Skip to main content
Log in

Enhancing the efficiency of Ni(II), Cd(II), and Cu(II) adsorption from aqueous solution using schist/alginate composite: batch and continuous studies

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The main aim of this research is focused on the synthesis of schist/alginate composite (SC/AL) adsorbent and its utilization for the removal of Ni(II), Cu(II), and Cd(II) from waste streams using batch and column processes. The characterization of developed adsorbent was performed by X-ray fluorescence, X-ray diffraction, FTIR, and BET analyses. The most influential operating parameters (pH, contact time, temperature and initial adsorbate concentration) on the adsorption capacity of pollutants were examined to evaluate the performance of developed adsorbent. The kinetic and equilibrium adsorption results at pH 5.0 indicated that SC/AL composite had good adsorption capacity (qmax) for Ni(II), Cu(II), and Cd(II) estimated at 124.79 mg/g, 111.78 mg/g, and 119.78 mg/g, respectively. From the kinetic viewpoint, the good fit of pseudo-first-order kinetic model to the kinetic adsorption data indicated that dominant interaction of heavy metals with SC/AL composite was physisorption. The results of thermodynamic studies indicated that the adsorption of heavy metals onto SC/AL composite was endothermic and spontaneous in nature. The adsorption capacity of developed adsorbent could still reach relatively 85% of the original one after completing fifth cycle. Therefore, the reusability results of SC/AL composite were quite satisfied, making the developed adsorbent a commercially attractive and green method. Finally, in column studies, the effect of initial concentration of pollutants at pH 5.0 on the removal of heavy metal ions was investigated. The Thomas and Yoon-Nelson models provided a satisfactory explanation for the results of column data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  • Allahkarami E, Azadmehr A, Noroozi F, Farrokhi S, Sillanpää M (2022a) Nitrate adsorption onto surface-modified red mud in batch and fixed-bed column systems: equilibrium, kinetic, and thermodynamic studies. Environ Sci Pollut Res 29:48438–48452

    Article  CAS  Google Scholar 

  • Allahkarami E, Dehghan Monfared A, Silva LFO, Dotto GL (2022c) Lead ferrite-activated carbon magnetic composite for efficient removal of phenol from aqueous solutions: synthesis, characterization, and adsorption studies. Sci Rep 12:1–16

    Article  Google Scholar 

  • Allahkarami E, Dehghan Monfared A, Silva LFO, Dotto GL (2023) Toward a mechanistic understanding of adsorption behavior of phenol onto a novel activated carbon composite. Sci Rep 13:1–16

    Article  Google Scholar 

  • Allahkarami E, Soleimanpour Moghadam N, Jamrotbe B, Azadmehr A (2023) Competitive adsorption of Ni (II) and Cu (II) ions from aqueous solution by vermiculite-alginate composite: batch and fixed-bed column studies. J Dispers Sci Technol 44:1402–1412

    Article  CAS  Google Scholar 

  • Allahkarami E, Dehghan Monfared A, Silva LFO, Dotto GL (2023) Application of Pb–Fe spinel-activated carbon for phenol removal from aqueous solutions: fixed-bed adsorption studies. Environ Sci Pollut Res 30:23870–23886

    Article  CAS  Google Scholar 

  • Bakr A-SA, Moustafa YM, Khalil MMH, Yehia MM, Motawea EA (2015) Magnetic nanocomposite beads: synthesis and uptake of Cu (II) ions from aqueous solutions. Can J Chem 93:289–296

    Article  CAS  Google Scholar 

  • Bankole MT, Abdulkareem AS, Mohammed IA, Ochigbo SS, Tijani JO, Abubakre OK, Roos WD (2019) Selected heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents. Sci Rep 9:4475

    Article  Google Scholar 

  • Bishop A, Woolley A, Hamilton W (1999) Cambridge guide to minerals, rocks and fossils. Cambridge University Press, China

    Google Scholar 

  • Carotenuto G, Camerlingo C (2020) Kinetic investigation of water physisorption on natural clinoptilolite at room temperature. Microporous Mesoporous Mater 302:110238

    Article  CAS  Google Scholar 

  • Chiew CSC, Yeoh HK, Pasbakhsh P, Krishnaiah K, Poh PE, Tey BT, Chan ES (2016) Halloysite/alginate nanocomposite beads: kinetics, equilibrium and mechanism for lead adsorption. Appl Clay Sci 119:301–310

    Article  CAS  Google Scholar 

  • Dolatyari L, Yaftian MR, Rostamnia S (2016) Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J Environ Manag 169:8–17

    Article  CAS  Google Scholar 

  • Dong Y, Sang D, He C, Sheng X, Lei L (2019) Mxene/alginate composites for lead and copper ion removal from aqueous solutions. RSC Adv 9:29015–29022

    Article  CAS  Google Scholar 

  • Dubey R, Bajpai J, Bajpai AK (2016) Chitosan-alginate nanoparticles (CANPs) as potential nanosorbent for removal of Hg (II) ions. Environ Nanotechnol Monit Manag 6:32–44

    Google Scholar 

  • Ehsani A, Aghdasinia H, Farshchi ME, Rostamnia S, Khataee A (2023) Synthesis of sodium alginate/carboxy-methyl cellulose/Cu-based metal-organic framework composite for adsorption of tetracycline from aqueous solution: isotherm, kinetic and thermodynamic approach. Surfaces and Interfaces 36:102506

    Article  CAS  Google Scholar 

  • Feng Y, Wang Y, Wang Y, Zhang X-F, Yao J (2018) In-situ gelation of sodium alginate supported on melamine sponge for efficient removal of copper ions. J Colloid Interface Sci 512:7–13

    Article  CAS  Google Scholar 

  • Gao X, Guo C, Hao J, Zhao Z, Long H, Li M (2020) Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. Int J Biol Macromol 164:4423–4434

    Article  CAS  Google Scholar 

  • Gao J, Li Z, Wang Z, Chen T, Hu G, Zhao Y, Han X (2022) Facile synthesis of sustainable tannin/sodium alginate composite hydrogel beads for efficient removal of methylene blue. Gels 8:486–499

    Article  CAS  Google Scholar 

  • Gong X-L, Lu H-Q, Li K, Li W (2022) Effective adsorption of crystal violet dye on sugarcane bagasse–bentonite/sodium alginate composite aerogel: characterisation, experiments, and advanced modelling. Sep Purif Technol 286:120478

    Article  CAS  Google Scholar 

  • Googerdchian F, Moheb A, Emadi R (2012) Lead sorption properties of nanohydroxyapatite–alginate composite adsorbents. Chem Eng J 200:471–479

    Article  Google Scholar 

  • Gotoh T, Matsushima K, Kikuchi K-I (2004) Preparation of alginate–chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere 55:135–140

    Article  CAS  Google Scholar 

  • Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74

    Article  CAS  Google Scholar 

  • Guo J, Han Y, Mao Y, Wickramaratne MN (2017) Influence of alginate fixation on the adsorption capacity of hydroxyapatite nanocrystals to Cu2+ ions. Colloids Surf, A 529:801–807

    Article  CAS  Google Scholar 

  • Gürel A (2006) Adsorption characteristics of heavy metals in soil zones developed on spilite. Environ Geol 51:333–340

    Article  Google Scholar 

  • Hameed BH, Chin LH, Rengaraj S (2008) Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust. Desalination 225:185–198

    Article  CAS  Google Scholar 

  • Ho YS, Porter JF, McKay G (2002) Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Pollut 141:1–33

    Article  CAS  Google Scholar 

  • Isawi H (2020) Using zeolite/polyvinyl alcohol/sodium alginate nanocomposite beads for removal of some heavy metals from wastewater. Arab J Chem 13:5691–5716

    Article  CAS  Google Scholar 

  • Jiang H, Yang Y, Lin Z, Zhao B, Wang J, Xie J, Zhang A (2020) Preparation of a novel bio-adsorbent of sodium alginate grafted polyacrylamide/graphene oxide hydrogel for the adsorption of heavy metal ion. Sci Total Environ 744:140653

    Article  CAS  Google Scholar 

  • Jiao C, Xiong J, Tao J, Xu S, Zhang D, Lin H, Chen Y (2016) Sodium alginate/graphene oxide aerogel with enhanced strength–toughness and its heavy metal adsorption study. Int J Biol Macromol 83:133–141

    Article  CAS  Google Scholar 

  • Karimi-Maleh H, Darabi R, Karimi F, Karaman C, Shahidi SA, Zare N, Baghayeri M, Fu L, Rostamnia S, Rouhi J, Rajendran S (2023) State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: a review. Environ Res 222:115338

    Article  CAS  Google Scholar 

  • Kołodyńska D, Gęca M, Skwarek E, Goncharuk O (2018) Titania-coated silica alone and modified by sodium alginate as sorbents for heavy metal ions. Nanoscale Res Lett 13:1–12

    Article  Google Scholar 

  • Kudełko J (2018) Effectiveness of mineral waste management. Int J Min Reclam Environ 32:440–448

    Article  Google Scholar 

  • Kudełko J, Wirth H, Kaczan W, Bagiński L (2021) Characteristics of clay raw materials from the Turów Lignite Mine Waste, Poland: potential for industrial applications. Sustainability 13:6513

    Article  Google Scholar 

  • Li Y, Liu F, Xia B, Du Q, Zhang P, Wang D, Wang Z, Xia Y (2010) Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. J Hazard Mater 177:876–880

    Article  CAS  Google Scholar 

  • Li Y, Du Q, Liu T, Sun J, Wang Y, Wu S, Wang Z, Xia Y, Xia L (2013) Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohyd Polym 95:501–507

    Article  CAS  Google Scholar 

  • Lottermoser B, Lottermoser BG (2010) Mine wastes: Characterization, treatment and environmental impacts 43–117

  • Marzban N, Moheb A, Filonenko S, Hosseini SH, Nouri MJ, Libra JA, Farru G (2021) Intelligent modeling and experimental study on methylene blue adsorption by sodium alginate-kaolin beads. Int J Biol Macromol 186:79–91

    Article  CAS  Google Scholar 

  • Milojković JV, Lopičić ZR, Anastopoulos IP, Petrović JT, Milićević SZ, Petrović MS, Stojanović MD (2019) Performance of aquatic weed - waste Myriophyllum spicatum immobilized in alginate beads for the removal of Pb(II). J Environ Manag 232:97–109

    Article  Google Scholar 

  • Mohammadi R, Azadmehr A, Maghsoudi A (2019) Fabrication of the alginate-combusted coal gangue composite for simultaneous and effective adsorption of Zn (II) and Mn (II). J Environ Chem Eng 7:103494

    Article  CAS  Google Scholar 

  • Pan L, Wang Z, Yang Q, Huang R (2018) Efficient removal of lead, copper and cadmium ions from water by a porous calcium alginate/graphene oxide composite aerogel. Nanomaterials 8:957

    Article  Google Scholar 

  • Papageorgiou SK, Katsaros FK, Kouvelos EP, Kanellopoulos NK (2009) Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data. J Hazard Mater 162:1347–1354

    Article  CAS  Google Scholar 

  • Qin H, Hu T, Zhai Y, Lu N, Aliyeva J (2020) The improved methods of heavy metals removal by biosorbents: a review. Environ Pollut 258:113777

    Article  CAS  Google Scholar 

  • Rezai B, Allahkarami E (2021a) Wastewater treatment processes—techniques, technologies, challenges faced, and alternative solutions. In: Karri RR, Ravindran G, Dehghani MH (eds) Soft computing techniques in solid waste and wastewater management, 1st edn. Elsevier, Netherland, pp 35–53

    Chapter  Google Scholar 

  • Rezai B, Allahkarami E (2021b) Application of neural networks in wastewater degradation process for the prediction of removal efficiency of pollutants. In: Karri RR, Ravindran G, Dehghani MH (eds) Soft computing techniques in solid waste and wastewater management, 1st edn. Elsevier, Netherland, pp 75–93

    Chapter  Google Scholar 

  • Roh H, Yu M-R, Yakkala K, Koduru JR, Yang J-K, Chang Y-Y (2015) Removal studies of Cd (II) and explosive compounds using buffalo weed biochar-alginate beads. J Ind Eng Chem 26:226–233

    Article  CAS  Google Scholar 

  • Rostamnia S, Mohsenzad F (2018) Nanoarchitecturing of open metal site Cr-MOFs for oxodiperoxo molybdenum complexes [MoO(O2)2@En/MIL-100(Cr)] as promising and bifunctional catalyst for selective thioether oxidation. Molecular Catalysis 445:12–20

    Article  CAS  Google Scholar 

  • Sellaoui L, Soetaredjo FE, Ismadji S, Benguerba Y, Dotto GL, Bonilla-Petriciolet A, Rodrigues AE, Lamine AB, Erto A (2018) Equilibrium study of single and binary adsorption of lead and mercury on bentonite-alginate composite: experiments and application of two theoretical approaches. J Mol Liq 253:160–168

    Article  CAS  Google Scholar 

  • Sharif A, Khorasani M, Shemirani F (2018) Nanocomposite bead (NCB) based on bio-polymer alginate caged magnetic graphene oxide synthesized for adsorption and preconcentration of lead (II) and copper (II) ions from urine, saliva and water samples. J Inorg Organomet Polym Mater 28:2375–2387

    Article  CAS  Google Scholar 

  • Shawky HA (2011) Improvement of water quality using alginate/montmorillonite composite beads. J Appl Polym Sci 119:2371–2378

    Article  CAS  Google Scholar 

  • Shen W, An Q-D, Xiao Z-Y, Zhai S-R, Hao J-A, Tong Y (2020) Alginate modified graphitic carbon nitride composite hydrogels for efficient removal of Pb (II), Ni (II) and Cu (II) from water. Int J Biol Macromol 148:1298–1306

    Article  CAS  Google Scholar 

  • Simonin J-P (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J 300:254–263

    Article  CAS  Google Scholar 

  • Taghavi R, Rostamnia S, Farajzadeh M, Karimi-Maleh H, Wang J, Kim D, Jang HW, Luque R, Varma RS, Shokouhimehr M (2022) Magnetite metal–organic frameworks: applications in environmental remediation of heavy metals, organic contaminants, and other pollutants. Inorg Chem 61:15747–15783

    Article  CAS  Google Scholar 

  • Vijayalakshmi K, Gomathi T, Latha S, Hajeeth T, Sudha PN (2016) Removal of copper (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. Int J Biol Macromol 82:440–452

    Article  CAS  Google Scholar 

  • Wang Y-y, Yao W-b, Wang Q-w, Yang Z-h, Liang L-f, Chai L-y (2016) Synthesis of phosphate-embedded calcium alginate beads for Pb(II) and Cd(II) sorption and immobilization in aqueous solutions. Trans Nonferrous Met Soc China 26:2230–2237

    Article  CAS  Google Scholar 

  • Wang B, Gao B, Wan Y (2018) Entrapment of ball-milled biochar in Ca-alginate beads for the removal of aqueous Cd(II). J Ind Eng Chem 61:161–168

    Article  CAS  Google Scholar 

  • Wang B, Wan Y, Zheng Y, Lee X, Liu T, Yu Z, Huang J, Ok YS, Chen J, Gao B (2019) Alginate-based composites for environmental applications: a critical review. Crit Rev Environ Sci Technol 49:318–356

    Article  CAS  Google Scholar 

  • Xie X, Ma X, Guo L, Fan Y, Zeng G, Zhang M, Li J (2019) Novel magnetic multi-templates molecularly imprinted polymer for selective and rapid removal and detection of alkylphenols in water. Chem Eng J 357:56–65

    Article  CAS  Google Scholar 

  • Zhuang Y, Yu F, Chen H, Zheng J, Ma J, Chen J (2016) Alginate/graphene double-network nanocomposite hydrogel beads with low-swelling, enhanced mechanical properties, and enhanced adsorption capacity. J Mater Chem A 4:10885–10892

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Esmaeil Allahkarami performed the experiments, prepared the original draft, and contributed in analysis, and interpretation. Ebrahim Allahkarami contributed in reviewing and editing the paper, validation, analysis and interpretation of the results. Amirreza Azadmehr supervised the project and contributed in writing and editing, data curation, and reviewing the manuscript.

Corresponding author

Correspondence to Amirreza Azadmehr.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Angeles Blanco

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 146 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allahkarami, E., Allahkarami, E. & Azadmehr, A. Enhancing the efficiency of Ni(II), Cd(II), and Cu(II) adsorption from aqueous solution using schist/alginate composite: batch and continuous studies. Environ Sci Pollut Res 30, 105504–105521 (2023). https://doi.org/10.1007/s11356-023-29808-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-29808-8

Keywords

Navigation