Skip to main content
Log in

Microbial volatile compounds (MVCs): an eco-friendly tool to manage abiotic stress in plants

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microbial volatile compounds (MVCs) are produced during the metabolism of microorganisms, are widely distributed in nature, and have significant applications in various fields. To date, several MVCs have been identified. Microbial groups such as bacteria and fungi release many organic and inorganic volatile compounds. They are typically small odorous compounds with low molecular masses, low boiling points, and lipophilic moieties with high vapor pressures. The physicochemical properties of MVCs help them to diffuse more readily in nature and allow dispersal to a more profound distance than other microbial non-volatile metabolites. In natural environments, plants communicate with several microorganisms and respond differently to MVCs. Here, we review the following points: (1) MVCs produced by various microbes including bacteria, fungi, viruses, yeasts, and algae; (2) How MVCs are effective, simple, efficient, and can modulate plant growth and developmental processes; and (3) how MVCs improve photosynthesis and increase plant resistance to various abiotic stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Alpha CJ, Campos M, Jacobs-Wagner C, Strobel SA (2015) Mycofumigation by the volatile organic compound-producing fungus Muscodor albus induces bacterial cell death through DNA damage. Appl Environ Microbiol 81(3):1147–1156

    Article  Google Scholar 

  • Avalos M, Garbeva P, Raaijmakers JM, van Wezel GP (2018) Production of glycine-derived ammonia as a low-cost and long-distance antibiotic strategy by Streptomyces. bioRxiv:450833

  • Asari S, Matzén S, Petersen MA, Bejai S, Meijer J (2016) Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiol Ecol 92(6):fiw070

    Article  Google Scholar 

  • Audrain B, Farag MA, Ryu CM, Ghigo JM (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39(2):222–233

    Article  CAS  Google Scholar 

  • Aziz M, Nadipalli RK, Xie X, Sun Y, Surowiec K, Zhang JL, Paré PW (2016) Augmenting sulfur metabolism and herbivore defense in Arabidopsis by bacterial volatile signaling. Front Plant Sci 7:458

    Article  Google Scholar 

  • Bailly A, Groenhagen U, Schulz S, Geisler M, Eberl L, Weisskopf L (2014) The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant J 80(5):758–771

    Article  CAS  Google Scholar 

  • Bavaresco LG, Osco LP, Araujo ASF, Mendes LW, Bonifacio A, Araujo FF (2020) Bacillus subtilis can modulate the growth and root architecture in soybean through volatile organic compounds. Theor Exp Plant Physiol 32(2):99–108

    Article  CAS  Google Scholar 

  • Bhattacharyya D, Lee YH (2017) A cocktail of volatile compounds emitted from Alcaligenes faecalis JBCS1294 induces salt tolerance in Arabidopsis thaliana by modulating hormonal pathways and ion transporters. J Plant Physiol 214:64–73

    Article  CAS  Google Scholar 

  • Bhattacharyya D, Garladinne M, Lee YH (2015) Volatile indole produced by rhizobacterium Proteus vulgaris JBLS202 stimulates growth of Arabidopsis thaliana through auxin, cytokinin, and brassinosteroid pathways. J Plant Growth Regul 34:158–168

    Article  CAS  Google Scholar 

  • Bitas V, McCartney N, Li N, Demers J, Kim JE, Kim HS, Brown KM, Kang S (2015) Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling. Front Microbiol 6:1248

    Article  Google Scholar 

  • Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13(11):3047–3058

    Article  CAS  Google Scholar 

  • Bonsang B, Gros V, Peeken I, Yassaa N, Bluhm K, Zöllner E, Sarda-Esteve R, Williams J (2010) Isoprene emission from phytoplankton monocultures: the relationship with chlorophyll-a, cell volume and carbon content. Environ Chem 7(6):554–563

    Article  CAS  Google Scholar 

  • Camarena-Pozos DA, Flores-Núñez VM, López MG, López-Bucio J, Partida-Martínez LP (2019) Smells from the desert: microbial volatiles that affect plant growth and development of native and non-native plant species. Plant Cell Environ 42(4):1368–1380

    Article  CAS  Google Scholar 

  • Castulo-Rubio DY, Alejandre-Ramírez NA, Orozco-Mosqueda MDC, Santoyo G, Macías-Rodríguez LI, Valencia-Cantero E (2015a) Volatile organic compounds produced by the rhizobacterium Arthrobacter agilis UMCV2 modulate Sorghum bicolor (strategy II plant) morphogenesis and SbFRO1 transcription in vitro. J Plant Growth Regul 34(3):611–623

    Article  CAS  Google Scholar 

  • Chen Y, Gozzi K, Yan F, Chai Y (2015) Acetic acid acts as a volatile signal to stimulate bacterial biofilm formation. MBio. 6(3):392–415

    Article  Google Scholar 

  • Cheng X, Cordovez V, Etalo DW, van der Voort M, Raaijmakers JM (2016) Role of the GacS sensor kinase in the regulation of volatile production by plant growth-promoting Pseudomonas fluorescens SBW25. Front Plant Sci 7:1706

    Article  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH et al (2008) 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microbe Interact 21:1067–1075

    Article  CAS  Google Scholar 

  • Cho SM, Kim YH, Anderson AJ, Kim YC (2013) Nitric oxide and hydrogen peroxide production are involved in systemic drought tolerance induced by 2R,3R-butanediol in Arabidopsis thaliana. Plant Pathol J 29:427–434

    Article  CAS  Google Scholar 

  • Contarino R, Brighina S, Fallico B, Cirvilleri G, Parafati L, Restuccia C (2019) Volatile organic compounds (VOCs) produced by biocontrol yeasts. Food Microbiol 82:70–74

    Article  CAS  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Herrera-Estrella A, López-Bucio J (2014) The 4-phosphopantetheinyl transferase of Trichoderma virens plays a role in plant protection against Botrytis cinerea through volatile organic compound emission. Plant Soil 379(1):261–274

    Article  CAS  Google Scholar 

  • D’alessandro MARCO, Erb M, Ton J, Brandenburg A, Karlen D, Zopfi J, Turlings TC (2014) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ 37(4):813–826

    Article  CAS  Google Scholar 

  • Davis TS, Boundy-Mills K, Landolt PJ (2012) Volatile emissions from an epiphytic fungus are semiochemicals for eusocial wasps. Microb Ecol 64:1056–1063

    Article  CAS  Google Scholar 

  • De Vrieze M, Pandey P, Bucheli TD, Varadarajan AR, Ahrens CH, Weisskopf L, Bailly A (2015) Volatile organic compounds from native potato-associated Pseudomonas as potential anti-oomycete agents. Front Microbiol 6:1295

    Article  Google Scholar 

  • del Carmen O-MM, Macías-Rodríguez LI, Santoyo G, Farías-Rodríguez R, Valencia-Cantero E (2013) Medicagotruncatula increases its iron-uptake mechanisms in response to volatile organic compounds produced by Sinorhizobium meliloti. Folia Microbiol 58(6):579–585

    Article  Google Scholar 

  • del Rosario CL, Banchio E (2020) Microbial volatile organic compounds produced by Bacillus amyloliquefaciens GB03 ameliorate the effects of salt stress in Mentha piperita principally through acetoin emission. J Plant Growth Regul 39(2):764–775

    Article  Google Scholar 

  • Di Francesco A, Ugolini L, Lazzeri L, Mari M (2015) Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biol Control 81:8–14

    Article  Google Scholar 

  • Ditengou FA, Muller A, Rosenkranz M, Felten J, Lasok H, Miloradovic van Doorn M, Legue V, Palme K, Schnitzler JP, Polle A (2015) Volatile signaling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun 6:6279

    Article  CAS  Google Scholar 

  • Drilling K, Dettner K (2009) Electrophysiological responses of four fungivorous coleoptera to volatiles of Trametes versicolor, implications for host selection. Chemoecology 19(2):109–115

    Article  CAS  Google Scholar 

  • El-Halfawy OM, Valvano MA (2013) Chemical communication of antibiotic resistance by a highly resistant subpopulation of bacterial cells. PLoS One 8(7):68874

    Article  Google Scholar 

  • Fialho MB, de Andrade A, Bonatto JMC, Salvato F, Labate CA, Pascholati SF (2016) Proteomic response of the phytopathogen Phyllosticta citricarpa to antimicrobial volatile organic compounds from Saccharomyces cerevisiae. Microbiol Res 183:1–7

    Article  CAS  Google Scholar 

  • Fincheira P, Venthur H, Mutis A, Parada M, Quiroz A (2016) Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species. Microbiol Res 193:39–47

    Article  CAS  Google Scholar 

  • Fincheira P, Quiroz A, Tortella G, Diez MC, Rubilar O (2021) Current advances in plant-microbe communication via volatile organic compounds as an innovative strategy to improve plant growth. Microbiol Res 247:126726

    Article  CAS  Google Scholar 

  • Gaines A, Ludovice M, Xu J, Zanghi M, Meinersmann RJ, Berrang M, Daley W, Britton D (2019) The dialogue between protozoa and bacteria in a microfluidic device. PLoS One 14(10):222484

    Article  Google Scholar 

  • García-Plazaola JI, Portillo-Estrada M, Fernández-Marín B, Kännaste A, Niinemets Ü (2017) Emissions of carotenoid cleavage products upon heat shock and mechanical wounding from a foliose lichen. Environ Exp Bot 133:87–97

    Article  Google Scholar 

  • Garnica-Vergara A, Barrera-Ortiz S, Muñoz‐Parra E, Raya‐González J, Méndez‐Bravo A, Macías‐Rodríguez L, Ruiz‐Herrera LF, López‐Bucio J (2016) The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol 209:1496–1512

    Article  CAS  Google Scholar 

  • Gong AD, Wu NN, Kong XW, Zhang YM, Hu MJ, Gong SJ, Dong FY, Wang JH, Zhao ZY, Liao YC (2019) Inhibitory effect of volatiles emitted from Alcaligenes faecalis N1-4 on Aspergillus flavus and aflatoxins in storage. Front Microbiol 10:1419

    Article  Google Scholar 

  • Groenhagen U, Baumgartner R, Bailly A, Gardiner A, Eberl L, Schulz S, Weisskopf L (2013) Production of bioactive volatiles by different Burkholderia ambifaria strains. J Chem Ecol 39:892–906

    Article  CAS  Google Scholar 

  • Haidar R, Roudet J, Bonnard O, Dufour MC, Corio-Costet MF, Fer M, Gautier T, Deschamps A, Fermaud M (2016) Screening and modes of action of antagonistic bacteria to control the fungal pathogen Phaeomoniella chlamydospora involved in grapevine trunk diseases. Microbiol Res 192:172–184

    Article  Google Scholar 

  • Hamamoto E, Kimura N, Nishino S, Ishihara A, Otani H, Osaki-Oka K (2021) Antimicrobial activity of the volatile compound 3, 5-dichloro-4-methoxybenzaldehyde, produced by the mushroom Porostereum spadiceum, against plant-pathogenic bacteria and fungi. J Appl Microbiol 131(3):1431–1439

    Article  CAS  Google Scholar 

  • Hassan SRU, Strobel GA, Geary B, Sears J (2013) An endophytic Nodulisporium sp. from Central America producing volatile organic compounds with both biological and fuel potential. J Microbiol Biotechnol 23(1):29–35

    Article  Google Scholar 

  • Hua SST, Beck JJ, Sarreal SBL, Gee W (2014) The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus. Mycotoxin Res 30(2):71–78

    Article  CAS  Google Scholar 

  • Huang R, Li GQ, Zhang J, Yang L, Che HJ, Jiang DH, Huang HC (2011) Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology 101(7):859–869

    Article  CAS  Google Scholar 

  • Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6(1):19–26

    Article  Google Scholar 

  • Hunziker L, Bönisch D, Groenhagen U, Bailly A, Schulz S, Weisskopf L (2015) Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl Environ Microbiol 81(3):821–830

    Article  Google Scholar 

  • Jalali F, Zafari D, Salari H (2017) Volatile organic compounds of some Trichoderma spp. increase growth and induce salt tolerance in Arabidopsis thaliana. Fungal Ecol 29:67–75

    Article  Google Scholar 

  • Janssens TK, Tyc O, Besselink H, de Boer W, Garbeva P (2019) Biological activities associated with the volatile compound 2, 5-bis (1-methylethyl)-pyrazine. FEMS Microbiol Lett 366(3):023

    Article  Google Scholar 

  • Jiang CH, Xie YS, Zhu K, Wang N, Li ZJ, Yu GJ, Guo JH (2019) Volatile organic compounds emitted by Bacillus sp. JC03 promote plant growth through the action of auxin and strigolactone. Plant Growth Regul 87(2):317–328

    Article  CAS  Google Scholar 

  • Jishma P, Hussain N, Chellappan R, Rajendran R, Mathew J, Radhakrishnan EK (2017) Strain-specific variation in plant growth promoting volatile organic compounds production by five different Pseudomonas spp. as confirmed by response of Vigna radiata seedlings. J Appl Microbiol 123(1):204–216

    Article  CAS  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81(6):1001–1012

    Article  CAS  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015a) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151

    Article  Google Scholar 

  • Kim KS, Lee S, Ryu CM (2013) Interspecific bacterial sensing through airborne signals modulates locomotion and drug resistance. Nat Commun 4(1):1–12

    Article  Google Scholar 

  • Kong WL, Wang YH, Wu XQ (2021) Enhanced iron uptake in plants by volatile emissions of Rahnella aquatilis JZ-GX1. Front Plant Sci 12:704000

    Article  Google Scholar 

  • Korpi A, Järnberg J, Pasanen AL (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39(2):139–193

    Article  CAS  Google Scholar 

  • Kusstatscher P, Cernava T, Berg G (2020) Using bacteria-derived volatile organic compounds (VOCs) for industrial processes. In: Bacterial Volatile Compounds as Mediators of Airborne Interactions. Springer, Singapore., pp 305–316

    Chapter  Google Scholar 

  • Kwon YS, Ryu CM, Lee S, Park HB, Han KS, Lee JH, Lee K, Chung WS, Jeong MJ, Kim HK, Bae DW (2010) Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta 232:1355–1370

    Article  CAS  Google Scholar 

  • Lee S, Behringer G, Hung R, Bennett J (2019) Effects of fungal volatile organic compounds on Arabidopsis thaliana growth and gene expression. Fungal Ecol 37:1–9

    Article  Google Scholar 

  • Lee S, Hung R, Yap M, Bennett JW (2015) Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Arch Microbiol 197(5):723–727

    Article  CAS  Google Scholar 

  • Lemfack MC, Ravella SR, Lorenz N, Kai M, Jung K, Schulz S, Piechulla B (2016) Novel volatiles of skin-borne bacteria inhibit the growth of Gram-positive bacteria and affect quorum-sensing controlled phenotypes of Gram-negative bacteria. Syst Appl Microbiol 39(8):503–515

    Article  CAS  Google Scholar 

  • Li FC, Wang J, Wu MM, Fan CM, Li X, He JM (2017) Mitogen-activated protein kinase phosphatases affect UV-B-induced stomatal closure via controlling NO in guard cells. Plant Physiol 173(1):760–770

    Article  CAS  Google Scholar 

  • Li N, Kang S (2018) Do volatile compounds produced by Fusarium oxysporum and Verticillium dahliae affect stress tolerance in plants? Mycology 9(3):166–175

    Article  CAS  Google Scholar 

  • Li N, Wang W, Bitas V, Subbarao K, Liu X, Kang S (2018) Volatile compounds emitted by diverse Verticillium species enhance plant growth by manipulating auxin signaling. Mol Plant-Microbe Interact 31(10):1021–1031

    Article  CAS  Google Scholar 

  • Li PS, Kong WL, Wu XQ, Zhang Y (2021) Volatile organic compounds of the plant growth-promoting rhizobacteria JZ-GX1 enhanced the tolerance of Robinia pseudoacacia to salt stress. Front Plant Sci 12:753332

    Article  Google Scholar 

  • Liu XM, Zhang H (2015) The effects of bacterial volatile emissions on plant abiotic stress tolerance. Front Plant Sci 6:774

    Article  Google Scholar 

  • Lozano-Soria A, Picciotti U, Lopez-Moya F, Lopez-Cepero J, Porcelli F, Lopez-Llorca LV (2020) Volatile organic compounds from entomopathogenic and nematophagous fungi, repel banana black weevil (Cosmopolites sordidus). Insects 11(8):509

    Article  Google Scholar 

  • Maicas. (2020) The role of yeasts in fermentation processes. Microorganisms 8(8):1142

    Article  CAS  Google Scholar 

  • Martínez-Medina A, Van Wees SC, Pieterse CM (2017) Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant Cell Environ 40(11):2691–2705

    Article  Google Scholar 

  • Meldau DG, Meldau S, Hoang LH, Underberg S, Wunsche H, Baldwin IT (2013) Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell 25:2731–2747

    Article  CAS  Google Scholar 

  • Meskhidze N, Sabolis A, Reed R, Kamykowski D (2015) Quantifying environmental stress-induced emissions of algal isoprene and monoterpenes using laboratory measurements. Biogeosci 12(3):637–651

    Article  Google Scholar 

  • Minerdi D, Bossi S, Maffei ME, Gullino ML, Garibaldi A (2011) Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol Ecol 76(2):342–351

    Article  CAS  Google Scholar 

  • Montes Vidal D, von Rymon-Lipinski AL, Ravella S, Groenhagen U, Herrmann J, Zaburannyi N, Zarbin PH, Varadarajan AR, Ahrens CH, Weisskopf L, Müller R (2017) Long-Chain Alkyl Cyanides: Unprecedented Volatile Compounds Released by Pseudomonas and Micromonospora Bacteria. Angew Chem Int Ed 56(15):4342–4346

    Article  CAS  Google Scholar 

  • Molina-Santiago C, Daddaoua A, Fillet S, Duque E, Ramos JL (2014) Interspecies signalling: P seudomonas putida efflux pump TtgGHI is activated by indole to increase antibiotic resistance. Environ Microbiol 16(5):1267–1281

    Article  CAS  Google Scholar 

  • Mookherjee A, Bera P, Mitra A, Maiti MK (2018) Characterization and synergistic effect of antifungal volatile organic compounds emitted by the Geotrichum candidum PF005, an endophytic fungus from the eggplant. Microb Ecol 75(3):647–661

    Article  CAS  Google Scholar 

  • Morcillo RJ, Singh SK, He D, An G, Vílchez JI, Tang K, Yuan F, Sun Y, Shao C, Zhang S, Yang Y (2020) Rhizobacterium-derived diacetyl modulates plant immunity in a phosphate-dependent manner. EMBO J 39(2):e102602

    Article  CAS  Google Scholar 

  • Morita T, Tanaka I, Ryuda N, Ikari M, Ueno D, Someya T (2019) Antifungal spectrum characterization and identification of strong volatile organic compounds produced by Bacillus pumilus TM-R. Heliyon 5(6):1817

    Article  Google Scholar 

  • Naznin HA, Kimura M, Miyazawa M, Hyakumachi M (2013) Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS8-3 for growth promotion effects on tobacco. Microbes Environ 28(1):42–49

    Article  Google Scholar 

  • Oro L, Feliziani E, Ciani M, Romanazzi G, Comitini F (2018) Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries. Int J Food Microbiol 265:18–22

    Article  CAS  Google Scholar 

  • Pandey A, Banerjee D (2014) Daldinia bambusicola Ch4/11 an endophytic fungus producing volatile organic compounds having antimicrobial and olio chemical potential. J Adv Microbiol 1(6):330–337

    Google Scholar 

  • Parafati L, Vitale A, Restuccia C, Cirvilleri G (2017) Performance evaluation of volatile organic compounds by antagonistic yeasts immobilized on hydrogel spheres against gray, green and blue postharvest decays. Food Microbiol 63:191–198

    Article  CAS  Google Scholar 

  • Pavlovic D, Nikolic B, Djurovic S, Waisi H, Andjelkovic A, Marisavljevic D (2015) Chlorophyll as a measure of plant health: Agroecological aspects. Pestic Phytomed 29:21–34

    Article  Google Scholar 

  • Pena LC, Jungklaus GH, Savi DC, Ferreira-Maba L, Servienski A, Maia BH, Annies V, Galli-Terasawa LV, Glienke C, Kava V (2019) Muscodor brasiliensis sp. nov. produces volatile organic compounds with activity against Penicillium digitatum. Microbiol Res 221:28–35

    Article  CAS  Google Scholar 

  • Piechulla B, Degenhardt J (2014) The emerging importance of microbial volatile organic compounds. Plant Cell Environ 37(4):811–812

    Article  CAS  Google Scholar 

  • Plyuta V, Lipasova V, Popova A, Koksharova O, Kuznetsov A, Szegedi E, Chernin L, Khmel I (2016) Influence of volatile organic compounds emitted by Pseudomonas and Serratia strains on Agrobacterium tumefaciens biofilms. APMIS 124(7):586–594

    Article  CAS  Google Scholar 

  • Poveda J (2021) Beneficial effects of microbial volatile organic compounds (MVOCs) in plants. Appl Soil Ecol 168:104118

    Article  Google Scholar 

  • Que YA, Hazan R, Strobel B, Maura D, He J, Kesarwani M, Panopoulos P, Tsurumi A, Giddey M, Wilhelmy J, Mindrinos MN (2013) A quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria. PLoS One 8(12):80140

    Article  Google Scholar 

  • Rajer FU, Wu H, Xie Y, Xie S, Raza W, Tahir HAS, Gao X (2017) Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato. Microbiology 163(4):523–530

    Article  CAS  Google Scholar 

  • Ramírez V, Munive JA, Cortes L, Muñoz-Rojas J, Portillo R, Baez A (2020) Long-chain hydrocarbons (C21, C24, and C31) released by Bacillus sp. MH778713 break dormancy of mesquite seeds subjected to chromium stress. Front Microbiol 11:741

    Article  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Ruangwong OU, Wonglom P, Suwannarach N, Kumla J, Thaochan N, Chomnunti P, Pitija K, Sunpapao A (2021) Volatile organic compound from Trichoderma asperelloides TSU1: Impact on plant pathogenic fungi. Journal of Fungi 7(3):187

    Article  CAS  Google Scholar 

  • Rybakova D, Rack-Wetzlinger U, Cernava T, Schaefer A, Schmuck M, Berg G (2017) Aerial warfare: a volatile dialogue between the plant pathogen Verticillium longisporum and its antagonist Paenibacillus polymyxa. Front Plant Sci 8:1294

    Article  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003a) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100(8):4927–4932

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Pare PW, Kloepper, JW (2003b) Volatiles produced by PGPR elicit plant growth promotion and induced resistance in Arabidopsis. In Proceedings of the sixth international workshop on plant growth promoting rhizobacteria, pp 436–443

  • Sánchez-Fernández RE, Diaz D, Duarte G, Lappe-Oliveras P, Sánchez S, Macías-Rubalcava ML (2016) Antifungal volatile organic compounds from the endophyte Nodulisporium sp. strain GS4d2II1a: a qualitative change in the intraspecific and interspecific interactions with Pythium aphanidermatum. Microb Ecol 71:347–364

    Article  Google Scholar 

  • Schalchli H, Tortella GR, Rubilar O, Parra L, Hormazabal E, Quiroz A (2016) Fungal volatiles: an environmentally friendly tool to control pathogenic microorganisms in plants. Crit Rev Biotechnol 36(1):144–152

    Article  CAS  Google Scholar 

  • Schenkel D, Maciá-Vicente JG, Bissell A, Splivallo R (2018) Fungi indirectly affect plant root architecture by modulating soil volatile organic compounds. Front Microbiol 9:1847

    Article  Google Scholar 

  • Schmidt R, Etalo DW, de Jager V, Gerards S, Zweers H, de Boer W, Garbeva P (2016) Microbial small talk: volatiles in fungal–bacterial interactions. Front Microbiol 6:1495

    Article  Google Scholar 

  • Schulz-Bohm K, Martín-Sánchez L, Garbeva P (2017) Microbial volatiles: small molecules with an important role in intra-and inter-kingdom interactions. Front Microbiol 8:2484

    Article  Google Scholar 

  • Sharifi R, Ryu CM (2018) Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Ann Bot 122(3):349–358

    Article  CAS  Google Scholar 

  • Sharifi R, Ryu CM (2020) Formulation and agricultural application of bacterial volatile compounds. Bacterial volatile compounds as mediators of airborne interactions, pp 317–336

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  Google Scholar 

  • Siri-Udom S, Suwannarach N, Lumyong S (2017) Applications of volatile compounds acquired from Muscodor heveae against white root rot disease in rubber trees (Hevea brasiliensis Müll. Arg) and relevant allelopathy effects. Fungal Biol 121(6-7):573–581

    Article  CAS  Google Scholar 

  • Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P (2007) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175(3):417–424

    Article  CAS  Google Scholar 

  • Sridharan AP, Thankappan S, Karthikeyan G, Uthandi S (2020) Comprehensive profiling of the VOCs of Trichoderma longibrachiatum EF5 while interacting with Sclerotium rolfsii and Macrophomina phaseolina. Microbiol Res 236:126436

    Article  CAS  Google Scholar 

  • Strobel G (2014) The story of mycodiesel. Curr Opin Microbiol 19:52–58

    Article  CAS  Google Scholar 

  • Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiol 147(11):2943–2950

    Article  CAS  Google Scholar 

  • Tahir HA, Gu Q, Wu H, Raza W, Hanif A, Wu L, Colman MV, Gao X (2017) Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front Microbiol 8:171

    Article  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Article  CAS  Google Scholar 

  • Terra WC, Campos VP, Martins SJ, Costa LSAS, da Silva JCP, Barros AF, Lopez LE, Santos TCN, Smant G, Oliveira DF (2018) Volatile organic molecules from Fusarium oxysporum strain 21 with nematicidal activity against Meloidogyne incognita. Crop Prot 106:125–131

    Article  CAS  Google Scholar 

  • Thakeow P, Angeli S, Weißbecker B, Schütz S (2008) Antennal and behavioral responses of Cis boleti to fungal odor of Trametes gibbosa. Chem Senses 33(4):379–387

    Article  CAS  Google Scholar 

  • Thorn RMS, Greenman J (2012) Microbial volatile compounds in health and disease conditions. J Breath Res 6(2):024001

    Article  Google Scholar 

  • Toffano L, Fialho MB, Pascholati SF (2017) Potential of fumigation of orange fruits with volatile organic compounds produced by Saccharomyces cerevisiae to control citrus black spot disease at postharvest. Biol Control 108:77–82

    Article  CAS  Google Scholar 

  • Turan V (2019) Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce. Ecotoxicol Environ Saf 183:109594

    Article  CAS  Google Scholar 

  • Turan V (2020) Potential of pistachio shell biochar and dicalcium phosphate combination to reduce Pb speciation in spinach, improved soil enzymatic activities, plant nutritional quality, and antioxidant defense system. Chemosphere 245:125611

    Article  CAS  Google Scholar 

  • Turan V (2021) Arbuscular mycorrhizal fungi and pistachio husk biochar combination reduces Ni distribution in mungbean plant and improves plant antioxidants and soil enzymes. Physiol Plant 173(1):418–429

    CAS  Google Scholar 

  • Turan V (2022) Calcite in combination with olive pulp biochar reduces Ni mobility in soil and its distribution in chili plant. Int J Phytoremediation 24(2):166–176

    Article  CAS  Google Scholar 

  • Turan V, Schröder P, Bilen S, Insam H, Fernández-Delgado Juárez M (2019) Co-inoculation effect of Rhizobium and Achillea millefolium L. oil extracts on growth of common bean (Phaseolus vulgaris L.) and soil microbial-chemical properties. Sci Rep 9(1):15178

    Article  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Choudhary DK (2015) Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J Appl Microbiol 119(2):539–551

    Article  CAS  Google Scholar 

  • Velázquez-Becerra C, Macías-Rodríguez LI, López-Bucio J, Altamirano-Hernández J, Flores-Cortez I, Valencia-Cantero E (2011) A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro. Plant Soil 339:329–340

    Article  Google Scholar 

  • Venkataraman A, Rosenbaum MA, Werner JJ, Winans SC, Angenent LT (2014) Metabolite transfer with the fermentation product 2, 3-butanediol enhances virulence by Pseudomonas aeruginosa. Microb Ecol 8(6):1210–1220

    CAS  Google Scholar 

  • Veselova MA, Plyuta VA, Khmel IA (2019) Volatile compounds of bacterial origin: Structure, biosynthesis, and biological activity. Microbiol 88(3):261–274

    Article  CAS  Google Scholar 

  • Vickers CE, Possell M, Cojocariu CI, Velikova VB, Laothawornkitkul J, Ryan A et al (2009) Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant Cell Environ 32:520–531

    Article  CAS  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  Google Scholar 

  • Wang E, Liu X, Si Z, Li X, Bi J, Dong W, Chen M, Wang S, Zhang J, Song A, Fan F (2021) Volatile organic compounds from rice rhizosphere bacteria inhibit growth of the pathogen Rhizoctonia solani. Agric 11(4):368

    CAS  Google Scholar 

  • Wang J, Zhou C, Xiao X, Xie Y, Zhu L, Ma Z (2017) Enhanced iron and selenium uptake in plants by volatile emissions of Bacillus amyloliquefaciens (BF06). Appl Sci 7(1):85

    Article  Google Scholar 

  • Wang K, Liu J, Zhan Y, Liu Y (2019a) A new slow-release formulation of methyl salicylate optimizes the alternative control of Sitobion avenae (Fabricius)(Hemiptera: Aphididae) in wheat fields. Pest Manag Sci 75(3):676–682

    Article  CAS  Google Scholar 

  • Wang L, Dou G, Guo H, Zhang Q, Qin X, Yu W, Jiang C, Xiao H (2019b) Volatile organic compounds of Hanseniaspora uvarum increase strawberry fruit flavor and defense during cold storage. Food Sci Nutr 7(8):2625–2635

    Article  CAS  Google Scholar 

  • Weise T, Thürmer A, Brady S, Kai M, Daniel R, Gottschalk G, Piechulla B (2014) VOC emission of various Serratia species and isolates and genome analysis of Serratia plymuthica 4Rx13. FEMS Microbiol Lett 352(1):45–53

    Article  CAS  Google Scholar 

  • Weisskopf L, Schulz S, Garbeva P (2021) Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat Rev Microbiol 19(6):391–404

    Article  CAS  Google Scholar 

  • Xing M, Zheng L, Deng Y, Xu D, Xi P, Li M, Kong G, Jiang Z (2018) Antifungal activity of natural volatile organic compounds against litchi downy blight pathogen Peronophythora litchii. Molecules 23(2):358

    Article  Google Scholar 

  • Xu Q, Yang L, Yang W, Bai Y, Hou P, Zhao J, Zhou L, Zuo Z (2017) Volatile organic compounds released from Microcystis flos-aquae under nitrogen sources and their toxic effects on Chlorella vulgaris. Ecotoxicol Environ Saf 135:191–200

    Article  CAS  Google Scholar 

  • Ye C, Yang Y, Xu Q, Ying B, Zhang M, Gao B, Ni B, Yakefu Z, Bai Y, Zuo Z (2018) Volatile organic compound emissions from Microcystis aeruginosa under different phosphorus sources and concentrations. Phycol Res 66(1):15–22

    Article  CAS  Google Scholar 

  • Yu S-M, Lee YH (2013) Plant growth promoting rhizobacterium Proteus vulgaris JBLS202 stimulates the seedling growth of Chinese cabbage through indole emission. Plant Soil 370:485–495

    Article  CAS  Google Scholar 

  • Zamioudis C, Korteland J, Van Pelt JA, van Hamersveld M, Dombrowski N, Bai Y, Hanson J, Van Verk MC, Ling HQ, Schulze-Lefert P, Pieterse CM (2015) Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB 72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant J 84(2):309–322

    Article  CAS  Google Scholar 

  • Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo IS, Paré P (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226(4):839–851

    Article  CAS  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21(6):737–744

    Article  Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58(4):568–577

    Article  CAS  Google Scholar 

  • Zhang H, Murzello C, Kim MS, Xie X, Jeter RM, Zak JC et al (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant Microbe Interact 23:1097–1104. https://doi.org/10.1094/MPMI-23-8-1097

    Article  CAS  Google Scholar 

  • Zhao X, Cui H, Wang Y, Sun C, Cui B, Zeng Z (2017) Development strategies and prospects of nano-based smart pesticide formulation. J Agric Food Chem 66(26):6504–6512

    Article  Google Scholar 

  • Zhou C, Zhu L, Ma Z, Wang J (2017) Bacillus amyloliquefaciens SAY09 increases cadmium resistance in plants by activation of auxin-mediated signaling pathways. Genes 8(7):173

    Article  Google Scholar 

  • Zhou JY, Li X, Zheng JY, Dai CC (2016) Volatiles released by endophytic Pseudomonas fluorescens promoting the growth and volatile oil accumulation in Atractylodes lancea. J Agric Food Chem 101:132–140

    CAS  Google Scholar 

  • Zhu JC, Niu YW, Feng T, Liu SJ, Cheng HX, Xu N, Yu HY, Xiao ZB (2014) Evaluation of the formation of volatiles and sensory characteristics of persimmon (Diospyros kaki Lf) fruit wines using different commercial yeast strains of Saccharomyces cerevisiae. Nat Prod Res 28(21):1887–1893

    Article  CAS  Google Scholar 

  • Zuo Z (2019) Why algae release volatile organic compounds—the emission and roles. Front Microbiol 10:491

    Article  Google Scholar 

  • Zuo Z, Chen Z, Shi M, Zhu Y, Bai Y, Wang Y (2015) Reactive oxygen species contribute to the release of volatile organic compounds from C. hlamydomonas reinhardtii during programmed cell death. Phycol Res 63(1):37–42

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank UTU Management and Director, CGBIBT, for their constant support and rendering necessary facilities.

Author information

Authors and Affiliations

Authors

Contributions

Natarajan Amaresan designed the study and edited final manuscript; Hetvi Naik collected the data and wrote the initial manuscript; Saborni Maiti collected the data.

Corresponding author

Correspondence to Natarajan Amaresan.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, H., Maiti, S. & Amaresan, N. Microbial volatile compounds (MVCs): an eco-friendly tool to manage abiotic stress in plants. Environ Sci Pollut Res 30, 91746–91760 (2023). https://doi.org/10.1007/s11356-023-29010-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-29010-w

Keywords

Navigation