Abstract
Fungus-based biopesticides have been used worldwide for crop pest control as a safer alternative to chemical pesticides such as neonicotinoids. Both agrochemicals can be lethal and may also trigger side effects on the behavioral traits of non-target social insects, which play a crucial role in providing essential biological pest control services in agroecosystems. Here, we evaluated whether a commercial formulation of the entomopathogenic fungus Beauveria bassiana or the neonicotinoid imidacloprid causes mortality in foragers of Mischocyttarus metathoracicus. These social wasps are natural enemies of caterpillars and other herbivorous insects and inhabit both urban and agricultural environments in Brazil. We also tested whether wasps discriminate between biopesticide-exposed and unexposed conspecifics. Through a combination of laboratory (survival assay) and field experiments (lure presentation), along with chemical analyses (cuticular hydrocarbon profiles), we showed that topic exposure to the label rate of each pesticide causes a lethal effect, with the biopesticide exhibiting a slower effect. Moreover, wasps do not discriminate biopesticide-exposed from unexposed conspecifics, likely because of the similarity of their cuticular chemical profiles 24 h after exposure. Overall, the delayed lethal time at the individual level, combined with the indistinctive chemical cues of exposure and the lack of discrimination by conspecifics suggests that the fungal biopesticide may ultimately pose a threat to the colony survival of this predatory wasp.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Data will be made available on request.
Refe rences
Almeida FCR, Magalhães DM, Favaris AP, Rodríguez J, Azevedo KEX, Bento JMS, Alves DA (2022) Side effects of a fungus-based biopesticide on stingless bee guarding behaviour. Chemosphere 287:132147. https://doi.org/10.1016/j.chemosphere.2021.132147
Alves SB, Moraes SA (1998) Insect pathogen inocolum quantification. In: Alves SB (ed) Insect microbial control. FEALQ, Piracicaba, Brazil, pp 765–777 (in Portuguese)
Anjos DV, Tena A, Viana-Junior AB, Carvalho RL, Torezan-Silingardi H, Del-Claro K, Perfecto I (2022) The effects of ants on pest control: a meta-analysis. Proc R Soc Biol Sci B 289:20221316. https://doi.org/10.1098/rspb.2022.1316
Ausique JJS, D’Alessandro CP, Conceschi MR, Mascarin GM, Delalibera I Jr (2017) Efficacy of entomopathogenic fungi against adult Diaphorina citri from laboratory to field applications. J Pest Sci 90:947–960. https://doi.org/10.1007/s10340-017-0846-z
Baracchi D, Fadda A, Turillazzi S (2012) Evidence for antiseptic behaviour towards sick adult bees in honey bee colonies. J Insect Physiol 58:1589–1596. https://doi.org/10.1016/j.jinsphys.2012.09.014
Baracchi D, Petrocelli I, Chittka L, Ricciardi G, Turillazzi S (2015) Speed and accuracy in nest-mate recognition: a hover wasp prioritizes face recognition over colony odour cues to minimize intrusion by outsiders. Proc R Soc Biol Sci B 282:20142750. https://doi.org/10.1098/rspb.2014.2750
Bates DM, Mäechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Soft 67:1–48. https://doi.org/10.18637/jss.v067.i01
Batista NR, Oliveira VES, Crispim PD, Nocelli RCF, Antonialli-Junior WF (2022) Is the social wasp Polybia paulista a silent victim of neonicotinoid contamination? Environ Pollut 308:119682. https://doi.org/10.1016/j.envpol.2022.119682
Beani L, Bagnères A-G, Elia M, Petrocelli I, Cappa F, Lorenzi MC (2019) Cuticular hydrocarbons as cues of sex and health condition in Polistes dominula wasps. Insect Soc 66:543–553. https://doi.org/10.1007/s00040-019-00721-z
Blomquist GJ, Bagnères A-G (2010) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge
Bordalo MD, Gravato C, Beleza S, Campos D, Lopes I, Pestana JLT (2020) Lethal and sublethal toxicity assessment of Bacillus thuringiensis var israelensis and Beauveria bassiana based bioinsecticides to the aquatic insect Chironomus riparius. Sci Total Environ 698:134155. https://doi.org/10.1016/j.scitotenv.2019.134155
Bos N, Kankaanpää-Kukkonen V, Freitak D, Stucki D, Sundström L (2019) Comparison of twelve ant species and their susceptibility to fungal infection. Insects 10:271. https://doi.org/10.3390/insects10090271
Breed MD (2014) Kin and nestmate recognition: the influence of W. D. Hamilton on 50 years of research. Anim Behav 92:271–279. https://doi.org/10.1016/j.anbehav.2014.02.030
Brock RE, Cini A, Sumner S (2021) Ecosystem services provided by aculeate wasps. Biol Rev 96:1645–1675. https://doi.org/10.1111/brv.12719
Cappa F, Beani L, Cervo R (2016a) The importance of being yellow : visual over chemical cues in gender recognition in a social wasp. Behav Ecol 27:1182–1189. https://doi.org/10.1093/beheco/arw025
Cappa F, Bruschini C, Protti I, Turillazzi S, Cervo R (2016b) Bee guards detect foreign foragers with cuticular chemical profiles altered by phoretic varroa mites. J Apic Res 55:268–277. https://doi.org/10.1080/00218839.2016.1229886
Cappa F, Petrocelli I, Dani FR, Dapporto L, Giovannini M, Silva-Castellari J, Turillazzi S, Cervo R (2019) Natural biocide disrupts nestmate recognition in honeybees. Sci Rep 9:3171. https://doi.org/10.1038/s41598-019-38963-3
Cappa F, Cini A, Signorotti L, Cervo R (2020) Rethinking recognition: social context in adult life rather than early experience shapes recognition in a social wasp. Philos T Royal Soc B 375:20190468. https://doi.org/10.1098/rstb.2019.0468
Cappa F, Baracchi D, Cervo R (2022) Biopesticides and insect pollinators: detrimental effects, outdated guidelines, and future directions. Sci Total Environ 837:155714. https://doi.org/10.1016/j.scitotenv.2022.155714
Carlesso D, Smargiassi S, Sassoli L, Cappa F, Cervo R, Baracchi D (2020) Exposure to a biopesticide interferes with sucrose responsiveness and learning in honey bees. Sci Rep 10:19929. https://doi.org/10.1038/s41598-020-76852-2
Carlson DA, Bernier UR, Sutton BD (1998) Elution patterns from capillary GC for methyl-branched alkanes. J Chem Ecol 24:1845–1865. https://doi.org/10.1023/A:1022311701355
Carvalho FP (2017) Pesticides, environment, and food safety. Food Energy Sec 6:48–60. https://doi.org/10.1002/fes3.108
Castro T, Mayerhofer J, Enkerli J, Eilenberg J, Meyling NV, Moral RA, DemetrioDelalibera DGBI Jr (2016) Persistence of Brazilian isolates of the entomopathogenic fungi Metarhizium anisopliae and M. robertsii in strawberry crop soil after soil drench application. Agric Ecosyst Environ 233:361–369. https://doi.org/10.1016/j.agee.2016.09.031
Cini A, Cappa F, Pepiciello I, Platania L, Dapporto L, Cervo R (2019) Sight in a clique, scent in society: plasticity in the use of nestmate recognition cues along colony development in the social wasp Polistes dominula. Front Ecol Evol 7:444. https://doi.org/10.3389/fevo.2019.00444
Crawley MJ (2012) The R Book, 2nd edn. John Wiley & Sons, Chichester
Cremer S, Armitage SAO, Schmid-Hempel P (2007) Social immunity. Curr Biol 17:R693–R702. https://doi.org/10.1016/j.cub.2007.06.008
Culliney TW (2014) Crop losses to arthropods. In: Pimentel D, Peshin R (eds) Integrated pest management. Springer, Dordrecht, pp 201–225. https://doi.org/10.1007/978-94-007-7796-5_8
de Souza AR, Baptista CF, Santos EF, Silva RC, Prato AS, Antonialli-Junior W, Soares ERP, Barbosa BC, Nascimento FS, Lino-Neto J (2020) Morphological caste differences in primitively eusocial insects: the Van der Vecht organ of Mischocyttarus paper wasps. Biol J Linn Soc 130:545–554. https://doi.org/10.1093/biolinnean/blaa067
de Souza AR, Baptista CF, Teixeira GVM, Lima MAP (2021) Artificial environments for studying eusocial wasps. In: Prezoto F, Nascimento FS, Barbosa BC, Somavilla A (eds) Neotropical social wasps: basic and applied aspects. Springer, Cham, pp 435–442. https://doi.org/10.1007/978-3-030-53510-0_23
de Souza AR, Franca W, Prato A, Nascimento FS (2022) Sex recognition does not modulate aggression toward nest intruders in a paper wasp. Curr Zool 69:324–331. https://doi.org/10.1093/cz/zoac051
de Souza AR, Franca W, Prato A, Rantala MJ, Nascimento FS (2023) Recognition of conspecific immunological status in a neotropical paper wasp. Behav Ecol 34:480–487. https://doi.org/10.1093/beheco/arad010
Dornelas ASP, Sarmento RA, Saraiva AS, Barbosa RS, Vieira MM, Gravato C, Soares AMVM (2021) Effects of two biopesticides and salt on behaviour, regeneration and sexual reproduction of the freshwater planarian Girardia tigrina. J Hazard Mat 404:124089. https://doi.org/10.1016/j.jhazmat.2020.124089
Drobnjaković T, Prijović M, Milenković S, Marčić D (2019) Sublethal effects of a Beauveria bassiana-based mycopesticide on Dutch and Serbian populations of Encarsia formosa (Hymenoptera: Aphelinidae). Biocontrol Sci Techn 29:991–1008. https://doi.org/10.1080/09583157.2019.1635246
Erler S, Eckert JH, Steinert M, Alkassab AT (2022) Impact of microorganisms and entomopathogenic nematodes used for plant protection on solitary and social bee pollinators: host range, specificity, pathogenicity, toxicity, and effects of experimental parameters. Environ Pollut 302:119051. https://doi.org/10.1016/j.envpol.2022.119051
Faita MR, Pereira E, Poltronieri, AS (2023) Effect of entomopathogenic fungus-formulated bioinsecticides on stingless bees (Hymenoptera: Apidae: Meliponini) in the laboratory. J Apic Res 1–8. https://doi.org/10.1080/00218839.2023.2230717
Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, Ceryngier P, Liirah J, Tscharntke T, Winqvist C, Eggers S, Bommarco R, Pärt T, Bretagnolle V, Plantegenest M, Clement LW, Dennis C, Palmer C, Inchausti P (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11(97):105. https://doi.org/10.1016/j.baae.2009.12.001
Goettel MS, Jaronski ST (1997) Safety and registration of microbial agents for control of grasshoppers and locusts. Mem Entomol Soc Can 129:83–99. https://doi.org/10.4039/entm129171083-1
Guedes RNC, Smagghe G, Stark JD, Desneux N (2016) Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annu Rev Entomol 61:43–62. https://doi.org/10.1146/annurev-ento-010715-023646
Guedes RNC, Walse SS, Throne JE (2017) Sublethal exposure, insecticide resistance, and community stress. Curr Opin Insect Sci 21:47–53. https://doi.org/10.1016/j.cois.2017.04.010
Harris RJ, Harcourt SJ, Glare TR, Rose EAF, Nelson TJ (2000) Susceptibility of Vespula vulgaris (Hymenoptera: Vespidae) to generalist entomopathogenic fungi and their potential for wasp control. J Invertebr Pathol 75:251–258. https://doi.org/10.1006/jipa.2000.4928
Klein S, Cabirol A, Devaud J-M, Barron AB, Lihoreau M (2017) Why bees are so vulnerable to environmental stressors. Trends Ecol Evol 32:268–278. https://doi.org/10.1016/j.tree.2016.12.009
Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest Package: tests in linear mixed effects models. J Stat Softw 82:1–26. https://doi.org/10.18637/jss.v082.i13
Lecuona R, Riba G, Cassier P, Clement JL (1991) Alterations of insect epicuticular hydrocarbons during infection with Beauveria bassiana or B. brongniartii. J Invertebr Pathol 58:10–18. https://doi.org/10.1016/0022-2011(91)90156-K
Leite MOG, Alves DA, Lecocq A, Malaquias JB, Delalibera I Jr, Jensen AB (2022) Laboratory risk assessment of three entomopathogenic fungi used for pest control toward social bee pollinators. Microorganisms 10:1800. https://doi.org/10.3390/microorganisms10091800
Mascarin GM, Jaronski ST (2016) The production and uses of Beauveria bassiana as a microbial insecticide. World J Microb Biot 32:177. https://doi.org/10.1007/s11274-016-2131-3
Mayorga-Ch D, Castro-Cortés NC, Rodríguez C, Sarmiento CE (2021) Behavioral responses of the social wasp Polistes myersi to prey infected with fungi used in biological control. J Insect Behav 34:136–149. https://doi.org/10.1007/s10905-021-09775-z
Medeiros HR, Grandinete YC, Manning P, Harper KA, Cutler GC, Teydmers P, Righi CA, Ribeiro MC (2019) Forest cover enhances natural enemy diversity and biological control services in Brazilian sun coffee plantations. Agron Sustain Dev 39:50. https://doi.org/10.1007/s13593-019-0600-4
Meyling NV, Pell JK (2006) Detection and avoidance of an entomopathogenic fungus by a generalist insect predator. Ecol Entomol 31:162–171. https://doi.org/10.1111/j.0307-6946.2006.00781.x
Oi CA, da Silva RC, Stevens I, Ferreira HM, Nascimento FS, Wenseleers T (2021) Hormonal modulation of reproduction and fertility signaling in polistine wasps. Curr Zool 67:519–530. https://doi.org/10.1093/cz/zoab026
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin R, O’Hara RB, Simpson GL, Solymos P, Stevens MHH (2019) Vegan: community ecology package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan
Oliveira MM, Gomes FB, Somavilla A, Krug C (2017) Polistes canadensis (Linnaeus, 1758) (Vespidae: Polistinae) in the Western Amazon: a potential biological control agent. Sociobiology 64:442–450. https://doi.org/10.13102/sociobiology.v64i4.1936
Poidatz J, Plantey RL, Thiéry D (2018) Indigenous strains of Beauveria and Metharizium as potential biological control agents against the invasive hornet Vespa velutina. J Invertebr Pathol 153:180–185. https://doi.org/10.1016/j.jip.2018.02.021
Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J, Vanbergen AJ (2016) Safeguarding pollinators and their values to human well-being. Nature 540:220–229. https://doi.org/10.1038/nature20588
Prezoto F, Maciel TT, Detoni M, Mayorquin AZ, Barbosa BC (2019) Pest control potential of social wasps in small farms and urban gardens. Insects 10:192. https://doi.org/10.3390/insects10070192
Pull CD, Ugelvig LV, Wiesenhofer F, Grasse AV, Tragust S, Schmitt T, Brown MJF, Cremer S (2018) Destructive disinfection of infected brood prevents systemic disease spread in ant colonies. Elife 7:e32073. https://doi.org/10.7554/eLife.32073
R Core Team (2022) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.Rproject.org
Rännbäck L-M, Cotes B, Anderson P, Rämert B, Meyling NV (2015) Mortality risk from entomopathogenic fungi affects oviposition behavior in the parasitoid wasp Trybliographa rapae. J Invertebr Pathol 124:78–86. https://doi.org/10.1016/j.jip.2014.11.003
Richard F-J, Aubert A, Grozinger CM (2008) Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers. BMC Biol 6:50. https://doi.org/10.1186/1741-7007-6-50
Richard F-J, Holt HL, Grozinger CM (2012) Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera). BMC Genomics 13:558. https://doi.org/10.1186/1471-2164-13-558
Richter MR (2000) Social wasp (Hymenoptera: Vespidae) foraging behavior. Annu Rev Entomol 45:121–150. https://doi.org/10.1146/annurev.ento.45.1.121
Sayah F, Fayet C, Idaomar M, Karlinsky A (1996) Effect of azadirachtin on vitellogenesis of Labidura riparia (Insect Dermaptera). Tissue Cell 28:741–749. https://doi.org/10.1016/S0040-8166(96)80077-2
Sayed AMM, Behle RW (2017) Evaluating a dual microbial agent biopesticide with Bacillus thuringiensis var. kurstaki and Beauveria bassiana blastospores. Biocontrol Sci Techn 27:461–474. https://doi.org/10.1080/09583157.2017.1303662
Schoeninger K, Somavilla A, Kohler A (2020) Occurrence of social wasps (Hymenoptera: Vespidae) in farming of organic tobacco (Nicotiana tabacum L.) in south of Brazil. Sociobiology 67:106–111. https://doi.org/10.13102/sociobiology.v67i1.4598
Seiedy M, Tork M, Deyhim F (2015) Effect of the entomopathogenic fungus Beauveria bassiana on the predatory mite Amblyseius swirskii (Acari: Phytoseiidae) as a non-target organism. Syst Appl Acarol 20:241–250. https://doi.org/10.11158/saa.20.3.2
Shah PA, Pell JK (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol 61:413–423. https://doi.org/10.1007/s00253-003-1240-8
Sharma S, Kooner R, Arora R (2017) Insect pests and crop losses. In: Sandhu S (ed) Arora R Breeding insect resistant crops for sustainable agriculture. Springer Singapore, Singapore, pp 45–66. https://doi.org/10.1007/978-981-10-6056-4_2
Signorotti L, Cappa F, d’Ettorre P, Cervo R (2014) Novel insights into the ontogeny of nestmate recognition in Polistes social wasps. PLoS One 9:e97024. https://doi.org/10.1371/journal.pone.0097024
Silva LCR, Dornelas ASP, Saraiva AS, Gravato C, Pestana JLT, Soares AMVM, Sarmento RA (2022) Do bio-insecticides affect only insect species? Behavior, regeneration, and sexual reproduction of a non-target freshwater planarian. Environ Sci Pollut Res 29:10665–10674. https://doi.org/10.1007/s11356-021-16493-8
Somavilla A, Schoeninger K, Castro DGD, Oliveira ML, Krug C (2016) Diversity of wasps (Hymenoptera: Vespidae) in conventional and organic guarana (Paullinia cupana var. sorbilis) crops in the Brazilian Amazon. Sociobiology 63:1051–1057. https://doi.org/10.13102/sociobiology.v63i4.1178
Somavilla A, Barbosa BC, de Souza MM, Prezoto F (2021) List of species of social wasps from Brazil. In: Prezoto F, Nascimento FS, Barbosa BC, Somavilla A (eds) Neotropical social wasps: basic and applied aspects. Springer, Cham, pp 293–316. https://doi.org/10.1007/978-3-030-53510-0_16
Southon RJ, Fernandes OA, Nascimento FS, Sumner S (2019) Social wasps are effective biocontrol agents of key lepidopteran crop pests. Proc R Soc Biol Sci B 286:20191676. https://doi.org/10.1098/rspb.2019.1676
Stock M, Milutinović B, Hoenigsberger M, Grasse AV, Wiesenhofer F, Kampleitner N, Narasimhan M, Schmitt T, Cremer S (2023) Pathogen evasion of social immunity. Nat Ecol Evol 7:450–460. https://doi.org/10.1038/s41559-023-01981-6
Subbanna ARNS, Stanley J, Venkateswarlu V, Naik VCB, Khan MS (2019) Toxicological prospects on joint action of microbial insecticides and chemical pesticides. In: Khan MA, Ahmad W (eds) Microbes for sustainable insect pest management. Sustainability in plant and crop protection. Springer, Cham, pp 317–340. https://doi.org/10.1007/978-3-030-23045-6_12
Teixeira GVM, de Souza AR, Barbosa WF, Bernardes RC, Lima MAP (2022) Chronic exposure to a common biopesticide is detrimental to individuals and colonies of the paper wasp Polistes versicolor. Sci Total Environ 810:152108. https://doi.org/10.1016/j.scitotenv.2021.152108
van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. Biocontrol 63:39–59. https://doi.org/10.1007/s10526-017-9801-4
Vander Meer RK, Breed MD, Winston M, Espelie KE (1998) Pheromone communication in social insects: ants, wasps, bees, and termites. Westview Press, New York
Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019) Welcome to the tidyverse. J Open Source Softw 4:1686. https://doi.org/10.21105/joss.01686
Wraight SP, Galaini-Wraight S, Howes RL, Castrillo LA, Griggs MH, Carruthers RI, Smith RH, Matsumoto TK, Keith LM (2021) Efficacy of Beauveria bassiana strain GHA spray applications against coffee berry borer Hypothenemus hampei on Hawai‘i Island. Biol Control 161:104587. https://doi.org/10.1016/j.biocontrol.2021.104587
Zimmermann G (2007) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Technol 17:553–596. https://doi.org/10.1080/09583150701309006
Funding
This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (grants 2020/14464–2 to A.R.S., 2022/07997–0 to A.P., 2019/08029–4 to W.F., 2021/00984–7 to L.D.L., 2020/06632–2 to E.F.S., and 2018/10996–0 to F.S.N.), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior — Brasil (CAPES) — Finance Code 001 (to S.S.), CAPES Print program (grant 88887.571161/2020–00 to M.A.P.L.), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grants 142285/2018–8 to A.P., and 164743/2020–0 to D.A.A.).
Author information
Authors and Affiliations
Contributions
Conceptualization: André Rodrigues de Souza; writing the original draft: all authors; data curation: André Rodrigues de Souza; Amanda Prato; funding acquisition: André Rodrigues de Souza; investigation: Amanda Prato, Wilson Franca, Sircio Santos, Luan Dias Lima; statistical analyses: Rodrigo Cupertino Bernardes and Eduardo Fernando Santos.
Corresponding author
Ethics declarations
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
All authors consent to publish this manuscript.
Competing interests
The authors declare no competing interests.
Additional information
Responsible Editor: Giovanni Benelli
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
de Souza, A.R., Prato, A., Franca, W. et al. A predatory social wasp does not avoid nestmates contaminated with a fungal biopesticide. Environ Sci Pollut Res 30, 103851–103861 (2023). https://doi.org/10.1007/s11356-023-29770-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-023-29770-5