Skip to main content

Advertisement

Log in

A review on adsorption of heavy metals from wastewater using carbon nanotube and graphene-based nanomaterials

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The rampant rise in world population, industrialization, and urbanization expedite the contamination of water sources. The presence of the non-biodegradable character of heavy metals in waterways badly affects the ecological balance. In this modern era, the unavailability of getting clear water as well as the downturn in water quality is a major concern. Therefore, the effective removal of heavy metals has become much more important than before. In recent years, the attention to better wastewater remediation was directed towards adsorption techniques with novel adsorbents such as carbon nanomaterials. This review paper primarily emphasizes the fundamental concepts, structures, and unique surface properties of novel adsorbents, the harmful effects of various heavy metals, and the adsorption mechanism. This review will give an insight into the current status of research in the realm of sustainable wastewater treatment, applications of carbon nanomaterials, different types of functionalized carbon nanotubes, graphene, graphene oxide, and their adsorption capacity. The importance of MD simulations and density functional theory (DFT) in the elimination of heavy metals from aqueous media is also discussed. In addition to that, the effect of factors on heavy metal adsorption such as electric field and pressure is addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

Pb :

lead

As :

arsenic

Cd :

cadmium

Hg :

mercury

Cr :

chromium

Zn :

zinc

Ni :

nickel

Cu :

copper

MCL :

maximum contamination level

Fe :

iron

Mn :

manganese

Se :

selenium

Ag :

silver

Al :

aluminum

Co :

cobalt

Tl :

thallium

Sr :

strontium

Ba :

barium

Ti :

titanium

Cs :

cesium

CNMs :

carbon nanomaterials

CNTs :

carbon nanotubes

GRA :

graphene

GO :

graphene oxide

C 60 :

fullerene

SWCNTs :

single-walled carbon nanotubes

MWCNTs :

multi-walled carbon nanotubes

BC :

biochar

AC :

activated carbon

RGO :

reduced grapheme oxide

Na :

sodium

As(V) :

arsenate

As(III) :

arsenite

D :

dimensional

BP :

bucky paper

MVT :

multivariate

MOF :

metal-organic framework

SO 4 2− :

sulfate

PS :

polysulfone

MSWCNTs :

magnetite single walled carbon nanotubes

CoS :

cobalt sulfide

Sb(III) :

trivalent antimony

Sb(V) :

pentavalent antimony

SS :

steel slag

C :

concentration

K-40 :

Potassium-40

Th-232 :

Thorium-232

U-238 :

Uranium-238

DES :

deep eutectic solvent

M−rGO :

montmorillonite reduced graphene oxide aerogel

CaO :

calcium oxide

Si :

silica

ZnO :

zinc oxide

Fe 3 O 4 :

iron oxide

PRGO :

partially reduced graphene oxide

WSCC :

water-soluble carboxymethyl chitosan

-COOH :

carboxyl

-OH :

hydroxyl

HNT-G2 :

hydroxyl-terminated triazine-based dendritic polymer/halloysite nanotube

TCE :

trichloroethylene

Al 2 O 3 :

aluminum oxide

H + :

hydrogen ions

EDA :

ethylenediamine

SPES :

sulfonated polyether sulfone

PES :

polyethersulfone

PPy :

polypyrrole

o-MWCNT :

oxidized multi-walled carbon nanotubes

e-MWCNT :

ethylenediamine multi-walled carbon nanotubes

d-MWCNT :

di ethylenetriamine multi-walled carbon nanotubes

t-MWCNT :

tri ethylenetetramine multi-walled carbon nanotubes

Au :

Gold

PIDA :

phenyl-iminodiacetic acid

CNT-g-p(MAA-co-MEAA) :

poly((sodium methacrylate)-co-2-(methacryloyloxy)ethyl acetoacetate)

MoS 2 :

molybdenum sulfide

SiO 2 :

silicon dioxide

PSF :

polysulfone

PAN :

polyacrylonitrile

PdO :

palladium oxide

IL :

ionic liquid

DTC :

dithiocarbamate

PVA :

poly vinyl alcohol

DTPA :

diethylene triamine pentaacetic acid

HGP :

GRA hydrogel

TSGO :

thiosemicarbazide graphene oxide

HPA :

hyperbranched polyamine

PAM :

polyacrylamide

DAP :

2,6-diamino pyridine

EDTA :

ethylenediamine triacetic acid

PF6 :

potassium hexa fluoro phosphate

MCS :

magnetic chitosan

UF :

ultrafiltration

SPG :

sodium alginate polyvinyl alcohol graphene oxide

SA :

sodium alginate

PD :

polydopamine

-CONH- :

amino

-CH 2 NH 2 :

amino

-CON 3 :

azide

HSAB :

hard and soft acids and bases

I :

iodide

OX :

oxidized

S :

sulfur

TBAB :

tetra-N-butyl ammonium bromide

-C=O :

carbonyl

CS :

chitosan

TAA :

tris (2-aminoethyl) amine

ttpy :

4′-(4-hydroxyphenyl)-2,2′:6′,2″-terpyridine

N 2 H 4 :

hydrazine

-SH :

thiol, sulfhydryl

HPEI :

hyperbranched polyethyleneimine

PES :

poly ether sulfone

MD :

molecular dynamics

-CONH 2 :

amide

MSD :

mean square displacement

-COO :

carboxyl

g(r) :

radial distribution function or RDF

-C=O :

carbonyl

-COC- :

epoxy

MnO 2 :

manganese oxide

SPGM4 :

sulfonated polyethersulfone graphene oxide/manganese dioxide ultrafiltration membranes

GO@UiO-66-NH 2 :

graphene oxide-amino-modified zirconium-based metal-organic framework composites

UiO-66-NH 2 :

amino-modified zirconium-based metal-organic framework

EDAGO :

ethylenediamine graphene oxide

-NH 2 :

amino

APTES :

3-aminopropyl tri ethoxy silane

M :

melamine

MEA :

mono ethanol amine

MGO :

magnetic graphene oxide

PAMAMs :

poly amido amine dendrimers

HMDA :

hexa methylene diamine

Bio-GM :

biomaterial functionalized graphene-magnetite

Zr :

zirconium

P :

phosphate

RGOS :

reduced graphene oxide grafted by 4-sulfophenylazo Groups

NO 3 :

nitrate

PGNMs :

porous graphene nanomembranes

BNNS :

boron nitride

PMF :

potential mean force

NPG :

nanoporous graphene membrane

N :

nitrogen

F :

fluorine

PW :

plane wave

DFT :

density functional theory

PAO :

poly amidoxime

U(VI) :

uranium

GDF :

gravity-driven filtration

FeOOH :

ferric oxy hydroxide

FCNTs :

fluorinated carbon nanotubes

PCNT :

pristine carbon nanotubes

PANI :

polyaniline

NaCl :

sodium chloride

Am(III) :

americium

Eu(III) :

europium

DGA :

diglycolamic acid

HgCl 2 :

mercury chloride

EISM :

electric field–accelerated ion-sieve membrane

G ext :

free energy of extraction

E HOMO :

energy of highest occupied molecular orbital

E LUMO :

energy of lowest unoccupied molecular orbital

AA :

amidoamine

∆E :

interaction energy

∆H :

enthalpy

∆S :

entropy

∆G :

Gibbs free energy

∆N :

amount of charge transfer

∆G (gp) :

Gibbs free energy in gas phase

∆G sol :

Gibbs free energy in solvent phase

Cl :

chloride

MgCl 2 :

magnesium chloride

FeCl 3 :

iron chloride

K + :

potassium

R :

binding energy distance

ZnOH :

zinc hydroxide

ΔE bind :

binding energy

Q :

charge

Q CT :

charge transfer

E ads :

adsorption energy

ΔH ads :

adsorption

ΔS ads :

entropy of adsorption

ΔG ads :

free energy of adsorption

T :

temperature

ICP-MS :

inductively coupled plasma mass spectrometry

AAS :

atomic absorption spectroscopy

AMBER :

assisted model building with energy refinement

CHARMM :

chemistry at Harvard molecular mechanics

OPLS-AA :

optimized potentials for liquid simulations all atom

RDF :

radial distribution function

DOS :

density of states

GQDs :

graphene quantum dots

M-HBAP :

magnetic hydrochar composite

WSHyC :

wheat straw hydrochar

MHC-S 4 :

sulfide-modified magnetic hydrochar

CFHC :

cation functionalized bamboo hydrochar

HC :

corn straw-converted hydrochar

H 3 PO 4 -HC :

hydrochar modified with H3PO4

PEI-HC :

hydrochar modified with polyethyleneimine

alkali-PEI-HC :

polyethyleneimine-modified straw hydrochar

AHTC-PL :

activated hydrochar from palm leaves

MgSi-HC :

hybrid silicate-hydrochar composite

MFBC :

multifunctional biochar

DTHC :

dithiocarbamate-modified hydrochar

DMB :

discarded mushroom-stick biochar

AMBC :

amino-grafted-modified biochar

PEI-AC :

polyethylenimine-modified activated carbon

MOLBC :

manganese oxide nanoparticles loaded biochar

MnO x :

manganese oxide

MCM-48 :

mobil composite material no.48

FNH :

fluorescent nanocellulose hydrogel

APTMs :

aminopropyltrimethoxysilane

TO-NFC :

TEMPO-oxidized nanofibrillated cellulose

NC :

nanocellulose

CNFs :

cellulose nanofibers

PANI-NC :

polyaniline-impregnated nanocellulose

NCNB :

nanobentonite incorporated nanocellulose/chitosan aerogel

References

  • Abd Ali G, Salih NQ, Faroun GA, Al-Hamadani RF (2023) Adsorption technique for the removal of heavy metals from wastewater using low-cost natural adsorbent. IOP Conf Ser: Earth Environ Sci 2023(1129):012012

    Google Scholar 

  • Abdulkareem AS, Hamzat WA, Tijani JO, Egbosiuba TC, Mustapha S, Abubakre OK, Okafor BO, Babayemi AK (2023) Isotherm, kinetics, thermodynamics and mechanism of metal ions adsorption from electroplating wastewater using treated and functionalized carbon nanotubes. J Environ Chem Eng 11:109180

    CAS  Google Scholar 

  • Abraham TN, Kumar R, Misra R, Jain S (2012) Poly (vinyl alcohol)-based MWCNT hydrogel for Abraham TN, Kumar R, Misra RK, Jain Sk (2012) Poly (vinyl alcohol)-based MWCNT hydrogel for lead ion removal from contaminated water. J Appl Polym Sci 125:E670–E674

    CAS  Google Scholar 

  • Abu Elgoud EM, Abd-Elhamid AI, Emam SS, Aly HF (2022) Selective removal of some heavy metals from lanthanide solution by graphene oxide functionalized with sodium citrate. Sci Rep 12:13755

    CAS  Google Scholar 

  • AK DMH, Taher MM, Heibati B, Tyagi I, Asif M, Agarwal S, Gupta VK (2015) Removal of noxious Cr (VI) ions using single-walled carbon nanotubes and multi-walled carbon nanotubes. Chem Eng J 279:344–352

    Google Scholar 

  • Akinpelu AA, Ali ME, Johan MR, Saidur R, Qurban MA, Saleh TA (2019) Polycyclic aromatic hydrocarbons extraction and removal from wastewater by carbon nanotubes: a review of the current technologies, challenges and prospects. Process Saf Environ Prot 122:68–82

    CAS  Google Scholar 

  • Al-Degs Y, Khraisheh MA, Tutunji MF (2001) Sorption of lead ions on diatomite and manganese oxides modified diatomite. Water Res 35:3724–3728

    CAS  Google Scholar 

  • Ali I, Mbianda XY, Burakov A, Galunin E, Burakova I, Mkrtchyan E, Tkachev A, Grachev V (2019) Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ Int 127:160–180

    CAS  Google Scholar 

  • Alija A, Gashi D, Plakaj R, Omaj A, Thaci V, Reka A, Avdiaj S, Berisha A (2020) A theoretical and experimental study of the adsorptive removal of hexavalent chromium ions using graphene oxide as an adsorbent. Open Chem J 18:936–942

    CAS  Google Scholar 

  • Alijani H, Shariatinia Z (2018) Synthesis of high growth rate SWCNTs and their magnetite cobalt sulfide nanohybrid as super-adsorbent for mercury removal. Chem Eng Res Des 129:132–149

    CAS  Google Scholar 

  • Alina M, Azrina A, Mohd Yunus A, Mohd Zakiuddin S, Mohd Izuan Effendi H, Muhammad Rizal R (2012) Heavy metals (mercury, arsenic, cadmium, plumbum) in selected marine fish and shellfish along the straits of malacca. Int Food Res J 19:135–140

    CAS  Google Scholar 

  • AlOmar MK, Alsaadi MA, Jassam TM, Akib S, Hashim MA (2017) Novel deep eutectic solvent-functionalized carbon nanotubes adsorbent for mercury removal from water. J Colloid Interface Sci 497:413–421

    CAS  Google Scholar 

  • Alsaiari NS, Katubi KM, Alzahrani FM, Amari A, Osman H, Rebah FB, Tahoon MA (2021) Synthesis, characterization and application of polypyrrole functionalized nanocellulose for the removal of Cr (VI) from aqueous solution. Polymers 13:3691

    CAS  Google Scholar 

  • Anirudhan TS, Sreekumari SS (2011) Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J Environ Sci 23:1989–1998

    CAS  Google Scholar 

  • Anitha K, Namsani S, Singh JK (2015) Removal of heavy metal ions using a functionalized single-walled carbon nanotube: a molecular dynamics study. J Phys Chem A 119:8349–8358

    CAS  Google Scholar 

  • Anjum H, Johari K, Gnanasundaram N, Ganesapillai M, Arunagiri A, Regupathi I, Thanabalan M (2019) A review on adsorptive removal of oil pollutants (BTEX) from wastewater using carbon nanotubes. J Mol Liq 277:1005–1025

    CAS  Google Scholar 

  • Apul OGKaranfil T (2015) Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review. Water Res 68:34–55

    Google Scholar 

  • Arouche TS, RMdS C, PSM T, TSdS P, Filho TA, AMdJC N (2020) Heavy metals nanofiltration using nanotube and electric field by molecular dynamics. J Nanomater 2020:1–12

    Google Scholar 

  • Arshad F, Selvaraj M, Zain J, Banat F, Haija MA (2019) Polyethylenimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions. Sep Purif Technol 209:870–880

    CAS  Google Scholar 

  • Aswin Kumar I, Viswanathan N (2018) Development and reuse of amine-grafted chitosan hybrid beads in the retention of nitrate and phosphate. J Chem Eng Data 63:147–158

    CAS  Google Scholar 

  • ATSDR U (2012) Toxicological profile for chromium. US Department of Health and Human Services, Public Health Service

    Google Scholar 

  • Azamat J, Sattary BS, Khataee A, Joo SW (2015) Removal of a hazardous heavy metal from aqueous solution using functionalized graphene and boron nitride nanosheets: insights from simulations. J Mol Graph Model 61:13–20

    CAS  Google Scholar 

  • Baby Shaikh R, Saifullah B, Rehman FU (2018) Greener method for the removal of toxic metal ions from the wastewater by application of agricultural waste as an adsorbent. Water 10:1316

    Google Scholar 

  • Bali M, Tlili H (2019) Removal of heavy metals from wastewater using infiltration-percolation process and adsorption on activated carbon. Int J Environ Sci Technol 16:249–258

    CAS  Google Scholar 

  • Bankole MT, Abdulkareem AS, Mohammed IA, Ochigbo SS, Tijani JO, Abubakre OK, Roos WD (2019) Selected heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents. Sci Rep 9:1–19

    CAS  Google Scholar 

  • Bao J, Zheng H, Tufail H, Irshad S, Du J (2018) Adsorption-assisted decontamination of Hg (ii) from aqueous solution by multi-functionalized corncob-derived biochar. Rsc Adv 8:38425–38435

    Google Scholar 

  • Barabasz W, Albinska D, Jaskowska M, Lipiec J (2002) Ecotoxicology of aluminium. Pol J Environ Stud 11:199–204

    CAS  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377

    CAS  Google Scholar 

  • Baratta M, Mastropietro TF, Bruno R, Tursi A, Negro C, Ferrando-Soria J, Mashin AI, Nezhdanov A, Nicoletta FP, De Filpo G, Pardo E, Armentano D (2022) Multivariate metal–organic framework/single-walled carbon nanotube buckypaper for selective lead decontamination. ACS Appl Nano Mater 5:5223–5233

    CAS  Google Scholar 

  • Barrejon M, Prato M (2022) Carbon nanotube membranes in water treatment applications. Adv Mater Interfaces 9:2101260

    CAS  Google Scholar 

  • Basheer F, Melge AR, Sasidharan A, Nair SV, Manzoor K, Mohan CG (2018) Computational simulations and experimental validation of structure-physicochemical properties of pristine and functionalized graphene: implications for adverse effects on p53 mediated DNA damage response. Int J Biol Macromol 110:540–549

    CAS  Google Scholar 

  • Baskar AV, Bolan N, Hoang SA, Sooriyakumar P, Kumar M, Singh L, Jasemizad T, Padhye LP, Singh G, Vinu A, Sarkar B (2022) Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: a review. Sci Total Environ 822:153555

    CAS  Google Scholar 

  • Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes-the route toward applications. Science 297:787–792

    CAS  Google Scholar 

  • Bekyarova E, Kaneko K, Kasuya D, Takahashi K, Kokai F, Yudasaka M, Iijima S (2002) Pore structure and adsorption properties of single-walled carbon nanohorn bud-like aggregates treated in different atmospheres. Phys B Condens Matter 323:143–145

    CAS  Google Scholar 

  • Berglund F, Carlmark B (2011) Titanium, sinusitis, and the yellow nail syndrome. Biol Trace Elem Res 143:1–7

    CAS  Google Scholar 

  • Bhan A, Sarkar NN (2005) Mercury in the environment: effect on health and reproduction. Environ Health Rev 20:39–56

    CAS  Google Scholar 

  • Bianco A, Cheng HM, Enoki T, Gogotsi Y, Hurt RH, Koratkar N, Kyotani T, Monthioux M, Park CR, Tascon JM, Zhang J (2013) All in the graphene family-A recommended nomenclature for two-dimensional carbon materials. Carbon 65:1–6

    CAS  Google Scholar 

  • Blue SGR, Surgeon G (2000) The public health service. US. Department of Health & Human Services, Washington, DC

    Google Scholar 

  • Brewer GJ (2010) Risks of copper and iron toxicity during aging in humans. Chem Res Toxicol 23:319–326

    CAS  Google Scholar 

  • Chandra V, Kim KS (2011) Highly selective adsorption of Hg 2+ by a polypyrrole-reduced graphene oxide composite. Chem Commun 47:3942–3944

    CAS  Google Scholar 

  • Chen G-C, Shan X-Q, Zhou Y-Q, Shen X-e, Huang H-L, Khan SU (2009) Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes. J Hazard Mater 169:912–918

    CAS  Google Scholar 

  • Chen Y, Zhang B, Liu G, Zhuang X, Kang ET (2012) Graphene and its derivatives: switching ON and OFF. Chem Soc Rev 41:4688–4707

    CAS  Google Scholar 

  • Chen W, Lin Z, Chen Z, Weng X, Owens G, Chen Z (2022) Simultaneous removal of Sb (III) and Sb (V) from mining wastewater by reduced graphene oxide/bimetallic nanoparticles. Sci Total Environ 836:155704

    CAS  Google Scholar 

  • Chowdhury S, Balasubramanian R (2014) Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Colloid Interface Sci 204:35–56

    CAS  Google Scholar 

  • Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury-current exposures and clinical manifestations. N Engl J Med 349:1731–1737

    CAS  Google Scholar 

  • Cohen-Solal M (2002) Strontium overload and toxicity: impact on renal osteodystrophy. Nephrol Dial Transplant 17:30–34

    CAS  Google Scholar 

  • Crossgrove J, Zheng W (2004) Manganese toxicity upon overexposure. NMR Biomed 17:544–553

    CAS  Google Scholar 

  • Cui Y, Hu ZJ, Yang JX, Gao HW (2012) Novel phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes for solid phase extraction of iron, copper and lead ions from aqueous medium. Microchim Acta 176:359–366

    CAS  Google Scholar 

  • Cvjetko P, Cvjetko I, Pavlica M (2010) Thallium toxicity in humans. Arh Hig Rada Toksikol 61:111–118

    CAS  Google Scholar 

  • Dan S, Bagheri H, Shahidizadeh A, Hashemipour H (2023) Performance of graphene oxide/SiO2 nanocomposite-based: antibacterial activity, dye and heavy metal removal. Arab J Chem 16:104450

    CAS  Google Scholar 

  • Darwish M, Mohammadi A (2018) Functionalized nanomaterial for environmental techniques. Nanotechnology in Environmental Science 1:315–350

  • Dehaghi M (2014) Removal of lead ions from aqueous solution using multi-walled carbon nanotubes: the effect of functionalization. J Appl Environ Biol Sci 4:316–326

    Google Scholar 

  • Deng X, Lu L, Li H, Luo F (2010) The adsorption properties of Pb (II) and Cd (II) on functionalized graphene prepared by electrolysis method. J Hazard Mater 183:923–930

    CAS  Google Scholar 

  • Deng S, Liu X, Liao J, Lin H, Liu F (2019) PEI modified multiwalled carbon nanotube as a novel additive in PAN nanofiber membrane for enhanced removal of heavy metal ions. Chem Eng J 375:122086

    CAS  Google Scholar 

  • Deng J, Li X, Wei X, Liu Y, Liang J, Song B, Shao Y, Huang W (2020) Hybrid silicate-hydrochar composite for highly efficient removal of heavy metal and antibiotics: coadsorption and mechanism. Chem Eng J 387:124097

    CAS  Google Scholar 

  • Deng Y, Mao Q, Luo S, Xie X, Luo L (2022) Adsorption-based removal of Sb (III) from wastewater by graphene oxide-modified zirconium-based metal-organic framework composites. Adsorp Sci Technol 2022:13

  • Dezfoli AA, Mehrabian M, Hashemipour H (2015) Molecular dynamics simulation of heavy metal ions in aqueous solution using Lennard-Jones 12-6 potential. Chem Eng Commun 202:1685–1692

    CAS  Google Scholar 

  • Dhillon GS, Rosine GML, Kaur S, Hegde K, Brar SK, Drogui P, Verma M (2017) Novel biomaterials from citric acid fermentation as biosorbents for removal of metals from waste chromated copper arsenate wood leachates. Int Biodeterior Biodegradation 119:147–154

    CAS  Google Scholar 

  • Di Bartolomeo A (2016) Graphene schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction. Phys Rep 606:1–58

    Google Scholar 

  • Dinda D, Gupta A, Saha SK (2013) Removal of toxic Cr (VI) by UV-active functionalized graphene oxide for water purification. J Mater Chem A 1:11221–11228

    CAS  Google Scholar 

  • Ding W, Dong X, Ime IM, Gao B, Ma LQ (2014) Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 105:68–74

    CAS  Google Scholar 

  • Dong Z, Zhang F, Wang D, Liu X, Jin J (2015) Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal. J Solid State Chem 224:88–93

    CAS  Google Scholar 

  • Du X, Ma X, Zhang P, Zheng J, Wang Z, Gao F, Hao X, Liu S, Guan G (2017) A novel electric-field-accelerated ion-sieve membrane system coupling potential-oscillation for alkali metal ions separation. Electrochim Acta 258:718–726

    CAS  Google Scholar 

  • Duffus JH (2002) “Heavy metals” a meaningless term?(IUPAC Technical Report). Pure Appl Chem 74:793–807

    CAS  Google Scholar 

  • Eigler S, Hirsch A (2014) Chemistry with graphene and graphene oxide-challenges for synthetic chemists. Angew Chem Int Ed 53:7720–7738

    CAS  Google Scholar 

  • El-Fawal EM, Saad L, Moustafa YM (2020) Computational DFT study of magnetite/graphene oxide nanoadsorbent: interfacial chemical behavior and remediation performance of heavy metal hydrates from aqueous system. Water Environ Res 92:1293–1305

    CAS  Google Scholar 

  • Elghamry I, Gouda M, Al-Fayiz YS (2023) Synthesis of chemically modified acid-functionalized multiwall carbon nanotubes with benzimidazole for removal of lead and cadmium ions from wastewater. Polymers 15:1421

    CAS  Google Scholar 

  • Elsehly EM, Chechenin NG, Makunin AV, Vorobyeva EA, Motaweh HA (2015) Oxidized carbon nanotubes filters for iron removal from aqueous solutions. Int J New Technol Sci Eng 2:14–18

    Google Scholar 

  • Elsehly EM, Chechenin NG, Bukunov KA, Makunin AV, Priselkova AB, Vorobyeva EA, Motaweh HA (2016) Removal of iron and manganese from aqueous solutions using carbon nanotube filters. Water Sci Technol 16:347–353

    Google Scholar 

  • Eren E (2009) Removal of lead ions by Unye (Turkey) bentonite in iron and magnesium oxide-coated forms. J Hazard Mater 165:63–70

    CAS  Google Scholar 

  • Faheem Du J, Bao J, Hassan MA, Irshad S, Talib MA, Zheng H (2020) Efficient capture of phosphate and cadmium using biochar with multifunctional amino and carboxylic moieties: kinetics and mechanism. Water Air Soil Pollut 231:1–16

    Google Scholar 

  • Fard EM, Parvareh A, Moravaji MK (2022) Optimization of removal of lead and cadmium from industrial wastewater by ethylenediamine-modified single-walled carbon nanotubes. Int J Environ Sci Technol 19:2747–2760

    CAS  Google Scholar 

  • Feng Q, Lin Q, Gong F, Sugita S, Shoya M (2004) Adsorption of lead and mercury by rice husk ash. J Colloid Interface Sci 278:1–8

    CAS  Google Scholar 

  • Fernandez-Gonzalez R, Martin-Lara M, Moreno J, Blazquez G, Calero M (2019) Effective removal of zinc from industrial plating wastewater using hydrolyzed olive cake: scale-up and preparation of zinc-based biochar. J Clean Prod 227:634–644

    CAS  Google Scholar 

  • Fraga CG, Oteiza PI (2002) Iron toxicity and antioxidant nutrients. Toxicology 180:23–32

    CAS  Google Scholar 

  • Fu Y, Qin L, Huang D, Zeng G, Lai C, Li B, He J, Yi H, Zhang M, Cheng M (2019) Chitosan functionalized activated coke for Au nanoparticles anchoring: green synthesis and catalytic activities in hydrogenation of nitrophenols and azo dyes. Appl Catal B Environ 255:117740

    CAS  Google Scholar 

  • Fu L, Li J, Wang G, Luan Y, Dai W (2021) Adsorption behavior of organic pollutants on microplastics. Ecotoxicol Environ Saf 217:112207

    CAS  Google Scholar 

  • Fuke P, Kumar M, Sawarkar AD, Pandey A, Singh L (2021) Role of microbial diversity to influence the growth and environmental remediation capacity of bamboo: a review. Ind Crops Prod 167:113567

    CAS  Google Scholar 

  • Gabby P (2006) Lead: in mineral commodity summaries. US, Geological Survey, Reston, VA

    Google Scholar 

  • Galvan-Arzate S, Santamaria A (1998) Thallium toxicity. Toxicol Lett 99:1–13

    CAS  Google Scholar 

  • Gao J, Song M, Li T, Zhao Y, Wang A (2022) Water-soluble carboxymethyl chitosan (WSCC)-modified single-walled carbon nanotubes (SWCNTs) provide efficient adsorption of Pb (ii) from water. RSC Adv 12:6821–6830

    CAS  Google Scholar 

  • Geng B, Xu Z, Liang P, Zhang J, Christie P, Liu H, Wu S, Liu X (2021) Three-dimensional macroscopic aminosilylated nanocellulose aerogels as sustainable bio-adsorbents for the effective removal of heavy metal ions. Int J Biol Macromol 190:170–177

    CAS  Google Scholar 

  • Ghanavati B, Bozorgian A, Ghanavati J (2022) Removal of copper (II) ions from the effluent by carbon nanotubes modified with tetrahydrofuran. Chem Rev Lett 5:68–75

    CAS  Google Scholar 

  • Ghanim B, Leahy JJ, OʼDwyer TF, Kwapinski W, Pembroke JT, Murnane JG (2022) Removal of hexavalent chromium (Cr (VI)) from aqueous solution using acid-modified poultry litter-derived hydrochar: adsorption, regeneration and reuse. J Chem Technol Biotechnol 97:55–66

    CAS  Google Scholar 

  • Ghasemi H, Afshang M, Gilvari T, Aghabarari B, Mozaffari S (2023) Rapid and effective removal of heavy metal ions from aqueous solution using nanostructured clay particles. Results Surf Interf 10:100097

    Google Scholar 

  • Ghenaatian HR, Shakourian-Fard M, Kamath G (2019) The effect of sulfur and nitrogen/sulfur co-doping in graphene surface on the adsorption of toxic heavy metals (Cd, Hg, Pb). J Mater Sci 54:13175–13189

    CAS  Google Scholar 

  • Giri AK, Cordeiro MN (2021) Heavy metal ion separation from industrial wastewater using stacked graphene Membranes: a molecular dynamics simulation study. J Mol Liq 338:116688

    CAS  Google Scholar 

  • Gotovac S, Honda H, Hattori Y, Takahashi K, Kanoh H, Kaneko K (2007) Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. Nano Lett 7:583–587

    CAS  Google Scholar 

  • Gu Z, Yang Z, Chong Y, Ge C, Weber JK, Bell DR, Zhou R (2015) Surface curvature relation to protein adsorption for carbon-based nanomaterials. Sci Rep 5:1–9

    Google Scholar 

  • Guo CX, Guai GH, Li CM (2011) Graphene based materials: enhancing solar energy harvesting. Adv Energy Mater 1:448–452

    CAS  Google Scholar 

  • Guo T, Bulin C, Li B, Zhao Z, Yu H, Sun H, Ge X, Xing R, Zhang B (2018) Efficient removal of aqueous Pb (II) using partially reduced graphene oxide-Fe3O4. Adsorp Sci Technol 36:1031–1048

    CAS  Google Scholar 

  • Gupta V, Agarwal S, Saleh TA (2011) Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res 45:2207–2212

    CAS  Google Scholar 

  • Gupta A, Vidyarthi SR, Sankararamakrishnan N (2014) Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes. J Hazard Mater 274:132–144

    CAS  Google Scholar 

  • Gupta S, Bhatiya D, Murthy CN (2015) Metal removal studies by composite membrane of polysulfone and functionalized single-walled carbon nanotubes. Sep Sci Technol 50:421–429

    CAS  Google Scholar 

  • Gupta VK, Fakhri A, Bharti AK, Agarwal S, Naji M (2017) Optimization by response surface methodology for vanadium (V) removal from aqueous solutions using PdO-MWCNTs nanocomposites. J Mol Liq 234:117–123

    Google Scholar 

  • Gupta S, Sireesha S, Sreedhar I, Patel CM, Anitha K (2020) Latest trends in heavy metal removal from wastewater by biochar based sorbents. J Water Process Eng 38:101561

    Google Scholar 

  • Gusain R, Kumar N, Fosso-Kankeu E, Ray SS (2019) Efficient removal of Pb (II) and Cd (II) from industrial mine water by a hierarchical MoS2/SH-MWCNT nanocomposite. ACS Omega 4:13922–13935

    CAS  Google Scholar 

  • Haddad K, Jellali S, Jeguirim M, Trabelsi ABH, Limousy L (2018) Investigations on phosphorus recovery from aqueous solutions by biochars derived from magnesium-pretreated cypress sawdust. J Environ Manage 216:305–314

    CAS  Google Scholar 

  • Hammud HH, Karnati RK, Al Shafee M, Fawaz Y, Holail H (2021) Activated hydrochar from palm leaves as efficient lead adsorbent. Chem Eng Commun 208:197–209

    CAS  Google Scholar 

  • Hao L, Song H, Zhang L, Wan X, Tang Y, Lv Y (2012) SiO2/graphene composite for highly selective adsorption of Pb (II) ion. J Colloid Interface Sci 369:381–387

    CAS  Google Scholar 

  • Hassan AF, Bulanek R (2019) Preparation and characterization of thiosemicarbazide functionalized graphene oxide as nanoadsorbent sheets for removal of lead cations. Int J Environ Sci Technol 16:6207–6216

    CAS  Google Scholar 

  • Hassan M, Naidu R, Du J, Liu Y, Qi F (2020) Critical review of magnetic biosorbents: their preparation, application, and regeneration for wastewater treatment. Sci Total Environ 702:134893

    CAS  Google Scholar 

  • Hassan SS, Abdel Rahman EM, El-Subruiti GM, Kamel AH, Diab HM (2022) Removal of uranium-238, thorium-232, and potassium-40 from wastewater via adsorption on multiwalled carbon nanotubes. ACS Omega 7:12342–12353

    CAS  Google Scholar 

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    CAS  Google Scholar 

  • He Z, Zhou J, Lu X, Corry B (2013) Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+. ACS Nano 7:10148–10157

    CAS  Google Scholar 

  • He X, Zhang T, Xue Q, Zhou Y, Wang H, Bolan NS, Jiang R, Tsang DC (2021) Enhanced adsorption of Cu (II) and Zn (II) from aqueous solution by polyethyleneimine modified straw hydrochar. Sci Total Environ 778:146116

    CAS  Google Scholar 

  • Health U. D. o and H S. O. H. C. Committee (2016) US Department of Health and Human Services oral health strategic framework 2014–2017. Public Health Rep 131:242–257

    Google Scholar 

  • HMTShirazi R, Mohammadi T, Asadi AA (2022) Incorporation of amine-grafted halloysite nanotube to electrospun nanofibrous membranes of chitosan/poly (vinyl alcohol) for Cd (II) and Pb (II) removal. Appl Clay Sci 220:106460

    CAS  Google Scholar 

  • Hu C, Hu S (2009) Carbon nanotube-based electrochemical sensors: principles and applications in biomedical systems. J Sens 2009:2

  • Hu L, Yang Z, Cui L, Li Y, Ngo HH, Wang Y, Wei Q, Ma H, Yan L, Du B (2016) Fabrication of hyperbranched polyamine functionalized graphene for high-efficiency removal of Pb (II) and methylene blue. Chem Eng J 287:545–556

    CAS  Google Scholar 

  • Hu X, Dai L, Ma Q, Xu J, Ma J (2022) One-pot synthesis of iron oxides decorated bamboo hydrochar for lead and copper flash removal. Ind Crops Prod 187:115396

    CAS  Google Scholar 

  • Hu W, Cheng WC, Wen S (2023) Investigating the effect of degree of compaction, initial water content, and electric field intensity on electrokinetic remediation of an artificially Cu-and Pb-contaminated loess. Acta Geotech 18:937–949

    Google Scholar 

  • Huang H, Ying Y, Peng X (2014) Graphene oxide nanosheet: an emerging star material for novel separation membranes. J Mater Chem A 2:13772–13782

    CAS  Google Scholar 

  • Huang Q, Chen Y, Yu H, Yan L, Zhang J, Wang B, Du B, Xing L (2018) Magnetic graphene oxide/MgAl-layered double hydroxide nanocomposite: one-pot solvothermal synthesis, adsorption performance and mechanisms for Pb2+, Cd2+, and Cu2+. Chem Eng J 341:1–9

    CAS  Google Scholar 

  • Huang Y, Gong Y, Tang J, Xia S (2019) Effective removal of inorganic mercury and methylmercury from aqueous solution using novel thiol-functionalized graphene oxide/Fe-Mn composite. J Hazard Mater 366:130–139

    CAS  Google Scholar 

  • Huang D, Li B, Ou J, Xue W, Li J, Li Z, Li T, Chen S, Deng R, Guo X (2020a) Megamerger of biosorbents and catalytic technologies for the removal of heavy metals from wastewater: preparation, final disposal, mechanism and influencing factors. J Environ Manage 261:109879

    CAS  Google Scholar 

  • Huang H, Wang Y, Zhang Y, Niu Z, Li X (2020b) Amino-functionalized graphene oxide for Cr (VI), Cu (II), Pb (II) and Cd (II) removal from industrial wastewater. Open Chem 18:97–107

    CAS  Google Scholar 

  • Ibrahim Y, Wadi VS, Ouda M, Naddeo V, Banat F, Hasan SW (2022) Highly selective heavy metal ions membranes combining sulfonated polyethersulfone and self-assembled manganese oxide nanosheets on positively functionalized graphene oxide nanosheets. Chem Eng J 428:131267

    CAS  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72

    Google Scholar 

  • Jamshidian M, Sadeghalvad B, Ghasemi I, Ebrahimi H, Rezaeian I (2021) Fabrication of polyethersulfone/functionalized MWCNTs nanocomposite and investigation its efficiency as an adsorbent of Pb (II) ions. Arab J Sci Eng 46:6259–6273

    CAS  Google Scholar 

  • Jiang L, Li S, Yu H, Zou Z, Hou X, Shen F, Li C, Yao X (2016) Amino and thiol modified magnetic multi-walled carbon nanotubes for the simultaneous removal of lead, zinc, and phenol from aqueous solutions. Appl Surf Sci 369:398–413

    CAS  Google Scholar 

  • Jiang BP, Zhou B, Lin Z, Liang H, Shen XC (2019a) Recent advances in carbon nanomaterials for cancer phototherapy. Chem Eur J 25:3993–4004

    CAS  Google Scholar 

  • Jiang Q, Xie W, Han S, Wang Y, Zhang Y (2019b) Enhanced adsorption of Pb (II) onto modified hydrochar by polyethyleneimine or H3PO4: an analysis of surface property and interface mechanism. Colloids Surf A Physicochem Eng Asp 583:123962

    CAS  Google Scholar 

  • Kabir E, Kumar V, Kim KH, Yip AC, Sohn JR (2018) Environmental impacts of nanomaterials. J Environ Manage 225:261–271

    CAS  Google Scholar 

  • Kabiri S, Tran DN, Cole MA, Losic D (2016) Functionalized three-dimensional (3D) graphene composite for high efficiency removal of mercury. Environ Sci Water Res Technol 2:390–402

    CAS  Google Scholar 

  • Kanthapazham R, Ayyavu C, Mahendiradas D (2016) Removal of Pb2+, Ni2+ and Cd2+ ions in aqueous media using functionalized MWCNT wrapped polypyrrole nanocomposite. Desalin Water Treat 57:16871–16885

    CAS  Google Scholar 

  • Kasiuliene A, Carabante I, Bhattacharya P, Kumpiene J (2019) Hydrothermal carbonisation of peat-based spent sorbents loaded with metal (loid) s. Environ Sci Pollut Res 26:23730–23738

    CAS  Google Scholar 

  • Kaur M, Pal J (2023) Evaluation of efficiency of wheat straw nanocellulose as nanoadsorbent for the removal of divalent copper, lead and zinc from aqueous solution. Carbohydr Polym Technol Appl 6:100350

    CAS  Google Scholar 

  • Kemnade N, Shearer CJ, Dieterle DJ, Cherevan AS, Gebhardt P, Wilde G, Eder D (2015) Non-destructive functionalisation for atomic layer deposition of metal oxides on carbon nanotubes: effect of linking agents and defects. Nanoscale 7:3028–3034

    CAS  Google Scholar 

  • Khan MA, Jung W, Kwon OH, Jung YM, Paeng KJ, Cho SY, Jeon BH (2014) Sorption studies of manganese and cobalt from aqueous phase onto alginate beads and nano-graphite encapsulated alginate beads. J Ind Eng Chem 20:4353–4362

    CAS  Google Scholar 

  • Khnifira M, Boumya W, Attarki J, Mahsoune A, Sadiq M, Abdennouri M, Kaya S, Barka N (2022) A combined DFT, Monte Carlo, and MD simulations of adsorption study of heavy metals on the carbon graphite (111) surface. Chem Phys Impact 5:100121

    Google Scholar 

  • Klaassen CD (2013) Casarett and Doul’s toxicology: the basic science of poisons. McGraw-Hill New York

    Google Scholar 

  • Kommu A, Namsani S, Singh JK (2016) Removal of heavy metal ions using functionalized graphene membranes: a molecular dynamics study. RSC adv 6:63190–63199

    CAS  Google Scholar 

  • Kong H, He J, Gao Y, Wu H, Zhu X (2011) Cosorption of phenanthrene and mercury (II) from aqueous solution by soybean stalk-based biochar. J Agric Food Chem 59:12116–12123

    CAS  Google Scholar 

  • Kong Q, Wei J, Hu Y, Wei C (2019) Fabrication of terminal amino hyperbranched polymer modified graphene oxide and its prominent adsorption performance towards Cr (VI). J Hazard Mater 363:161–169

    CAS  Google Scholar 

  • Kumar ASK, Jiang SJ, Tseng WL (2015) Effective adsorption of chromium (VI)/Cr (III) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. J Mater Chem A 3:7044–7057

    Google Scholar 

  • Kumar M, Xiong X, Sun Y, Yu IK, Tsang DC, Hou D, Gupta J, Bhaskar T, Pandey A (2020a) Critical review on biochar-supported catalysts for pollutant degradation and sustainable biorefinery. Adv Sustain Syst 4:1900149

    CAS  Google Scholar 

  • Kumar N, Kardam A, Jain V, Nagpal S (2020b) A rapid, reusable polyaniline-impregnated nanocellulose composite-based system for enhanced removal of chromium and cleaning of waste water. Sep Sci Technol 55:1436–1448

    CAS  Google Scholar 

  • Kumar V, Singh K, Shah MP, Kumar M (2021) Phytocapping: an eco-sustainable green technology for environmental pollution control. In: Bioremediation for environmental sustainability. Elsevier, pp 481–491

    Google Scholar 

  • Lari S, Parsa SA, Akbari S, Emadzadeh D, Lau WJ (2022) Fabrication and evaluation of nanofiltration membrane coated with amino-functionalized graphene oxide for highly efficient heavy metal removal. Int J Environ Sci Technol 19:4615–4626

    CAS  Google Scholar 

  • Lei Y, Chen F, Luo Y, Zhang L (2014) Synthesis of three-dimensional graphene oxide foam for the removal of heavy metal ions. ChemPhys Lett 593:122–127

    CAS  Google Scholar 

  • Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L (2017) Cobalt toxicity in humans-a review of the potential sources and systemic health effects. Toxicology 387:43–56

    CAS  Google Scholar 

  • Li Y, Zhao Y, Hu W, Ahmad I, Zhu Y, Peng X, Luan ZK (2007) Carbon nanotubes-the promising adsorbent in wastewater treatment. J Phys Conf Ser 61:698

    CAS  Google Scholar 

  • Li Q, Yu J, Zhou F, Jiang X (2015a) Synthesis and characterization of dithiocarbamate carbon nanotubes for the removal of heavy metal ions from aqueous solutions. Colloids Surf A Physicochem Eng Asp 482:306–314

    CAS  Google Scholar 

  • Li X, Zhou H, Wu W, Wei S, Xu Y, Kuang Y (2015b) Studies of heavy metal ion adsorption on chitosan/sulfydryl-functionalized graphene oxide composites. J Colloid Interface Sci 448:389–397

    CAS  Google Scholar 

  • Li Y, Tsend N, Li T, Liu H, Yang R, Gai X, Wang H, Shan S (2019) Microwave assisted hydrothermal preparation of rice straw hydrochars for adsorption of organics and heavy metals. Bioresour Technol 273:136–143

    CAS  Google Scholar 

  • Li B, Guo JZ, Liu JL, Fang L, Lv JQ, Lv K (2020) Removal of aqueous-phase lead ions by dithiocarbamate-modified hydrochar. Sci Total Environ 714:136897

    CAS  Google Scholar 

  • Li W, Ji W, Yılmaz M, Zhang TC, Yuan S (2023) One-Pot synthesis of MWCNTs/Fe-MOFs nanocomposites for enhanced adsorption of As (V) in aqueous solution. Appl Surf Sci 609:155304

    CAS  Google Scholar 

  • Liang J, Liu J, Yuan X, Dong H, Zeng G, Wu H, Wang H, Liu J, Hua S, Zhang S, Yu Z (2015) Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chem Eng J 273:101–110

    CAS  Google Scholar 

  • Liao Y, Wang M, Chen D (2019) Electrosorption of uranium (VI) by highly porous phosphate-functionalized graphene hydrogel. Appl Surf Sci 484:83–96

    CAS  Google Scholar 

  • Liu S (2023) Preparation of nanocellulose grafted molecularly imprinted polymer for selective adsorption Pb (II) and Hg (II). Chemosphere 316:137832

    CAS  Google Scholar 

  • Liu Y, Liu F, Ding N, Shen C, Li F, Dong L, Huang M, Yang B, Wang Z, Sand W (2019a) Boosting Cr (VI) detoxification and sequestration efficiency with carbon nanotube electrochemical filter functionalized with nanoscale polyaniline: performance and mechanism. Sci Total Environ 695:133926

    CAS  Google Scholar 

  • Liu Y, Liu F, Qi Z, Shen C, Li F, Ma C, Huang M, Wang Z, Li J (2019b) Simultaneous oxidation and sorption of highly toxic Sb (III) using a dual-functional electroactive filter. Environ Pollut 251:72–80

    CAS  Google Scholar 

  • Liu Y, Yang S, Jiang H, Yang B, Fang X, Shen C, Yang J, Sand W, Li F (2021) Sea urchin-like FeOOH functionalized electrochemical CNT filter for one-step arsenite decontamination. J Hazard Mater 407:124384

    CAS  Google Scholar 

  • Lohani MB, Singh A, Rupainwar D, Dhar D (2008) Studies on efficiency of guava (Psidium guajava) bark as bioadsorbent for removal of Hg (II) from aqueous solutions. J Hazard Mater 159:626–629

    CAS  Google Scholar 

  • Lohrasebi A, Rikhtehgaran S (2018) Ion separation and water purification by applying external electric field on porous graphene membrane. Nano Res 11:2229–2236

    CAS  Google Scholar 

  • Long RQ, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123:2058–2059

    CAS  Google Scholar 

  • Lu F, Astruc D (2020) Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord Chem Rev 408:213180

    CAS  Google Scholar 

  • Lu W, Li J, Sheng Y, Zhang X, You J, Chen L (2017) One-pot synthesis of magnetic iron oxide nanoparticle-multiwalled carbon nanotube composites for enhanced removal of Cr (VI) from aqueous solution. J Colloid Interface Sci 505:1134–1146

    CAS  Google Scholar 

  • Luo C, Wei R, Guo D, Zhang S, Yan S (2013) Adsorption behavior of MnO2 functionalized multi-walled carbon nanotubes for the removal of cadmium from aqueous solutions. Chem Eng J 225:406–415

    CAS  Google Scholar 

  • Luo X, Du H, Zhang X, Tang B, Zhang M, Kang H, Ma Y (2023) Enhanced adsorption and co-adsorption of heavy metals using highly hydrophilicity amine-functionalized magnetic hydrochar supported MIL-53 (Fe)-NH2: performance, kinetics, and mechanism studies. Environ Sci Pollut Res 30:76204–76216

    CAS  Google Scholar 

  • Madadrang CJ, Kim HY, Gao G, Wang N, Zhu J, Feng H, Gorring M, Kasner ML, Hou S (2012) Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl mater Interfaces 4:1186–1193

    CAS  Google Scholar 

  • Madduri S, Elsayed I (2020) Novel oxone treated hydrochar for the removal of Pb (II) and methylene blue (MB) dye from aqueous solutions. Chemosphere 260:127683

    CAS  Google Scholar 

  • Maftouh A, El Fatni O, Fayiah M, Liew RK, Lam SS, Bahaj T, Butt MH (2022) The application of water–energy nexus in the Middle East and North Africa (MENA) region: a structured review. Appl Water Sci 12:83

    Google Scholar 

  • Maftouh A, El Fatni O, El Hajjaji S, Jawish MW, Sillanpaa M (2023) Comparative review of different adsorption techniques used in heavy metals removal in water. Biointerface Res Appl Chem 13:397

    CAS  Google Scholar 

  • Majdoub M, Amedlous A, Anfar Z, Jada A, El Alem N (2021) Engineering of amine-based binding chemistry on functionalized graphene oxide/alginate hybrids for simultaneous and efficient removal of trace heavy metals: towards drinking water. J Colloid Interface Sci 589:511–524

    CAS  Google Scholar 

  • Martin S, Griswold W (2009) Human health effects of heavy metals. Environ Sci Technol 15:1–6

    Google Scholar 

  • Masenye ER, Mabuba N, Malinga SP (2020) Nanofiltration membrane based on hyperbranched polyethyleneimine-functionalised multiwalled carbon nanotubes for Pb (II) removal from water. Int J Environ Anal Chem 102:5601–5618

    Google Scholar 

  • Mashhadzadeh AH, Ahangari MG, Salmankhani A, Fataliyan M (2018) Density functional theory study of adsorption properties of non-carbon, carbon and functionalized graphene surfaces towards the zinc and lead atoms. Phys E Low Dimens Syst Nanostructures 104:275–285

    Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    CAS  Google Scholar 

  • Mazumder MAJ, Chowdhury IR, Chowdhury S, Al-Ahmed A (2022) Removal of Pb2+ from water using the carbon nanotube-g-poly [(sodium methacrylate)-co-2-(methacryloyloxy) ethyl acetoacetate]: experimental investigation and modeling. Environ Sci Pollut Res 29:54432–54447

  • Mehndiratta P, Jain A, Srivastava S, Gupta N (2013) Environmental pollution and nanotechnology. Environ Pollut 2:49

    CAS  Google Scholar 

  • Mensah MB, Lewis DJ, Boadi NO, Awudza JA (2021) Heavy metal pollution and the role of inorganic nanomaterials in environmental remediation. R Soc Open Sci 8:201485

    CAS  Google Scholar 

  • Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60–63

    CAS  Google Scholar 

  • Mishra AK, Ramaprabhu S (2011) Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination 282:39–45

    CAS  Google Scholar 

  • Mo L, Pang H, Lu Y, Li Z, Kang H, Wang M, Zhang S, Li J (2021) Wood-inspired nanocellulose aerogel adsorbents with excellent selective pollutants capture, superfast adsorption, and easy regeneration. J Hazard Mater 415:125612

    CAS  Google Scholar 

  • Mohajeri M, Behnam B, Sahebkar A (2019) Biomedical applications of carbon nanomaterials: drug and gene delivery potentials. J Cell Physiol 234:298–319

    CAS  Google Scholar 

  • Mohanapriya V, Sakthivel R, Pham ND, Cheng CK, Le HS, Dong TM (2023) Nanotechnology-A ray of hope for heavy metals removal. Chemosphere 311:136989

    CAS  Google Scholar 

  • Moradi O, Zare K, Yari M (2011) Interaction of some heavy metal ions with single walled carbon nanotube. Int J Nano Dim 1:203–220

    CAS  Google Scholar 

  • Mosa A, El-Ghamry A, Tolba M (2020) Biochar-supported natural zeolite composite for recovery and reuse of aqueous phosphate and humate: batch sorption–desorption and bioassay investigations. Environ Technol Innov 19:100807

    Google Scholar 

  • Mousavi SM, Hashemi SA, Amani AM, Esmaeili H, Ghasemi Y, Babapoor A, Mojoudi F, Arjomand O (2018) Pb (II) removal from synthetic wastewater using kombucha scoby and graphene oxide/Fe3O4. Phys Chem Res 6:759–771

    CAS  Google Scholar 

  • Murtaza G, Ditta A, Ahmed Z, Usman M, Faheem M, Tariq A (2021) Co-biosorption potential of Acacia nilotica bark in removing Ni and amino azo benzene from contaminated wastewater. Desalin Water Treat 233:261–271

    CAS  Google Scholar 

  • Naeimi A, Amini M, Okati N (2022) Removal of heavy metals from wastewaters using an effective and natural bionanopolymer based on schiff base chitosan/graphene oxide. Int J Environ Sci Technol 19:1301–1312

    CAS  Google Scholar 

  • Naidu R, Smith E, Owens G, Bhattacharya P (2006) Managing arsenic in the environment: from soil to human health. CSIRO publishing

    Google Scholar 

  • Ng SH, Wang J, Guo ZP, Chen J, Wang GX, Liu HK (2005) Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim Acta 51:23–28

    CAS  Google Scholar 

  • Olgun A, Atar N, Wang S (2013) Batch and column studies of phosphate and nitrate adsorption on waste solids containing boron impurity. Chem Eng J 222:108–119

    CAS  Google Scholar 

  • Oosthuizen J (2012) Environmental health: emerging issues and practice. BoD–Books on Demand

    Google Scholar 

  • Organization WH, WHO, Staff WHO (2004) Guidelines for drinking-water quality. World Health Organization

    Google Scholar 

  • Oyetade OA, Skelton AA, Nyamori VO, Jonnalagadda SB, Martincigh BS (2017) Experimental and DFT studies on the selective adsorption of Pb2+ and Zn2+ from aqueous solution by nitrogen-functionalized multiwalled carbon nanotubes. Sep Purif Technol 188:174–187

    CAS  Google Scholar 

  • Pachiyappan J, Gnanasundaram N (2020) Using graphene oxide-silica [go-si] nano composite adsorbent, removal of heavy metal ions (lead and mercury) from industrial wastewater and analysing its performance. Rasayan J Chem 13:2027–2035

    CAS  Google Scholar 

  • Pakulski D, Gorczynski A, Marcinkowski D, Czepa W, Chudziak T, Witomska S, Nishina Y, Patroniak V, Ciesielski A, Samori P (2021) High-sorption terpyridine-graphene oxide hybrid for the efficient removal of heavy metal ions from wastewater. Nanoscale 13:10490–10499

    CAS  Google Scholar 

  • Panahi A, Shomali A, Sabour MH, Ghafar-Zadeh E (2019) Molecular dynamics simulation of electric field driven water and heavy metals transport through fluorinated carbon nanotubes. J Mol Liq 278:658–671

    CAS  Google Scholar 

  • Parmar M, Thakur LS (2013) Heavy metal Cu, Ni and Zn: toxicity, health hazards and their removal techniques by low cost adsorbents: a short overview. Int J Plant Animal Environ Sci 3:143–157

    CAS  Google Scholar 

  • Pashaei S, Hosseinzadeh A, Mohammadi-Aghdam S, Saadat Y, Hosseinzadeh S (2021) Fabrication and characterization of carboxylated and aminolated multiwalled carbon nanotube/polyethersulfone (PES) membranes for the removal of heavy metals from wastewater. Polym Plast Technol Mater 60:994–1004

    CAS  Google Scholar 

  • Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036

    CAS  Google Scholar 

  • Peiravi-Rivash O, Mashreghi M, Baigenzhenov O, Hosseini-Bandegharaei A (2023) Producing bacterial nano-cellulose and keratin from wastes to synthesize keratin/cellulose nanobiocomposite for removal of dyes and heavy metal ions from waters and wastewaters. Colloids Surf A Physicochem Eng Asp 656:130355

    CAS  Google Scholar 

  • Peles-Lemli B, Kannar D, Nie JC, Li H, Kunsagi-Mate S (2013) Some unexpected behavior of the adsorption of alkali metal ions onto the graphene surface under the effect of external electric field. J Phys Chem C 117:21509–21515

    CAS  Google Scholar 

  • Peng F, He PW, Luo Y, Lu X, Liang Y, Fu J (2012) Adsorption of phosphate by biomass char deriving from fast pyrolysis of biomass waste. Clean Soil Air Water 40:493–498

    CAS  Google Scholar 

  • Peng Y, Liu X, Gong X, Li X, Liu Y, Leng E, Zhang Y (2018) Enhanced Hg (II) adsorption by monocarboxylic-acid-modified microalgae residuals in simulated and practical industrial wastewater. Energy Fuels 32:4461–4468

    CAS  Google Scholar 

  • Peng Z, Liu X, Zhang W, Zeng Z, Liu Z, Zhang C, Liu Y, Shao B, Liang Q, Tang W, Yuan X (2020) Advances in the application, toxicity and degradation of carbon nanomaterials in environment: a review. Environ Int 134:105298

    CAS  Google Scholar 

  • Peng J, Yuan H, Ren T, Liu Z, Qiao J, Ma Q, Guo X, Ma G, Wu Y (2022) Fluorescent nanocellulose-based hydrogel incorporating titanate nanofibers for sorption and detection of Cr (VI). Int J Biol Macromol 215:625–634

    CAS  Google Scholar 

  • Peter AJ, Viraraghavan T (2005) Thallium: a review of public health and environmental concerns. Environ Int 31:493–501

    CAS  Google Scholar 

  • Poorsargol M, Razmara Z, Amiri MM (2020) The role of hydroxyl and carboxyl functional groups in adsorption of copper by carbon nanotube and hybrid graphene-carbon nanotube: insights from molecular dynamic simulation. Adsorption 26:397–405

    CAS  Google Scholar 

  • Popuri SR, Frederick R, Chang CY, Fang SS, Wang CC, Lee LC (2014) Removal of copper (II) ions from aqueous solutions onto chitosan/carbon nanotubes composite sorbent. Desalin Water Treat 52:691–701

    CAS  Google Scholar 

  • Poulsen SS, Knudsen KB, Jackson P, Weydahl IE, Saber AT, Wallin H, Vogel U (2017) Multi-walled carbon nanotube-physicochemical properties predict the systemic acute phase response following pulmonary exposure in mice. PloS One 12:e0174167

    Google Scholar 

  • Pourbeyram S (2016) Effective removal of heavy metals from aqueous solutions by graphene oxide-zirconium phosphate (GO–Zr-P) nanocomposite. Ind Eng Chem Res 55:5608–5617

    CAS  Google Scholar 

  • Qi X, Tong X, Pan W, Zeng Q, You S, Shen J (2021) Recent advances in polysaccharide-based adsorbents for wastewater treatment. J Clean Prod 315:128221

    CAS  Google Scholar 

  • Qi S, Lin M, Qi P, Shi J, Song G, Fan W, Sui K, Gao C (2022) Interfacial and build-in electric fields rooting in gradient polyelectrolyte hydrogel boosted heavy metal removal. J Chem Eng 444:136541

    CAS  Google Scholar 

  • Qi G, Pan Z, Zhang X, Chang S, Wang H, Wang M, Xiang W, Gao B (2023) Microwave biochar produced with activated carbon catalyst: characterization and adsorption of heavy metals. Environ Res 216:114732

    CAS  Google Scholar 

  • Qin L, Zeng Z, Zeng G, Lai C, Duan A, Xiao R, Huang D, Fu Y, Yi H, Li B (2019) Cooperative catalytic performance of bimetallic Ni-Au nanocatalyst for highly efficient hydrogenation of nitroaromatics and corresponding mechanism insight. Appl Catal B Environ 259:118035

    CAS  Google Scholar 

  • Qiu H, Yang L, Liu F, Zhao Y, Liu L, Zhu J, Song M (2017) Highly selective capture of phosphate ions from water by a water stable metal-organic framework modified with polyethyleneimine. Environ Sci Pollut Res 24:23694–23703

    CAS  Google Scholar 

  • Rahmati N, Rahimnejad M, Pourali M, Muallah SK (2021) Effective removal of nickel ions from aqueous solution using multi-wall carbon nanotube functionalized by glycerol-based deep eutectic solvent. Colloids Interface Sci Commun 40:100347

    CAS  Google Scholar 

  • Rajarajeswari M, Iyakutti K, Kawazoe Y (2011) Effect of chirality and curvature of single-walled carbon nanotubes on the adsorption of uracil. Phys Status Solidi B 248:1431–1436

    CAS  Google Scholar 

  • Ramalingam B, Parandhaman T, Choudhary P, Das SK (2018) Biomaterial functionalized graphene-magnetite nanocomposite: a novel approach for simultaneous removal of anionic dyes and heavy-metal ions. ACS Sustain Chem Eng 6:6328–6341

    CAS  Google Scholar 

  • Ramrakhiani L, Halder A, Majumder A, Mandal AK, Majumdar S, Ghosh S (2017) Industrial waste derived biosorbent for toxic metal remediation: mechanism studies and spent biosorbent management. Chem Eng J 308:1048–1064

    CAS  Google Scholar 

  • Raschip IE, Fifere N, Varganici CD, Dinu MV (2020) Development of antioxidant and antimicrobial xanthan-based cryogels with tuned porous morphology and controlled swelling features. Int J biol macromol 156:608–620

    CAS  Google Scholar 

  • Rashid J, Azam R, Kumar R, Ahmad M, Rehman A, Barakat MA (2019) Sulfonated polyether sulfone reinforced multiwall carbon nanotubes composite for the removal of lead in wastewater. Appl Nanosci 9:1695–1705

    CAS  Google Scholar 

  • Raza MH, Sadiq A, Farooq U, Athar M, Hussain T, Mujahid A, Salman M (2015) Phragmites karka as a biosorbent for the removal of mercury metal ions from aqueous solution: effect of modification. J Chem 2015:12

  • Rikhtehgaran S, Lohrasebi A (2015) Water desalination by a designed nanofilter of graphene-charged carbon nanotube: a molecular dynamics study. Desalination 365:176–181

    CAS  Google Scholar 

  • Rodriguez C, Briano S, Leiva E (2020a) Increased adsorption of heavy metal ions in multi-walled carbon nanotubes with improved dispersion stability. Molecules 25(14):3106

    CAS  Google Scholar 

  • Rodriguez C, Tapia C, Leiva-Aravena E, Leiva E (2020b) Graphene oxide-ZnO nanocomposites for removal of aluminum and copper ions from acid mine drainage wastewater. Int J Enviro Res Public Health 17:6911

    CAS  Google Scholar 

  • Rousselot P, Labaume S, Marolleau JP, Larghero J, Noguera MH, Brouet JC, Fermand JP (1999) Arsenic trioxide and melarsoprol induce apoptosis in plasma cell lines and in plasma cells from myeloma patients. Cancer Res 59:1041–1048

    CAS  Google Scholar 

  • Russier J, Menard-Moyon C, Venturelli E, Gravel E, Marcolongo G, Meneghetti M, Doris E, Bianco A (2011) Oxidative biodegradation of single-and multi-walled carbon nanotubes. Nanoscale 3:893–896

    CAS  Google Scholar 

  • Saad R, Belkacemi K, Hamoudi S (2007) Adsorption of phosphate and nitrate anions on ammonium-functionalized MCM-48: effects of experimental conditions. J Colloid Interface Sci 311:375–381

    CAS  Google Scholar 

  • Sahu P, Deb AS, Ali S, Shenoy K, Mohan S (2018) Tailoring of carbon nanotubes for the adsorption of heavy metal ions: molecular dynamics and experimental investigations. Mol Syst Des Eng 3:917–929

    CAS  Google Scholar 

  • Sahu P, Ali SM, Shenoy KT, Mohan S (2019) Nanoscopic insights of saline water in carbon nanotube appended filters using molecular dynamics simulations. Phys Chem Chem Phys 21:8529–8542

    CAS  Google Scholar 

  • Salam MA, Mohamed RM (2013) Removal of antimony (III) by multi-walled carbon nanotubes from model solution and environmental samples. Chem Eng Res Des 91:1352–1360

    CAS  Google Scholar 

  • Salam MA, Al-Zhrani G, Kosa SA (2012) Simultaneous removal of copper (II), lead (II), zinc (II) and cadmium (II) from aqueous solutions by multi-walled carbon nanotubes. Comptes Rendus Chimie 15:398–408

    CAS  Google Scholar 

  • Saleh TA, Sarı A, Tuzen M (2017) Optimization of parameters with experimental design for the adsorption of mercury using polyethylenimine modified-activated carbon. J Environ Chem Eng 5:1079–1088

    CAS  Google Scholar 

  • Sardans J, Montes F, Penuelas J (2011) Electrothermal atomic absorption spectrometry to determine As, Cd, Cr, Cu, Hg, and Pb in soils and sediments: a review and perspectives. Soil Sediment Contam 20:447–491

    CAS  Google Scholar 

  • Sarma GK, Sen Gupta S, Bhattacharyya KG (2019) Nanomaterials as versatile adsorbents for heavy metal ions in water: a review. Environ Sci Pollut Res 26:6245–6278

    CAS  Google Scholar 

  • Senguttuvan S, Senthilkumar P, Janaki V, Kamala-Kannan S (2021) Significance of conducting polyaniline based composites for the removal of dyes and heavy metals from aqueous solution and wastewaters-a review. Chemosphere 267:129201

    CAS  Google Scholar 

  • Shah P, Murthy CN (2013) Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal. J Membr Sci 437:90–98

    CAS  Google Scholar 

  • Shahnaz T, Sharma V, Subbiah S, Narayanasamy S (2020) Multivariate optimisation of Cr (VI), Co (III) and Cu (II) adsorption onto nanobentonite incorporated nanocellulose/chitosan aerogel using response surface methodology. J Water Process Eng 36:101283

    Google Scholar 

  • Shahzad A, Miran W, Rasool K, Nawaz M, Jang J, Lim SR, Lee DS (2017) Heavy metals removal by EDTA-functionalized chitosan graphene oxide nanocomposites. RSC Adv 7:9764–9771

    CAS  Google Scholar 

  • Simonsen LO, Harbak H, Bennekou P (2012) Cobalt metabolism and toxicology-a brief update. Sci Total Environ 432:210–215

    CAS  Google Scholar 

  • Singh S, Naik TSK, Anil AG, Khasnabis S, Nath B, Basavaraju U, Kumar V, Garg VK, Subramanian S, Singh J (2022) A novel CaO nanocomposite cross linked graphene oxide for Cr (VI) removal and sensing from wastewater. Chemosphere 301:134714

    CAS  Google Scholar 

  • Singh S, Basavaraju U, Naik TSK, Behera SK, Khan NA, Singh J, Singh L, Ramamurthy PC (2023) Graphene oxide-based novel MOF nanohybrid for synergic removal of Pb (II) ions from aqueous solutions: simulation and adsorption studies. Environl Res 216:114750

    CAS  Google Scholar 

  • Singha Deb A, Ali SM, Shenoy K, Ghosh S (2015) Adsorption of Eu3+ and Am3+ ion towards hard donor-based diglycolamic acid-functionalised carbon nanotubes: density functional theory guided experimental verification. Mol Simul 41:490–503

    CAS  Google Scholar 

  • Smith AT, LaChance AM, Zeng S, Liu B, Sun L (2019) Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater Sci 1:31–47

    Google Scholar 

  • Sofos F, Karakasidis TE, Sarris IE (2022) Effects of channel size, wall wettability, and electric field strength on ion removal from water in nanochannels. Sci Rep 12:1–12

    Google Scholar 

  • Song X, Yan D, Liu Z, Chen Y, Lu S, Wang D (2011) Performance of laboratory-scale constructed wetlands coupled with micro-electric field for heavy metal-contaminating wastewater treatment. Ecol Eng 37:2061–2065

    Google Scholar 

  • Sonibare K, Rathnayaka L, Zhang L (2020) Comparison of CHARMM and OPLS-aa forcefield predictions for components in one model asphalt mixture. Constr Build Mater 236:117577

    CAS  Google Scholar 

  • Srivastava R, Kommu A, Sinha N, Singh J (2017) Removal of arsenic ions using hexagonal boron nitride and graphene nanosheets: a molecular dynamics study. Mol Simul 43:985–996

    CAS  Google Scholar 

  • Srivastava M, Srivastava A, Pandey S (2020) Suitability of graphene monolayer as sensor for carcinogenic heavy metals in water: a DFT investigation. Appl Surf Sci 517:146021

    CAS  Google Scholar 

  • Su T, Wu L, Pan X, Zhang C, Shi M, Gao R, Qi X, Dong W (2019) Pullulan-derived nanocomposite hydrogels for wastewater remediation: synthesis and characterization. J colloid interface sci 542:253–262

    CAS  Google Scholar 

  • Sun X, Lv X, Han C, Bai L, Wang T, Sun Y (2022) Fabrication of polyethyleneimine-modified nanocellulose/magnetic bentonite composite as afFunctional biosorbent for efficient removal of Cu (II). Water 14:2656

    CAS  Google Scholar 

  • Tabasi E, Vafa N, Firoozabadi B, Salmankhani A, Nouranian S, Habibzadeh S, Spitas C, Mashhadzadeh AH, Spitas C, Saeb MR (2022) Ion rejection performance of functionalized porous graphene nanomembranes for wastewater purification: a molecular dynamics simulation study. Colloids Surf A Physicochem Eng Asp 656:130492

    Google Scholar 

  • Tabasi E, Vafa N, Firoozabadi B, Salmankhani A, Nouranian S, Habibzadeh S, Mashhadzadeh AH, Spitas C, Saeb MR (2023) Ion rejection performances of functionalized porous graphene nanomembranes for wastewater purification: a molecular dynamics simulation study. Colloids Surf A Physicochem Eng Asp 656:130492

    CAS  Google Scholar 

  • Tabish TA, Memon FA, Gomez DE, Horsell DW, Zhang SA (2018) A facile synthesis of porous graphene for efficient water and wastewater treatment. Sci Rep 8:1–14

    CAS  Google Scholar 

  • Taghizadeh M, Asgharinezhad AA, Samkhaniany N, Tadjarodi A, Abbaszadeh A, Pooladi M (2014) Solid phase extraction of heavy metal ions based on a novel functionalized magnetic multi-walled carbon nanotube composite with the aid of experimental design methodology. Microchim Acta 181:597–605

    CAS  Google Scholar 

  • Tan G, Sun W, Xu Y, Wang H, Xu N (2016) Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Bioresour Technol 211:727–735

    CAS  Google Scholar 

  • Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003a) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18:149–175

    CAS  Google Scholar 

  • Tchounwou PB, Patlolla AK, Centeno JA (2003b) Invited reviews: carcinogenic and systemic health effects associated with arsenic exposure-a critical review. Toxicol Pathol 31:575–588

    CAS  Google Scholar 

  • Tehrani MS, Azar PA, Namin PE, Dehaghi SM (2013) Removal of lead ions from wastewater using functionalized multiwalled carbon nanotubes with tris (2-aminoethyl) amine. J Environ Prot 4:529–536

    Google Scholar 

  • Teow YH, Mohammad AW (2019) New generation nanomaterials for water desalination: a review. Desalination 451:2–17

    CAS  Google Scholar 

  • Terrones M, Botello-Mendez AR, Campos-Delgado J, Lopez-Urias F, Vega-Cantu YI, Rodriguez-Macias FJ, Elias AL, Munoz-Sandoval E, Cano-Marquez AG, Charlier JC, Terrones H (2010) Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5:351–372

    Google Scholar 

  • Thines RK, Mubarak NM, Nizamuddin S, Sahu JN, Abdullah EC, Ganesan P (2017) Application potential of carbon nanomaterials in water and wastewater treatment: a review. J Taiwan Inst Chem Eng 72:116–133

    CAS  Google Scholar 

  • Topare NS, Wadgaonkar VS (2023) A review on application of low-cost adsorbents for heavy metals removal from wastewater. Mater Today Proc 77:8–18

    CAS  Google Scholar 

  • Tsarpali M, Kuhn JN, Philippidis GP (2022) Hydrothermal carbonization of residual algal biomass for production of hydrochar as a biobased metal adsorbent. Sustainability 14:455

    CAS  Google Scholar 

  • Tzou YM, Wang SL, Hsu LC, Chang RR, Lin C (2007) Deintercalation of Li/Al LDH and its application to recover adsorbed chromate from used adsorbent. Appl Clay Sci 37:107–114

    CAS  Google Scholar 

  • Unuabonah EI, Agunbiade FO, Alfred MO, Adewumi TA, Okoli CP, Omorogie MO, Akanbi MO, Ofomaja AE, Taubert A (2017) Facile synthesis of new amino-functionalized agrogenic hybrid composite clay adsorbents for phosphate capture and recovery from water. J Clean Prod 164:652–663

    CAS  Google Scholar 

  • Vafa N, Mashhadzadeh AH, Dehaghani MZ, Firoozabadi B, Nouranian S, Spitas C (2023) Molecular dynamics simulation of hexagonal boron nitride slit membranes for wastewater treatment. J Mol Liq 382:121842

    CAS  Google Scholar 

  • Velma V, Vutukuru SS, Tchounwou PB (2009) Ecotoxicology of hexavalent chromium in freshwater fish: a critical review. Rev Environ Health 24:129–146

    CAS  Google Scholar 

  • Verma M, Lee I, Oh J, Kumar V, Kim H (2022) Synthesis of EDTA-functionalized graphene oxide-chitosan nanocomposite for simultaneous removal of inorganic and organic pollutants from complex wastewater. Chemosphere 287:132385

    CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    CAS  Google Scholar 

  • Vilar VJ, Botelho CM, Boaventura RA (2007) Copper desorption from gelidium algal biomass. Water Res 41:1569–1579

    CAS  Google Scholar 

  • Vilardi G, Mpouras T, Dermatas D, Verdone N, Polydera A, Di Palma L (2018) Nanomaterials application for heavy metals recovery from polluted water: the combination of nano zero-valent iron and carbon nanotubes. Competitive adsorption non-linear modeling. Chemosphere 201:716–729

    CAS  Google Scholar 

  • Vilela D, Parmar J, Zeng Y, Zhao Y, Sanchez S (2016) Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett 16:2860–2866

    CAS  Google Scholar 

  • Vukovic GD, Marinkovic AD, Colic M, Ristic MD, Aleksic R, Peric-Grujic AA, Uskokovic PS (2010) Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem Eng J 157:238–248

    CAS  Google Scholar 

  • Vukovic GD, Marinkovic AD, Skapin SD, Ristić MD, Aleksic R, Peric-Grujic AA, Uskokovic PS (2011) Removal of lead from water by amino modified multi-walled carbon nanotubes. Chem Eng J 173:855–865

    CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Google Scholar 

  • Wang Y, Tong SW, Xu XF, Ozyilmaz B, Loh KP (2011) Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv Mater 23:1514–1518

    CAS  Google Scholar 

  • Wang H, Yuan X, Wu Y, Huang H, Zeng G, Liu Y, Wang X, Lin N, Qi Y (2013) Adsorption characteristics and behaviors of graphene oxide for Zn (II) removal from aqueous solution. Appl Surf Sci 279:432–440

    CAS  Google Scholar 

  • Wang S, Zhou Y, Gao B, Wang X, Yin X, Feng K, Wang J (2017) The sorptive and reductive capacities of biochar supported nanoscaled zero-valent iron (nZVI) in relation to its crystallite size. Chemosphere 186:495–500

    CAS  Google Scholar 

  • Wang X, Li X, Liu G, He Y, Chen C, Liu X, Li G, Gu Y, Zhao Y (2019) Mixed heavy metal removal from wastewater by using discarded mushroom-stick biochar: adsorption properties and mechanisms. Environ Sci Process Impacts 21:584–592

    CAS  Google Scholar 

  • Wang H, Xiao K, Yang J, Yu Z, Yu W, Xu Q, Wu Q, Liang S, Hu J, Hou H (2020) Phosphorus recovery from the liquid phase of anaerobic digestate using biochar derived from iron−rich sludge: a potential phosphorus fertilizer. Water Res 174:115629

    CAS  Google Scholar 

  • Wang Y, Li A, Cui C (2021) Remediation of heavy metal-contaminated soils by electrokinetic technology: mechanisms and applicability. Chemosphere 265:129071

    CAS  Google Scholar 

  • Wang X, Zhang C, Liu Z, Quan B, Lu W, Li X, Su P, Tang Y, Bu Y, Zhou R (2023) The efficient treatment of pickling wastewater using a self-assembled in situ polymerized ceramic membrane with graphene/carbon nanotubes/polypyrrole. Environ Sci Water Res Technol 9:1238–1253

    CAS  Google Scholar 

  • Wilbur SB (2000) Toxicological profile for chromium. Agency for toxic substances and disease registry

  • Wu J, Hong Y, Wang B (2018) The applications of carbon nanomaterials in fiber-shaped energy storage devices. J Semicond 39:011004

    Google Scholar 

  • Wu Y, Pang H, Liu Y, Wang X, Yu S, Fu D, Chen J, Wang X (2019) Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environ Pollut 246:608–620

    CAS  Google Scholar 

  • Xi J, Zhang L, Zheng W, Zeng Q, He Y, He Z, Chen J (2021) Anchoring DTPA grafted PEI onto carboxylated graphene oxide to effectively remove both heavy metal ions and dyes from wastewater with robust stability. J Mater Sci 56:18061–18077

    CAS  Google Scholar 

  • Xiong X, Iris K, Cao L, Tsang DC, Zhang S, Ok YS (2017) A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresour Technol 246:254–270

    CAS  Google Scholar 

  • Xu L, Wang J (2017) The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater. Crit Rev Environ Sci Technol 47:1042–1105

    CAS  Google Scholar 

  • Xu Z, Zhang Y, Qian X, Shi J, Chen L, Li B, Niu J, Liu L (2014) One step synthesis of polyacrylamide functionalized graphene and its application in Pb (II) removal. Appl Surf Sci 316:308–314

    CAS  Google Scholar 

  • Yang JL, Wang LC, Chang CY, Liu TY (1999) Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxydeoxyguanosine adduct by lead acetate. Environ Mol Mutagen 33:194–201

    CAS  Google Scholar 

  • Yang K, Zhu L, Xing B (2006) Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol 40:1855–1861

    CAS  Google Scholar 

  • Yang K, Lou Z, Fu R, Zhou J, Xu J, Baig SA, Xu X (2018a) Multiwalled carbon nanotubes incorporated with or without amino groups for aqueous Pb (II) removal: comparison and mechanism study. J Mol Liq 260:149–158

    CAS  Google Scholar 

  • Yang X, Zhou T, Ren B, Hursthouse A, Zhang Y (2018b) Removal of Mn (II) by sodium alginate/graphene oxide composite double-network hydrogel beads from aqueous solutions. Sci Rep 8:1–16

    Google Scholar 

  • Yang J, Luo Z, Wang M (2022a) Novel fluorescent nanocellulose hydrogel based on nanocellulose and carbon dots for detection and removal of heavy metal ions in water. Foods 11:1619

    CAS  Google Scholar 

  • Yang P, Li F, Wang B, Niu Y, Wei J, Yu Q (2022b) In situ synthesis of carbon nanotube-steel slag composite for Pb (II) and Cu (II) removal from aqueous solution. Nanomaterials 12:1199

    CAS  Google Scholar 

  • Yap PL, Auyoong YL, Hassan K, Farivar F, Tran DN, Ma J, Losic D (2020) Multithiol functionalized graphene bio-sponge via photoinitiated thiol-ene click chemistry for efficient heavy metal ions adsorption. Chem Eng J 395:124965

    CAS  Google Scholar 

  • Yedjou CG, Tchounwou PB, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164

  • Yi H, Huang D, Qin L, Zeng G, Lai C, Cheng M, Ye S, Song B, Ren X, Guo X (2018a) Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production. Appl Catal B 239:408–424

    CAS  Google Scholar 

  • Yi X, Sun F, Han Z, Han F, He J, Ou M, Gu J, Xu X (2018b) Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu (II) and U (VI) removal. Ecotoxicol Environ Saf 158:309–318

    CAS  Google Scholar 

  • Yin Z, Cui C, Chen H, Duoni YX, Qian W (2020) The application of carbon nanotube/graphene-based nanomaterials in wastewater treatment. Small 16:1902301

    CAS  Google Scholar 

  • Yoon SY, Lee CG, Park JA, Kim JH, Kim SB, Lee SH, Choi JW (2014) Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles. Chem Eng J 236:341–347

    CAS  Google Scholar 

  • Yu M, Funke HH, Falconer JL, Noble RD (2009) High density, vertically-aligned carbon nanotube membranes. Nano Lett 9:225–229

    CAS  Google Scholar 

  • Yu F, Li Y, Han S, Ma J (2016a) Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 153:365–385

    CAS  Google Scholar 

  • Yu H, Liu J, Shen J, Sun X, Li J, Wang L (2016b) Preparation of MnOx-loaded biochar for Pb2+ removal: adsorption performance and possible mechanism. J Taiwan Inst Chem Eng 66:313–320

    Google Scholar 

  • Yu G, Lu Y, Guo J, Patel M, Bafana A, Wang X, Qiu B, Jeffryes C, Wei S, Guo Z, Wujcik EK (2018) Carbon nanotubes, graphene, and their derivatives for heavy metal removal. Adv Compos Hybrid Mater 1:56–78

    CAS  Google Scholar 

  • Yu H, Zou W, Chen J, Chen H, Yu Z, Huang J, Tang H, Wei X, Gao B (2019) Biochar amendment improves crop production in problem soils: a review. J Environ Manage 232:8–21

    CAS  Google Scholar 

  • Zabihi M, Asl AH, Ahmadpour A (2010) Studies on adsorption of mercury from aqueous solution on activated carbons prepared from walnut shell. J Hazard Mater 174:251–256

    CAS  Google Scholar 

  • Zandi-Mehri E, Taghavi L, Moeinpour F, Khosravi I, Ghasemi S (2022) Designing of hydroxyl terminated triazine-based dendritic polymer/halloysite nanotube as an efficient nano-adsorbent for the rapid removal of Pb (II) from aqueous media. J Mol Liq 360:119407

    CAS  Google Scholar 

  • Zarenezhad M, Zarei M, Ebratkhahan M, Hosseinzadeh M (2021) Synthesis and study of functionalized magnetic graphene oxide for Pb2+ removal from wastewater. Environ Technol Innov 22:101384

    CAS  Google Scholar 

  • Zeng K, Hachem K, Kuznetsova M, Chupradit S, Su CH, Nguyen HC, El-Shafay AS (2022) Molecular dynamic simulation and artificial intelligence of lead ions removal from aqueous solution using magnetic-ash-graphene oxide nanocomposite. J Mol Liq 347:118290

    CAS  Google Scholar 

  • Zhan C, Sharma PR, He H, Sharma SK, McCauley-Pearl A, Wang R, Hsiao BS (2020) Rice husk based nanocellulose scaffolds for highly efficient removal of heavy metal ions from contaminated water. Environ Sci Water Res Technol 6:3080–3090

    CAS  Google Scholar 

  • Zhang CZ, YuanY GZ (2018) Experimental study on functional graphene oxide containing many primary amino groups fast-adsorbing heavy metal ions and adsorption mechanism. Sep Sci Technol 53:1666–1677

    CAS  Google Scholar 

  • Zhang F, Wang B, He S, Man R (2014a) Preparation of graphene-oxide/polyamidoamine dendrimers and their adsorption properties toward some heavy metal ions. J Chem Eng Data 59:1719–1726

    CAS  Google Scholar 

  • Zhang Y, Bai W, Cheng X, Ren J, Weng W, Chen P, Fang X, Zhang Z, Peng H (2014b) Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew Chem Int Ed 53:14564–14568

    CAS  Google Scholar 

  • Zhang H, Liu B, Wu MS, Zhou K, Law AWK (2017a) Transport of salty water through graphene bilayer in an electric field: a molecular dynamics study. Comput Mater Sci 131:100–107

    CAS  Google Scholar 

  • Zhang X, Huang Q, Deng F, Huang H, Wan Q, Liu M, Wei Y (2017b) Mussel-inspired fabrication of functional materials and their environmental applications: progress and prospects. Appl Mater Today 7:222–238

    Google Scholar 

  • Zhang CZ, Chen B, Bai Y, Xie J (2018) A new functionalized reduced graphene oxide adsorbent for removing heavy metal ions in water via coordination and ion exchange. Sep Sci Technol 53:2896–2905

    CAS  Google Scholar 

  • Zhang YN, Guo JZ, Wu C, Huan WW, Chen L, Li B (2022a) Enhanced removal of Cr (VI) by cation functionalized bamboo hydrochar. Bioresour Technol 347:126703

    CAS  Google Scholar 

  • Zhang Y, Qu J, Yuan Y, Song H, Liu Y, Wang S, Tao Y, Zhao Y, Li Z (2022b) Simultaneous scavenging of Cd (II) and Pb (II) from water by sulfide-modified magnetic pinecone-derived hydrochar. J Clean Prod 341:130758

    CAS  Google Scholar 

  • Zhang H, Shi Z, Wang X, Xu X, Tang Y, Liu X, Tian L, Xiao Y, Wu Z, Wang H, Yang Y (2023a) Insights into the synthesis of monolithic and structured graphene bulks and its application for Cu2+ ions removal from aqueous solution. Sep Purif Technol 308:122847

    CAS  Google Scholar 

  • Zhang X, Liu S, Qin Q, Chen G, Wang W (2023b) Alkali etching hydrochar-based adsorbent preparation using Chinese medicine industry waste and its application in efficient removal of multiple pollutants. Processes 11:412

    CAS  Google Scholar 

  • Zhang Y, Wan Y, Zheng Y, Yang Y, Huang J, Chen H, Quan G, Gao B (2023c) Potassium permanganate modification of hydrochar enhances sorption of Pb (II), Cu (II), and Cd (II). Bioresour Technol 386:129482

    CAS  Google Scholar 

  • Zhao L, Yu B, Xue F, Xie J, Zhang X, Wu R, Wang R, Hu Z, Yang ST, Luo J (2015) Facile hydrothermal preparation of recyclable S-doped graphene sponge for Cu2+ adsorption. J Hazard Mater 286:449–456

    CAS  Google Scholar 

  • Zhitkovich A (2005) Importance of chromium- DNA adducts in mutagenicity and toxicity of chromium (VI). Chem Res Toxicol 1:3–11

    Google Scholar 

  • Zhou S, Xie Y, Zhu F, Gao Y, Liu Y, Tang Z, Duan Y (2021) Amidoxime modified chitosan/graphene oxide composite for efficient adsorption of U (VI) from aqueous solutions. J Environ Chem Eng 9:106363

    CAS  Google Scholar 

  • Zhou S, Yin J, Ma Q, Baihetiyaer B, Sun J, Zhang Y, Jiang Y, Wang J, Yin X (2022) Montmorillonite-reduced graphene oxide composite aerogel (M-rGO): a green adsorbent for the dynamic removal of cadmium and methylene blue from wastewater. Sep Purif Technol 296:121416

    CAS  Google Scholar 

  • Zhu D, Pignatello JJ (2005) Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environ Sci Technol 39:2033–2041

    CAS  Google Scholar 

  • Zhu M, Cao Z, Yang H, Xu Z, Cheng C (2022) Improved dye and heavy metal ions removal in saline solutions by electric field-assisted gravity driven filtration using nanofiber membranes with asymmetric micro/nano channels. Sep Purif Technol 300:121775

    CAS  Google Scholar 

  • Zito P, Shipley HJ (2015) Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review. Rsc Adv 5:29885–29907

    Google Scholar 

  • Zondo BZ, Sadare OO, Simate GS, Moothi K (2022) Removal of Pb2+ ions from synthetic wastewater using functionalized multi-walled carbon nanotubes decorated with green synthesized iron oxide-gold nanocomposite. Water SA 48:304–316

    CAS  Google Scholar 

Download references

Acknowledgements

Vellore Institute of Technology is gratefully acknowledged for providing the opportunity to prepare for this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, supervision, draft preparation, review, and editing were done by RB; draft preparation and writing were done by DGC; review and editing were done by LM.

Corresponding author

Correspondence to Rima Biswas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Angeles Blanco

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandran, .G., Muruganandam, L. & Biswas, R. A review on adsorption of heavy metals from wastewater using carbon nanotube and graphene-based nanomaterials. Environ Sci Pollut Res 30, 110010–110046 (2023). https://doi.org/10.1007/s11356-023-30192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-30192-6

Keywords

Navigation