Skip to main content

Advertisement

Log in

Deep-sea mining: using hyperbaric conditions to study the impact of sediment plumes in the subtidal clam Spisula solida

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

With the growing interest to exploit mineral resources in the deep-sea, there is the need to establish guidelines and frameworks to support hazard and risk assessment schemes. The present study used a subtidal species of filter-feeding bivalve, the clam Spisula solida, as a proxy to better understand the impacts of sediment plumes in marine organisms under hyperbaric conditions. Four concentrations of suspended sediments (0 g/L, 1 g/L, 2 g/L, and 4 g/L) were used in a mixture with different grain sizes at 4 Bar for 96 h. Functional (filtration rate—FR) and biochemical endpoints (catalase—CAT, glutathione s-transferase—GST, and lipid peroxidation—LPO) were analyzed in the gonads, digestive gland, and gills of S. solida after a 96-h exposure at 4 Bar (the natural limit of the species vertical distribution). The FR showed a decreasing trend with the increasing sediment concentrations (significant effects at 2 and 4 g/L). Additionally, significant changes were observed for some of the tested oxidative stress biomarkers, which were concentration and tissue-dependent, i.e., CAT activity was significantly elevated in gills (1 g/L treatment), and GST was decreased in digestive gland (1 g/L treatment). Overall, the results show that suspended sediments, at 2 and 4 g/L, have negative functional impacts in the bivalve S. solida providing additional insights to improve hazard assessment of deep-sea mining. These findings represent a step forward to ensure the mitigation of the potential negative effects of deep-sea resource exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abele D, Brey T, Philipp E (2009) Bivalve models of aging and the determination of molluscan lifespans. Exp Gerontol 44:307–315

    Article  Google Scholar 

  • Abidli S, Pinheiro M, Lahbib Y, Neuparth T, Santos MM, Trigui El Menif N (2021) Effects of environmentally relevant levels of polyethylene microplastic on Mytilus galloprovincialis (Mollusca: Bivalvia): filtration rate and oxidative stress. Environ Sci Pollut Res 28:26643–26652

    Article  CAS  Google Scholar 

  • Aebi H (1974) Catalase. In: Bergmeyer H (ed) Methods of enzymatic analysis. Verlag Chemie/Academic Press Inc., Weinheim/NewYork, pp 673–684. https://doi.org/10.1016/B978-0-12-091302-2.50032-3

  • Amado-Filho G, Salgado L, Rebelo M, Rezende C, Karez C, Pfeiffer W (2008) Heavy metals in benthic organisms from Todos os Santos Bay, Brazil. Braz J Biol 68:95–100

    Article  CAS  Google Scholar 

  • Aouini F, Trombini C, Volland M, Elcafsi M, Blasco J (2018) Assessing lead toxicity in the clam Ruditapes philippinarum: bioaccumulation and biochemical responses. Ecotoxicol Environ Saf 158:193–203

    Article  CAS  Google Scholar 

  • Banni M, Negri A, Dagnino A, Jebali J, Ameur S, Boussetta H (2010) Acute effects of benzo [a] pyrene on digestive gland enzymatic biomarkers and DNA damage on mussel Mytilus galloprovincialis. Ecotoxicol Environ Saf 73:842–848

    Article  CAS  Google Scholar 

  • Barrera-Escorcia G, Vanegas-Perez C, Wong-Chang I (2010) Filtration rate, assimilation and assimilation efficiency in Crassostrea virginica (Gmelin) fed with Tetraselmis suecica under cadmium exposure. J Environ Sci Health, Part A 45:14–22

    Article  CAS  Google Scholar 

  • Bhagat J, Ingole B, Singh N (2016) Glutathione S-transferase, catalase, superoxide dismutase, glutathione peroxidase, and lipid peroxidation as biomarkers of oxidative stress in snails: a review. Invertebr Surviv J 13:336–349

    Google Scholar 

  • Bocchetti R, Fattorini D, Pisanelli B, Macchia S, Oliviero L, Pilato F, Pellegrini D, Regoli F (2008a) Contaminant accumulation and biomarker responses in caged mussels, Mytilus galloprovincialis, to evaluate bioavailability and toxicological effects of remobilized chemicals during dredging and disposal operations in harbour areas. Aquat Toxicol 89:257–266

    Article  CAS  Google Scholar 

  • Bocchetti R, Lamberti CV, Pisanelli B, Razzetti EM, Maggi C, Catalano B, Sesta G, Martuccio G, Gabellini M, Regoli F (2008b) Seasonal variations of exposure biomarkers, oxidative stress responses and cell damage in the clams, Tapes philippinarum, and mussels, Mytilus galloprovincialis, from Adriatic sea. Mar Environ Res 66:24–26

    Article  CAS  Google Scholar 

  • Boschen RE, Rowden AA, Clark MR, Gardner JPA (2013) Mining of deep-sea seafloor massive sulfides: a review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean Coast Manag 84:54–67

    Article  Google Scholar 

  • Bucheli TD, Fent K (1995) Induction of cytochrome P450 as a biomarker for environmental contamination in aquatic ecosystems. Crit Rev Environ Sci Technol 25:201–268

    Article  CAS  Google Scholar 

  • Cappello T, Maisano M, D’Agata A, Natalotto A, Mauceri A, Fasulo S (2013) Effects of environmental pollution in caged mussels (Mytilus galloprovincialis). Mar Environ Res 91:52–60

    Article  CAS  Google Scholar 

  • Cheung S, Shin P (2005) Size effects of suspended particles on gill damage in green-lipped mussel Perna viridis. Mar Pollut Bull 51:801–810

    Article  CAS  Google Scholar 

  • Clark MR, Durden JM, Christiansen S (2020) Environmental impact assessments for deep-sea mining: can we improve their future effectiveness? Mar Policy 114. https://doi.org/10.1016/j.marpol.2018.11.026

  • Colaço A, Carreiro e Silva M, Giacomello E, Gordo L, Vieira A, Adão H, Gomes-Pereira JN, Menezes G, Barros I (2017) Ecossistemas Do Mar Profundo. Segurança e Serviços Marítimos Direção-Geral de Recursos Naturais, Lisboa, Portugal. https://www.sophia-mar.pt

  • Coughlan J (1969) The estimation of filtering rate from the clearance of suspensions. Mar Biol 2:356–358

    Article  Google Scholar 

  • Dacey J (2020) Deep-sea mining may have deep economic, environmental impacts. Eos 101. https://doi.org/10.1029/2020EO147683

  • Danovaro R, Corinaldesi C, Dell’Anno A, Snelgrove PV (2017) The deep-sea under global change. Curr Biol 27:R461–R465

    Article  CAS  Google Scholar 

  • de la Ossa Carretero JA, del Pilar RY, Giménez Casalduero F, Sánchez Lizaso JL (2008) Effect of sewage discharge in Spisula subtruncata (da Costa 1778) populations. Arch Environ Contam Toxicol 54:226–235

    Article  Google Scholar 

  • Diggins TP (2001) A seasonal comparison of suspended sediment filtration by quagga (Dreissena bugensis) and zebra (D. polymorpha) mussels. J Great Lakes Res 27:457–466

    Article  Google Scholar 

  • Dolbeth M, Viegas I, Martinho F, Marques J, Pardal M (2006) Population structure and species dynamics of Spisula solida, Diogenes pugilator and Branchiostoma lanceolatum along a temporal–spatial gradient in the south coast of Portugal. Estuar Coast Shelf Sci 66:168–176

    Article  Google Scholar 

  • Edge KJ, Dafforn KA, Simpson SL, Ringwood AH, Johnston EL (2015) Resuspended contaminated sediments cause sublethal stress to oysters: a biomarker differentiates total suspended solids and contaminant effects. Environ Toxicol Chem 34:1345–1353

    Article  CAS  Google Scholar 

  • Ellis J, Cummings V, Hewitt J, Thrush S, Norkko A (2002) Determining effects of suspended sediment on condition of a suspension feeding bivalve (Atrina zelandica): results of a survey, a laboratory experiment and a field transplant experiment. J Exp Mar Biol Ecol 267:147–174

    Article  Google Scholar 

  • Fahy E, Carroll J, O'Toole M, Hickey J (2003) A preliminary account of fisheries for the surf clam Spisula solida (L) (Mactracea) in Ireland. Irish Fisheries Bulletin, Marine Institute

  • Fernández-Reiriz MJ, Irisarri J, Labarta U (2015) Feeding behaviour and differential absorption of nutrients in mussel Mytilus galloprovincialis: responses to three microalgae diets. Aquaculture 446:42–47

    Article  Google Scholar 

  • Ferreira M, Antunes P, Costa J, Amado J, Gil O, Pousão-Ferreira P, Vale C, Reis-Henriques MA (2008) Organochlorine bioaccumulation and biomarkers levels in culture and wild white seabream (Diplodus sargus). Chemosphere 73:1669–1674

    Article  CAS  Google Scholar 

  • Figueiredo C, Grilo TF, Oliveira R, Ferreira IJ, Gil F, Lopes C, Brito P, Ré P, Caetano M, Diniz M, Raimundo J (2022) Single and combined ecotoxicological effects of ocean warming, acidification and lanthanum exposure on the surf clam (Spisula solida). Chemosphere 302:134850

    Article  CAS  Google Scholar 

  • Gaspar MB, Monteiro CC (1999) Gametogenesis and spawning in the subtidal white clam Spisula solida, in relation to temperature. J Mar Biol Assoc UK 79:753–755

    Article  Google Scholar 

  • Gaspar M, Santos M, Vasconcelos P (2001) Weight–length relationships of 25 bivalve species (Mollusca: Bivalvia) from the Algarve coast (southern Portugal). J Mar Biol Assoc UK 81:805–807

    Article  Google Scholar 

  • Gomes AS, Palma JJ, Silva CG (2000) Causas e consequências do impacto ambiental da exploração dos recursos minerais marinhos. Revista Brasileira De Geofísica 18:447–454

    Article  Google Scholar 

  • Gunderson MP, Nguyen BT, Cervantes Reyes JC, Holden LL, French JMT, Smith BD, Lineberger C (2018) Response of phase I and II detoxification enzymes, glutathione, metallothionein and acetylcholine esterase to mercury and dimethoate in signal crayfish (Pacifastacus leniusculus). Chemosphere 208:749–756

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    Article  CAS  Google Scholar 

  • Helmons R, de Wit L, de Stigter H, Spearman J (2022) Dispersion of benthic plumes in deep-sea mining: what lessons can be learned from dredging? Front Earth Sci 10. https://doi.org/10.3389/feart.2022.868701

  • Hoagland P, Beaulieu S, Tivey MA, Eggert RG, German C, Glowka L, Lin J (2010) Deep-sea mining of seafloor massive sulfides. Mar Policy 34:728–732

    Article  Google Scholar 

  • Hughes DJ, Shimmield TM, Black KD, Howe JA (2015) Ecological impacts of large-scale disposal of mining waste in the deep sea. Sci Rep 5:9985

    Article  CAS  Google Scholar 

  • Jesus HCd, Costa EdA, Mendonça ASF, Zandonade E (2004) Distribuição de metais pesados em sedimentos do sistema estuarino da Ilha de Vitória-ES. Quim Nova 27:378–386

    Article  Google Scholar 

  • Joaquim S, Matias D, Lopes B, Arnold WS, Gaspar MB (2008) The reproductive cycle of white clam Spisula solida (L.)(Mollusca: Bivalvia): implications for aquaculture and wild stock management. Aquaculture 281:43–48

    Article  Google Scholar 

  • Kádár E, Bettencourt R, Costa V, Santos RS, Lobo-da-Cunha A, Dando P (2005) Experimentally induced endosymbiont loss and re-acquirement in the hydrothermal vent bivalve Bathymodiolus azoricus. J Exp Mar Biol Ecol 318:99–110

    Article  Google Scholar 

  • Kopecka-Pilarczyk J, Coimbra J (2010a) Short term high hydrostatic pressure effect on selected biomarkers in silver eel (Anguilla anguilla). J Exp Mar Biol Ecol 391:118–124

    Article  CAS  Google Scholar 

  • Kopecka-Pilarczyk J, Coimbra J (2010b) The effect of elevated hydrostatic pressure upon selected biomarkers in juvenile blackspot seabream Pagellus bogaraveo in a 14 day-long experiment. J Fish Biol 77:279–284

    Article  CAS  Google Scholar 

  • Lima I, Moreira SM, Rendón-Von Osten J, Soares AM, Guilhermino L (2007) Biochemical responses of the marine mussel Mytilus galloprovincialis to petrochemical environmental contamination along the North-western coast of Portugal. Chemosphere 66:1230–1242

    Article  CAS  Google Scholar 

  • Little CTS, Vrijenhoek RC (2003) Are hydrothermal vent animals living fossils? Trends Ecol Evol 18:582–588

    Article  Google Scholar 

  • Lopes CL, Bastos L, Caetano M, Martins I, Santos MM, Iglesias I (2019) Development of physical modelling tools in support of risk scenarios: a new framework focused on deep-sea mining. Sci Total Environ 650:2294–2306

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  • Ma W, Schott D, Lodewijks G (2017) A new procedure for deep sea mining tailings disposal. Minerals 7:47

    Article  Google Scholar 

  • Morato T, Juliano M, Pham CK, Carreiro-Silva M, Martins I, Colaço A (2022) Modelling the dispersion of seafloor massive sulphide mining plumes in the mid Atlantic ridge around the Azores. Front Mar Sci 9. https://doi.org/10.3389/fmars.2022.910940

  • Pearse V, Pearse J, Buchsbaum M, Buchsbaum R (1987) Living invertebrates. Blackwell Scientific Publications, The Boxwood Press, California

    Google Scholar 

  • Penning WE, Pozzato L, Vijverberg T, Noordhuis R, Bij de Vaate A, Van Donk E, Dionisio Pires LM (2013) Effects of suspended sediments on seston food quality for zebra mussels in Lake Markermeer, the Netherlands. Inland Waters 3:437–450

    Article  CAS  Google Scholar 

  • Pestana D, Ostrensky A, Boeger WAP, Pie MR (2009) The effect of temperature and body size on filtration rates of Limnoperna fortunei (Bivalvia, Mytilidae) under laboratory conditions. Braz Arch Biol Technol 52:135–144

    Article  Google Scholar 

  • Pinheiro M, Caetano M, Neuparth T, Barros S, Soares J, Raimundo J, Vale C, Coimbra J, Castro LFC, Santos MM (2019) Ecotoxicology of deep-sea environments: functional and biochemical effects of suspended sediments in the model species Mytilus galloprovincialis under hyperbaric conditions. Sci Total Environ 670:218–225

    Article  CAS  Google Scholar 

  • Pinheiro M, Oliveira A, Barros S, Alves N, Raimundo J, Caetano M, Coimbra J, Neuparth T, Santos MM (2021) Functional, biochemical and molecular impact of sediment plumes from deep-sea mining on Mytilus galloprovincialis under hyperbaric conditions. Environ Res 195:110753

    Article  CAS  Google Scholar 

  • Pinheiro M, Martins I, Raimundo J, Caetano M, Neuparth T, Santos MM (2023) Stressors of emerging concern in deep-sea environments: microplastics, pharmaceuticals, personal care products and deep-sea mining. Sci Total Environ 876:162557

    Article  CAS  Google Scholar 

  • Rattner H (1977) O esgotamento dos recursos naturais: catástrofe interdependência? Revista De Administração De Empresas 17:15–21

    Article  Google Scholar 

  • Robinson WE, Wehling WE, Morse MP (1984) The effect of suspended clay on feeding and digestive efficiency of the surf clam, Spisula solidissima (Dillwyn). J Exp Mar Biol Ecol 74:1–12

    Article  CAS  Google Scholar 

  • Rodríguez-Rúa A, Pozuelo I, de Gonzalez Canales ML, Sarasquete C, de los Angeles Bruzon M (2013) Reproductive cycle of Spisula solida (L.) (Mollusca: Bivalvia) on the southwest coast of Spain. Invertebr Reprod Dev 57:1–9

    Article  Google Scholar 

  • Sabatini M (2007) Spisula solida: a surf clam. In: Tyler-Walters H, Hiscock K (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews. Marine Biological Association of the United Kingdom, Plymouth, UK. https://doi.org/10.17031/marlinsp.2030.2

  • Safi KA, Hewitt JE, Talman SG (2007) The effect of high inorganic seston loads on prey selection by the suspension-feeding bivalve, Atrina zelandica. J Exp Mar Biol Ecol 344:136–148

    Article  CAS  Google Scholar 

  • Santos MM, Jorge PAS, Coimbra J, Vale C, Caetano M, Bastos L, Iglesias I, Guimarães L, Reis-Henriques MA, Teles LO, Vieira MN, Raimundo J, Pinheiro M, Nogueira V, Pereira R, Neuparth T, Ribeiro MC, Silva E, Castro LFC (2018) The last frontier: coupling technological developments with scientific challenges to improve hazard assessment of deep-sea mining. Sci Total Environ 627:1505–1514

    Article  CAS  Google Scholar 

  • Sharma R (2015) Environmental issues of deep-sea mining. Procedia Earth Plan Sci 11:204–211

    Article  CAS  Google Scholar 

  • Silva CRd (2008) Geodiversidade do Brasil: conhecer o passado, para entender o presente e prever o futuro. CPRM

  • Sobral P, Widdows J (2000) Effects of increasing current velocity, turbidity and particle-size selection on the feeding activity and scope for growth of Ruditapes decussatus from Ria Formosa, southern Portugal. J Exp Mar Biol Ecol 245:111–125

    Article  Google Scholar 

  • Solé M, Buet A, Ortiz L, Maynou F, Bayona Termens JM, Albaigés Riera J (2007) Bioaccumulation and biochemical responses in mussels exposed to the water-accommodated fraction of the Prestige fuel oil. Scientia Marina 71(2):373–394. https://doi.org/10.3989/scimar

  • Solé M, Lima D, Reis-Henriques MA, Santos MM (2008) Stress biomarkers in juvenile Senegal Sole, Solea senegalensis, exposed to the water-accommodated fraction of the “prestige” fuel oil. Bull Environ Contam Toxicol 80:19–23

    Article  Google Scholar 

  • Souza KG (2000) Recursos minerais marinhos além das jurisdições nacionais. Braz J Geophys 18(3). https://doi.org/10.1590/S0102-261X2000000300017

  • Sparenberg O (2019) A historical perspective on deep-sea mining for manganese nodules, 1965–2019. Extr Ind Soc 6:842–854

    Google Scholar 

  • Spearman J, Taylor J, Crossouard N, Cooper A, Turnbull M, Manning A, Lee M, Murton B (2020) Measurement and modelling of deep sea sediment plumes and implications for deep sea mining. Sci Rep 10:5075

    Article  CAS  Google Scholar 

  • Stegeman JJ, Lech JJ (1991) Cytochrome P-450 monooxygenase systems in aquatic species: carcinogen metabolism and biomarkers for carcinogen and pollutant exposure. Environ Health Perspect 90:101–109

    CAS  Google Scholar 

  • Strobel NA, Fassett RG, Marsh SA, Coombes JS (2011) Oxidative stress biomarkers as predictors of cardiovascular disease. Int J Cardiol 147:191–201

    Article  Google Scholar 

  • Tokumon R, Cataldo D, Boltovskoy D (2015) Effects of suspended inorganic matter on filtration and grazing rates of the invasive mussel Limnoperna fortunei (Bivalvia: Mytiloidea). J Molluscan Stud 82:201–204

    Google Scholar 

  • Tsangaris C, Strogyloudi E, Hatzianestis I, Catsiki VA, Panagiotopoulos I, Kapsimalis V (2014) Impact of dredged urban river sediment on a Saronikos Gulf dumping site (Eastern Mediterranean): sediment toxicity, contaminant levels, and biomarkers in caged mussels. Environ Sci Pollut Res Int 21:6146–6161

    Article  CAS  Google Scholar 

  • Tuttle-Raycraft S, Morris TJ, Ackerman JD (2017) Suspended solid concentration reduces feeding in freshwater mussels. Sci Total Environ 598:1160–1168

    Article  CAS  Google Scholar 

  • Van Dover CL (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press. https://doi.org/10.1515/9780691239477

  • Viarengo A, Burlando B, Ceratto N, Panfoli I (2000) Antioxidant role of metallothioneins: a comparative overview. Cell Mo Biol (Noisy-le-Grand, France) 46:407–417

    CAS  Google Scholar 

  • Wilber DH, Clarke DG (2001) Biological effects of suspended sediments: a review of suspended sediment impacts on fish and shellfish with relation to dredging activities in estuaries. North Am J Fish Manag 21:855–875

    Article  Google Scholar 

  • Woo S, Denis V, Won H, Shin K, Lee G, Yum S (2013) Expressions of oxidative stress-related genes and antioxidant enzyme activities in Mytilus galloprovincialis (Bivalvia, Mollusca) exposed to hypoxia. Zoological Studies 52:15

    Article  Google Scholar 

  • Yang G, Song L, Lu X, Wang N, Li Y (2017) Effect of the exposure to suspended solids on the enzymatic activity in the bivalve Sinonovacula constricta. Aquac Fish 2:10–17

    Article  Google Scholar 

Download references

Funding

Marlene Pinheiro acknowledges the Portuguese Foundation for Science and Technology (FCT) under the PhD Grant SFRH/BD/147834/2019. Teresa Neuparth acknowledges FCT under the program “Stimulus of Scientific Employment” (2022.02925.CEECIND). Irene Martins acknowledges FCT under the program “Stimulus of Scientific Employment” (2021.03721.CEECIND). This work was supported by the projects “HIPERSea–Collection and Life Support in a Hyperbaric system for Deep-Sea Organisms” with the reference [POCI-01–0247-FEDER-033889 (AAC/03/SI/2017)] financed by “Programa Operacional Competividade e Internacionalização” (POCI), COMPETE 2020, and Portugal 2020, and “DEEPRISK–Deep-sea mining and climate change: new modeling tools in support of environmental risk assessment” with the reference [PTDC/CTA-AMB/7948/2020] financed by FCT. Strategic funding from FCT to CIIMAR is also acknowledged (UIDB/04423/2020 and UIDP/04423/2020).

Author information

Authors and Affiliations

Authors

Contributions

Rithielli Marassi and Marlene Pinheiro: conceptualization, investigation, data curation, writing—original draft, preparation, and writing and revising draft. Irene Martins, João Coimbra, Miguel Caetano, Joana Raimundo, and Rui Oliveira: conceptualization and writing- and revising draft. Filipe Castro: conceptualization, writing and revising draft, and supervision. Teresa Neuparth: conceptualization, data curation, writing and revising draft, and supervision. Miguel Santos: conceptualization, data curation, preparation; writing and revising draft, supervision, funding, acquisition, and project administration.

Corresponding author

Correspondence to Miguel Machado Santos.

Ethics declarations

Consent to participate

All authors consent to participate in the works of the manuscript.

Consent for publication

All authors consent to submit and publish the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Cinta Porte

This manuscript is part of Marlene Pinheiro’s PhD thesis.

We declare that the submitted manuscript entitled “Deep-sea mining: using hyperbaric conditions to study the impact of sediment plumes in the subtidal clam Spisula solida” is our original work. Results of this manuscript have not been submitted for publication elsewhere partial or in full. All authors agree with the submission.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marassi, R., Pinheiro, M., Caetano, M. et al. Deep-sea mining: using hyperbaric conditions to study the impact of sediment plumes in the subtidal clam Spisula solida. Environ Sci Pollut Res 30, 105675–105684 (2023). https://doi.org/10.1007/s11356-023-29560-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-29560-z

Keywords

Navigation