholar 

  • Shetekauri S, Chaligava O, Shetekauri T et al (2018) Biomonitoring air pollution using moss in Georgia. Polish J Environ Stud 27:2259–2266

    Article  CAS  Google Scholar 

  • Singh S, Dhir S, Evans S (2021) The trajectory of two decades of global journal of flexible systems management and flexibility research: a bibliometric analysis. Glob J Flex Syst Manag 22:377–401

    Article  Google Scholar 

  • Sirohi S, Kumar S, Yadav C et al (2020) Sphagnum: a promising indoor air purifier. J Environ Eng Sci 15(4):208–215

    Article  Google Scholar 

  • Słonina N, Świsłowski P, Rajfur M (2021) Passive and active biomonitoring of atmospheric aerosol with the use of mosses. Ecol Chem Eng 28:163–172

    Google Scholar 

  • Smith RJ, Benavides JC, Jovan S et al (2015) A rapid method for landscape assessment of carbon storage and ecosystem function in moss and lichen ground layers. Bryologist 118:32–45

    Article  Google Scholar 

  • Smolyakov BS, Sagidullin AK, Chikunov AS (2017) Removal of Cd (II), Zn (II), and Cu (II) from aqueous solutions using humic-modified moss (Polytrichum Comm.). J Environ Chem Eng 5:1015–1020

    Article  CAS  Google Scholar 

  • Sorrentino MC, Capozzi F, Wuyts K et al (2021) Mobile biomonitoring of atmospheric pollution: a new perspective for the moss-bag approach. Plants 10

  • Splittgerber V, Saenger P (2015) City tree: a vertical plant wall. Air Pollut XXIII:295

    Google Scholar 

  • Stanković JD, Sabovljević AD, Sabovljević MS (2018) Bryophytes and heavy metals: a review. Acta Bot Croat 77:109–118

    Article  Google Scholar 

  • Ştefănuţ S, Manole A, Ion MC et al (2018) Developing a novel warning-informative system as a tool for environmental decision-making based on biomonitoring. Ecol Indic 89:480–487. https://doi.org/10.1016/j.ecolind.2018.02.020

    Article  Google Scholar 

  • Świsłowski P, Hrabák P, Wacławek S et al (2021a) The Application of Active Biomonitoring with the Use of Mosses to Identify Polycyclic Aromatic Hydrocarbons in an Atmospheric Aerosol. Molecules 26

  • Świsłowski P, Kosior G, Rajfur M (2021b) The influence of preparation methodology on the concentrations of heavy metals in Pleurozium schreberi moss samples prior to use in active biomonitoring studies. Environ Sci Pollut Res 28:10068–10076

    Article  Google Scholar 

  • Świsłowski P, Vergel K, Zinicovscaia I et al (2022) Mosses as a biomonitor to identify elements released into the air as a result of car workshop activities. Ecol Indic 138:108849. https://doi.org/10.1016/j.ecolind.2022.108849

    Article  CAS  Google Scholar 

  • Temba NW, Kivevele T (2020) Pogrebnaya T (2020) Cryptogamic packed biofilter as potential adsorbent for CO2, NH3, and H2S impurities from biogas. J Energy 2020. https://doi.org/10.1155/2020/8514607

  • Tesser TT, Bordin J, Da Rocha CM, Da Silva A (2021) Application of the dry and wet biomass of bryophytes for phytoremediation of metals: batch experiments. Environ Challenges 5:100382

    Article  Google Scholar 

  • Turetsky MR, Bond-Lamberty B, Euskirchen E et al (2012) The resilience and functional role of moss in boreal and arctic ecosystems. New Phytol 196:49–67

    Article  CAS  Google Scholar 

  • Tyler G (1990) Bryophytes and heavy metals: a literature review. Bot J Linn Soc 104:231–253

    Article  Google Scholar 

  • Ullmann J, Grimm D (2021) Algae and their potential for a future bioeconomy, landless food production, and the socio-economic impact of an algae industry. Org Agric 11:261–267. https://doi.org/10.1007/s13165-020-00337-9

    Article  Google Scholar 

  • Van Eck N, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538

    Article  Google Scholar 

  • Vara Prasad MN, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321

    Google Scholar 

  • Vukojević V, Sabovljević M, Jovanović S (2005) Mosses accumulate heavy metals from the substrata of coal ash. Arch Biol Sci 57:101–106

    Article  Google Scholar 

  • Wilkins K, Cathcart H, Hickey P et al (2023) Influence of precipitation on the spatial distribution of 210Pb, 7Be, 40K and 137Cs in moss. Pollutants 3:102–113

    Article  Google Scholar 

  • Wu Q, Wang X, Zhou Q (2014) Biomonitoring persistent organic pollutants in the atmosphere with mosses: performance and application. Environ Int 66:28–37

    Article  CAS  Google Scholar 

  • Yatim NM, Nia A (2021) Moss as bio-indicator for air quality monitoring at different air quality environment. Int J Eng Adv Technol 10:43–47

    Article  Google Scholar 

  • Zinicovscaia I, Hramco C, Duliu OG et al (2017) Air pollution study in the Republic of Moldova using moss biomonitoring technique. Bull Environ Contam Toxicol 98:262–269

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ms. Zaira Khalid is thankful to the Central University of Jharkhand for providing the UGC (University Grants Commission) Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ZH and BS; data curation: ZH; formal analysis: ZH and BS; investigation: ZH and BS; methodology: ZH; project administration: BS; resources: BS; software: ZH; supervision: BS; validation: ZH and BS; visualization: ZH and BS; writing—original draft: ZH; writing—review and editing: BS.

Corresponding author

Correspondence to Bhaskar Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, Z., Singh, B. Looking at moss through the bioeconomy lens: biomonitoring, bioaccumulation, and bioenergy potential. Environ Sci Pollut Res 30, 114722–114738 (2023). https://doi.org/10.1007/s11356-023-30633-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-30633-2

Keywords

Navigation