Skip to main content

Advertisement

Log in

Unlocking the potential of microbes: biocementation technology for mine tailings restoration — a comprehensive review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mine tailings contain finer particles, crushed rocks, dugout-soil, water, and organic and inorganic metals or metalloids, including heavy metals and radionuclides, which are dumped as waste or non-economic by-products generated during mining and mineral processing. These abundant and untreated materials seriously threaten the environment, human health, and biodiversity because of the presence of heavy metals, radionuclides, and associated primary and secondary toxic components, including the risk of tailings dam failures. Biocementation technology, which involves the use of mining microbes to secrete cement-like materials that bind soil particles together, is a promising approach to restore mine tailing sites and reduce their mobility and toxicity. However, there is a lack of literature on the combined interactions among mining microbes, tailings residues, biocementation, and low-carbon cement (LCC) prospects. This comprehensive review article explores the prospects of mining microbes for mine tailings restoration using biocementation technology, the key influencing factors and their impact, mechanisms and metabolic pathways, and the effectiveness of biocementation technology in restoring mine tailings sites. In addition, it reviews the utilization of mine tailings materials as an alternative source of cement or construction materials for LCC technology. Furthermore, this review highlights the important issues, challenges, limitations, and applications of biocementation technology for mine tailings rehabilitation. Finally, it provides insights for future research and implementation of biocementation for mine tailings restoration and utilization of tailing materials in the industrial sector to reduce carbon emissions/footprints and achieve net-zero goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the data generated or used during the study appear in the submitted article.

References

  • Abo-El-Enein SA, Ali AH, Talkhan FN, Abdel-Gawwad HA (2013) Application of microbial biocementation to improve the physico-mechanical properties of cement mortar. HBRC J. https://doi.org/10.1016/j.hbrcj.2012.10.004

    Article  Google Scholar 

  • Achal V, Mukherjee A, Basu PC, Reddy MS (2009) Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-009-0578-z

  • Achal V, Mukherjee A, Reddy MS (2010) Microbial concrete: a way to enhance durability of building structures. In: 2nd International Conference on sustainable construction materials and technologies. https://doi.org/10.1061/(asce)mt.1943-5533.0000159

  • Achal V, Mukherjee A, Reddy MS (2011a) Effect of calcifying bacteria on permeation properties of concrete structures. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-010-0901-8

  • Achal V, Pan X, Özyurt N (2011b) Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecol Eng. https://doi.org/10.1016/j.ecoleng.2010.11.009

  • Achal V, Pan X, Zhang D (2011c) Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecol Eng. https://doi.org/10.1016/j.ecoleng.2011.06.008

  • Achal V, Pan X, Fu Q, Zhang D (2012a) Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2011.11.067

  • Achal V, Pan X, Zhang D (2012b) Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere. https://doi.org/10.1016/j.chemosphere.2012.06.064

  • Achal V, Pan X, Zhang D, Fu Q (2012c) Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation. J Microbiol Biotechnol. https://doi.org/10.4014/jmb.1108.08033

  • Achal V, Mukherjee A (2015) A review of microbial precipitation for sustainable construction. Constr. Build, Mater

    Book  Google Scholar 

  • Adeyanju E, Okeke CA (2019) Exposure effect to cement dust pollution: a mini review. SN Appl Sci 1:1–17. https://doi.org/10.1007/s42452-019-1583-0

    Article  Google Scholar 

  • Adiansyah JS, Rosano M, Vink S, Keir G (2015) A framework for a sustainable approach to mine tailings management: disposal strategies. J Clean Prod. https://doi.org/10.1016/j.jclepro.2015.07.139

  • Agheli S, Hassanzadeh A, Hassas BV, Hasanzadeh M (2018) Effect of pyrite content of feed and configuration of locked particles on rougher flotation of copper in low and high pyritic ore types. Int J Min Sci Technol. https://doi.org/10.1016/j.ijmst.2017.12.002

  • Ahmari S, Zhang L (2013) Utilization of cement kiln dust (CKD) to enhance mine tailings-based geopolymer bricks. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2012.11.069

  • Al Imran M, Gowthaman S, Nakashima K, Kawasaki S (2020) The influence of the addition of plant-based natural fibers (Jute) on biocemented sand using MICP method. Materials. https://doi.org/10.3390/MA13184198

  • Alfonso P, Tomasa O, Garcia-Valles M, et al (2018) Potential of tungsten tailings as glass raw materials. Mater Lett. https://doi.org/10.1016/j.matlet.2018.06.098

  • Almajed A, Lateef MA, Moghal AAB, Lemboye K (2021) State-of-the-art review of the applicability and challenges of microbial-induced calcite precipitation (Micp) and enzyme-induced calcite precipitation (eicp) techniques for geotechnical and geoenvironmental applications. Crystals. https://doi.org/10.3390/cryst11040370

  • Almonacid L, Fuentes A, Ortiz J, et al (2015) Effect of mixing soil saprophytic fungi with organic residues on the response of Solanum lycopersicum to arbuscular mycorrhizal fungi. Soil Use Manag. https://doi.org/10.1111/sum.12160

  • Al Qabany A, Soga K, Santamarina C (2012) Factors affecting efficiency of microbially induced calcite precipitation. J Geotech Geoenviron. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666

  • Al-Thawadi SM (2013) Consolidation of sand particles by aggregates of calcite nanoparticles synthesized by ureolytic bacteria under non-sterile conditions. J Chem Sci Technol. https://doi.org/10.1080/19430892.2012.654741

  • Álvarez E, Fernández-Sanjurjo M, Otero XL, Macías F (2010) Aluminium geochemistry in the bulk and rhizospheric soil of the species colonising an abandoned copper mine in Galicia (NW Spain). J Soils Sediments. https://doi.org/10.1007/s11368-010-0245-z

  • Anawar HM (2015) Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge. J. Environ. Manage. 158:111–121

    Article  CAS  Google Scholar 

  • Argane R, El Adnani M, Benzaazoua M et al (2016) Geochemical behavior and environmental risks related to the use of abandoned base-metal tailings as construction material in the upper-Moulouya district. Environ Sci Pollut Res, Morocco. https://doi.org/10.1007/s11356-015-5292-y

    Book  Google Scholar 

  • Arioz E, Arioz O, Mete Kockara O (2012) Leaching of F-type fly ash based geopolymers. In: Procedia engineering. https://doi.org/10.1016/j.proeng.2012.07.503

  • Armstrong M, Petter R, Petter C (2019) Why have so many tailings dams failed in recent years? Resour Policy. https://doi.org/10.1016/j.resourpol.2019.101412

  • Arunachalam KD, Sathyanarayanan KS, Darshan BS, Raja RB (2010) Studies on the characterisation of biosealant properties of Bacillus sphaericus. Int J Eng Sci Technol

  • Asadi T, Azizi A, Lee JC, Jahani M (2017) Leaching of zinc from a lead-zinc flotation tailing sample using ferric sulphate and sulfuric acid media. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2017.09.005

  • Baidya R, Ghosh SK (2019) Low carbon cement manufacturing in India by co-processing of alternative fuel and raw materials. Energy Sources, Part A Recover Util Environ Eff. https://doi.org/10.1080/15567036.2018.1555630

  • Bang SS, Lippert JJ, Yerra U, et al (2010) Microbial calcite, a bio-based smart nanomaterial in concrete remediation. Int J Smart Nano Mater. https://doi.org/10.1080/19475411003593451

  • Benhelal E, Zahedi G, Shamsaei E, Bahadori A (2013) Global strategies and potentials to curb CO2 emissions in cement industry. J Clean Prod. https://doi.org/10.1016/j.jclepro.2012.10.049

  • Blowes DW, Jambor JL, Hanton-Fong CJ et al (1998) Geochemical, mineralogical and microbiological characterization of a sulphide-bearing carbonate-rich gold-mine tailings impoundment. Appl Geochemistry, Joutel, Quebec. https://doi.org/10.1016/S0883-2927(98)00009-2

    Book  Google Scholar 

  • Bradshaw A (1997) Restoration of mined lands - using natural processes. Ecol Eng. https://doi.org/10.1016/S0925-8574(97)00022-0

  • Braissant O, Decho AW, Dupraz C, et al (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology. https://doi.org/10.1111/j.1472-4669.2007.00117.x

  • Bruneel O, Duran R, Koffi K et al (2005) Microbial diversity in a pyrite-rich tailings impoundment (Carnoulès. Geomicrobiol J, France). https://doi.org/10.1080/01490450590947805

    Book  Google Scholar 

  • Cai L, Ma B, Li X, et al (2016) Mechanical and hydration characteristics of autoclaved aerated concrete (AAC) containing iron-tailings: effect of content and fineness. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2016.10.031

  • Cao G, Wang W, Yin G, Wei Z (2019) Experimental study of shear wave velocity in unsaturated tailings soil with variant grain size distribution. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.116744

  • Chahal N, Siddique R, Rajor A (2012) Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2011.07.042

  • Chandra A, Ravi K (2021) Application of enzyme-induced carbonate precipitation (EICP) to improve the shear strength of different type of soils. In: Lecture notes in civil engineering. https://doi.org/10.1007/978-981-15-6237-2_52

  • Chen F, Wang S, Mou S et al (2015) Physiological responses and accumulation of heavy metals and arsenic of Medicago sativa L. growing on acidic copper mine tailings in arid lands. J Geochemical Explor. 157:27–35. https://doi.org/10.1016/j.gexplo.2015.05.011

    Article  CAS  Google Scholar 

  • Chen M, Lu G, Wu J et al (2018) Migration and fate of metallic elements in a waste mud impoundment and affected river downstream: a case study in Dabaoshan Mine. Ecotoxicol Environ Saf, South China. https://doi.org/10.1016/j.ecoenv.2018.08.063

    Book  Google Scholar 

  • Chen C, Habert G, Bouzidi Y, Jullien A (2010) Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. J Clean Prod. https://doi.org/10.1016/j.jclepro.2009.12.014

  • Chen Y, Zhang Y, Chen T, et al (2013) Preparation and characterization of red porcelain tiles with hematite tailings. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2012.06.056

  • Cheng L, Shahin MA, Cord-Ruwisch R (2014) Soil stabilisation by microbial-induced calcite precipitation (MICP): investigation into some physical and environmental aspects. 7th Int Congr Environ Geotech ICEG 2014. 991005543868307891

  • Cheng L, Shahin MA, Chu J (2019) Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotech. https://doi.org/10.1007/s11440-018-0738-2

  • Christmann P (2021) Mineral resource governance in the 21st century and a sustainable European Union. Miner Econ. https://doi.org/10.1007/s13563-021-00265-4

  • Chu J, Stabnikov V, Ivanov V (2012) Microbially induced calcium carbonate precipitation on surface or in the bulk of soil. Geomicrobiol J. https://doi.org/10.1080/01490451.2011.592929

  • Chuo SC, Mohamed SF, Setapar SHM et al (2020) Insights into the current trends in the utilization of bacteria for microbially induced calcium carbonate precipitation. Materials 13(21):4993

    Article  CAS  Google Scholar 

  • Costa OYA, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front, Microbiol

    Google Scholar 

  • Cuzman OA, Rescic S, Richter K, et al (2015) Sporosarcina pasteurii use in extreme alkaline conditions for recycling solid industrial wastes. J Biotechnol. https://doi.org/10.1016/j.jbiotec.2015.09.011

  • Daskalakis MI, Rigas F, Bakolas A et al (2015) Vaterite bio-precipitation induced by Bacillus pumilus isolated from a solutional cave in Paiania. Int Biodeterior Biodegrad, Athens, Greece. https://doi.org/10.1016/j.ibiod.2014.12.005

    Book  Google Scholar 

  • De Muynck W, Cox K, Belie N De, Verstraete W (2008a) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2006.12.011

  • De Muynck W, Debrouwer D, De Belie N, Verstraete W (2008b) Bacterial carbonate precipitation improves the durability of cementitious materials. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2008.03.005

  • De Muynck W, Verbeken K, De Belie N, Verstraete W (2013) Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-012-3997-0

  • Dejong JT, Soga K, Kavazanjian E, et al (2013) Biogeochemical processes and geotechnical applications: progress, opportunities and challenges. Geotechnique. https://doi.org/10.1680/geot.SIP13.P.017

  • Van Deventer JSJ, Provis JL, Duxson P, Brice DG (2010) Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-010-9015-9

  • Dhal PK, Sar P (2014) Microbial communities in uranium mine tailings and mine water sediment from Jaduguda U mine, India: a culture independent analysis. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng. https://doi.org/10.1080/10934529.2014.865458

  • Dhami NK, Reddy MS, Mukherjee A (2013) Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-013-1408-z

  • Diaby N, Dold B, Pfeifer HR, et al (2007) Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste. Environ Microbiol. https://doi.org/10.1111/j.1462-2920.2006.01138.x

  • Dick J, De Windt W, De Graef B, et al (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation. https://doi.org/10.1007/s10532-005-9006-x

  • Dong M, Hu S, Lv S, et al (2022) Recovery of microbial community in strongly alkaline bauxite residues after amending biomass residue. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2022.113281

  • Dorin I, Diaconescu C, Topor DI (2014) The role of mining in national economies. Int J Acad Res Accounting, Financ Manag Sci. https://doi.org/10.6007/ijarafms/v4-i3/1116

  • Edwards KJ, Goebel BM, Rodgers TM et al (1999) Geomicrobiology of pyrite (Fes2) dissolution: case study at iron mountain. Geomicrobiol J, California. https://doi.org/10.1080/014904599270668

    Book  Google Scholar 

  • Erdmann N, Strieth D (2023) Influencing factors on ureolytic microbiologically induced calcium carbonate precipitation for biocementation. World J Microbiol Biotechnol 39:1–18. https://doi.org/10.1007/s11274-022-03499-8

    Article  CAS  Google Scholar 

  • Erşan YÇ, Da Silva FB, Boon N et al (2015a) Screening of bacteria and concrete compatible protection materials. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2015.04.027

    Article  Google Scholar 

  • Erşan YÇ, de Belie N, Boon N (2015b) Microbially induced CaCO3 precipitation through denitrification: an optimization study in minimal nutrient environment. Biochem Eng J. https://doi.org/10.1016/j.bej.2015.05.006

  • Etim MA, Babaremu K, Lazarus J, Omole D (2021) Health risk and environmental assessment of cement production in Nigeria. Atmosphere 12(9):1111

    Article  CAS  Google Scholar 

  • Ettenauer J, Piñar G, Sterflinger K, et al (2011) Molecular monitoring of the microbial dynamics occurring on historical limestone buildings during and after the in situ application of different bio-consolidation treatments. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2011.08.063

  • Fall M, Pokharel M (2011) Strength development and sorptivity of tailings shotcrete under various thermal and chemical loads. Can J Civ Eng. https://doi.org/10.1139/L11-045

  • Fellet G, Marchiol L, Perosa D, Zerbi G (2007) The application of phytoremediation technology in a soil contaminated by pyrite cinders. Ecol Eng. https://doi.org/10.1016/j.ecoleng.2007.06.011

  • Ferris FG, Stehmeier LG, Kantzas A, Mourits FM (1996) Bacteriogenic mineral plugging. J Can Pet Technol. https://doi.org/10.2118/96-08-06

  • Ferris FG, Phoenix YV, Fujita, Smith RW (2004) Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20°C in artificial groundwater. https://doi.org/10.1016/s0016-7037(03)00503-9

  • Festin ES, Tigabu M, Chileshe MN et al (2019) Progresses in restoration of post-mining landscape in Africa. J For Res 2:381–396

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0507535103

  • Filho JNS, Da Silva SN, Silva GC, et al (2017) Technical and environmental feasibility of interlocking concrete pavers with iron ore tailings from tailings dams. J Mater Civ Eng. https://doi.org/10.1061/(asce)mt.1943-5533.0001937

  • Flora SJS, Flora G, Saxena G (2006) Environmental occurrence, health effects and management of lead poisoning. In: Lead. https://doi.org/10.1016/B978-044452945-9/50004-X

  • Fu P, Li Z, Feng J, Bian Z (2018) Recovery of gold and iron from cyanide tailings with a combined direct reduction roasting and leaching process. Metals. https://doi.org/10.3390/met8070561

  • Fujita Y, Ferris FG, Lawson RD et al (2000) Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol J. https://doi.org/10.1080/01490450050193360

    Article  Google Scholar 

  • Fujita M, Nakashima K, Achal V, Kawasaki S (2017) Whole-cell evaluation of urease activity of Pararhodobacter sp. isolated from peripheral beachrock. Biochem Eng J. 124:1–5. https://doi.org/10.1016/j.bej.2017.04.004

    Article  CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643

    Article  CAS  Google Scholar 

  • García-Moyano A, González-Toril E, Aguilera Á, Amils R (2012) Comparative microbial ecology study of the sediments and the water column of the Río Tinto, an extreme acidic environment. FEMS Microbiol Ecol. https://doi.org/10.1111/j.1574-6941.2012.01346.x

  • Gat D, Tsesarsky M, Shamir D, Ronen Z (2014) Accelerated microbial-induced CaCO3 precipitation in a defined coculture of ureolytic and non-ureolytic bacteria. Biogeoscienceshttps://doi.org/10.5194/bg-11-2561-2014

  • Gitari MW, Akinyemi SA, Thobakgale R, et al (2018) Physicochemical and mineralogical characterization of Musina mine copper and New Union gold mine tailings: implications for fabrication of beneficial geopolymeric construction materials. J African Earth Sci. https://doi.org/10.1016/j.jafrearsci.2017.10.016

  • González-Toril E, Águilera Á, Souza-Egipsy V et al (2011) Geomicrobiology of La Zarza-Perrunal acid mine effluent (Iberian Pyritic Belt. Appl Environ Microbiol, Spain). https://doi.org/10.1128/AEM.02459-10

    Book  Google Scholar 

  • Gorbatova EA, Ozhogina EG, Ryl’nikova M V., Radchenko DN (2018) Mineralogical features of chalcopyrite and sphalerite in copper–pyrite ore tailings in the light of prospects for the purposeful formation of man-made deposits. J Min Sci. https://doi.org/10.1134/S1062739118054987

  • Gou M, Zhou L, Then NWY (2019) Utilization of tailings in cement and concrete: a review. Sci. Eng. Compos, Mater

    Google Scholar 

  • Gowthaman S, Nakashima K, Kawasaki S (2020) Freeze-thaw durability and shear responses of cemented slope soil treated by microbial induced carbonate precipitation. Soils Found. https://doi.org/10.1016/j.sandf.2020.05.012

  • Grabiec AM, Klama J, Zawal D, Krupa D (2012) Modification of recycled concrete aggregate by calcium carbonate biodeposition. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2012.02.027

  • Grzegorczyk S, Alberski J, Olszewska M (2012) Accumulation of copper, zinc, manganese and iron by selected species of grassland legumes and herbs. J Elemntology. https://doi.org/10.5601/jelem.2014.19.1.583

  • Hallberg KB, Coupland K, Kimura S, Johnson DB (2006) Macroscopic streamer growths in acidic, metal-rich mine waters in North Wales consist of novel and remarkably simple bacterial communities. Appl Environ Microbiol. https://doi.org/10.1128/AEM.72.3.2022-2030.2006

  • Han B, Altansukh B, Haga K, et al (2018) Development of copper recovery process from flotation tailings by a combined method of high‒pressure leaching‒solvent extraction. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2018.03.014

  • Harkes MP, van Paassen LA, Booster JL, et al (2010) Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol Eng. https://doi.org/10.1016/j.ecoleng.2009.01.004

  • He Z, Xie X, Xiao S et al (2007) Microbial diversity of mine water at Zhong Tiaoshan copper mine. J Basic Microbiol, China. https://doi.org/10.1002/jobm.200700219

    Book  Google Scholar 

  • He X, Yuhua Z, Qaidi S et al (2022) Mine tailings-based geopolymers: a comprehensive review. Ceram, Int

    Google Scholar 

  • He J, Chen X, Zhang Q, Achal V (2019) More effective immobilization of divalent lead than hexavalent chromium through carbonate mineralization by Staphylococcus epidermidis HJ2. Int Biodeterior Biodegrad. https://doi.org/10.1016/j.ibiod.2019.03.012

  • Helmi FM, Elmitwalli HR, Elnagdy SM, El-Hagrassy AF (2016) Calcium carbonate precipitation induced by ureolytic bacteria Bacillus licheniformis. Ecol Eng. https://doi.org/10.1016/j.ecoleng.2016.01.044

  • Hewitt EJ, Eden A (1953) Sand and water culture methods used in the study of plant nutrition. Analyst. https://doi.org/10.2136/sssaj1966.03615995003000040002x

  • Hooke RLB, Martín-Duque JF, Pedraza J (2012) Land transformation by humans: a review. GSA Today. https://doi.org/10.1130/GSAT151A.1

  • Hseu ZY, Su SW, Lai HY et al (2010) Remediation techniques and heavy metal uptake by different rice varieties in metal-contaminated soils of Taiwan: new aspects for food safety regulation and sustainable agriculture. Soil Sci, Plant Nutr

    Google Scholar 

  • Qing HU, Qi HY, Zeng JH, Zhang HX (2007) Bacterial diversity in soils around a lead and zinc mine. J Environ Sci. https://doi.org/10.1016/S1001-0742(07)60012-6

  • Hu L, Wu H, Zhang L, et al (2017) Geotechnical properties of mine tailings. J Mater Civ Eng. https://doi.org/10.1061/(asce)mt.1943-5533.0001736

  • Huang L, Krigsvoll G, Johansen F et al (2018) Carbon emission of global construction sector. Renew. Sustain, Energy Rev

    Book  Google Scholar 

  • Hudson-Edwards K (2016) Tackling mine wastes. Science 352(6283):288–290

    Article  CAS  Google Scholar 

  • Humphries MS, McCarthy TS, Pillay L (2017) Attenuation of pollution arising from acid mine drainage by a natural wetland on the Witwatersrand. S Afr J Sci. 113:12–9. https://doi.org/10.17159/sajs.2017/20160237

    Article  CAS  Google Scholar 

  • Ishak SA, Hashim H (2015) Low carbon measures for cement plant - a review. J Clean Prod. 103:260–274

    Article  CAS  Google Scholar 

  • Ismail MA, Joer HA, Sim WH, Randolph MF (2002) Effect of cement type on shear behavior of cemented calcareous soil. J Geotech Geoenvironmental Eng. https://doi.org/10.1061/(asce)1090-0241(2002)128:6(520)

  • Ivanov V, Stabnikov V (2017) Construction biotechnology biogeochemistry, microbiology and biotechnology of construction materials and processes preface. Green Energy Technol

  • Jacobs JA, Lehr JH, Testa SM (2014) Acid mine drainage, rock drainage, and acid sulfate soils: causes, assessment, prediction, prevention, and remediation. https://doi.org/10.1002/9781118749197

  • Jantzer I, Knutsson S (2007) Seepage and critical hydraulic gradients in tailings dams and natural formations. In: Proceedings of the 2nd International Conference on porous media and its applications in science and engineering. DiVA 2:1011199

  • Jantzer I, Bjelkevik A, Pousette K (2008) Material properties of tailings from Swedish mines. In: 15th Conference of Nordiska Geoteknikermötet,  pp 229–235

  • Ji H, Zhang Y, Bararunyeretse P, Li H (2018) Characterization of microbial communities of soils from gold mine tailings and identification of mercury-resistant strain. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2018.09.011

  • Jiang X, Liu W, Xu H, et al (2021) Characterizations of heavy metal contamination, microbial community, and resistance genes in a tailing of the largest copper mine in China. Environ Pollut. https://doi.org/10.1016/j.envpol.2021.116947

  • Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res, Microbiol

    Book  Google Scholar 

  • Jonkers HM, Thijssen A, Muyzer G, et al (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng. https://doi.org/10.1016/j.ecoleng.2008.12.036

  • Jroundi F, Fernández-Vivas A, Rodriguez-Navarro C, et al (2010) Bioconservation of deteriorated monumental calcarenite stone and identification of bacteria with carbonatogenic activity. Microb Ecol. https://doi.org/10.1007/s00248-010-9665-y

  • Kang CH, Han SH, Shin Y, et al (2014) Bioremediation of Cd by microbially induced calcite precipitation. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-014-0737-1

  • Kaur S, Kamli MR, Ali A (2009) Diversity of arsenate reductase genes (arsc genes) from arsenic-resistant environmental isolates of E. coli. Curr Microbiol. https://doi.org/10.1007/s00284-009-9432-9

  • Kaur N, Reddy MS, Mukherjee A (2013) Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. J Microbiol Biotechnol. https://doi.org/10.4014/jmb.1212.11087

  • Kavazanjian E, Karatas I (2008) Microbiological improvement of the physical properties of soil. Int Conf Case Hist Geotech Eng. 1. https://scholarsmine.mst.edu/icchge/6icchge/session14/1

  • Kay CM, Rowe OF, Rocchetti L, et al (2013) Evolution of microbial “Streamer” growths in an acidic, metal-contaminated stream draining an abandoned underground copper mine. Life. https://doi.org/10.3390/life3010189

  • Kesler SE, Simon AC (2015) Mineral resources, economics and the environment. https://doi.org/10.1017/cbo9781139871426

  • Kfir H, Rimbrot S, Markel A (2015) Toxic effects of hydrogen sulfide: experience with three simultaneous patients. QJM. https://doi.org/10.1093/qjmed/hcv108

  • Khaliq W, Ehsan MB (2016) Crack healing in concrete using various bio influenced self-healing techniques. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2015.11.006

  • Kim MJ, Jung Y (2004) Vertical distribution and mobility of arsenic and heavy metals in and around mine tailings of an abandoned mine. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng. https://doi.org/10.1081/ESE-120027379

  • Kim HK, Park SJ, Han JI, Lee HK (2013) Microbially mediated calcium carbonate precipitation on normal and lightweight concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2012.07.040

  • Kiventerä J, Perumal P, Yliniemi J, Illikainen M (2020) Mine tailings as a raw material in alkali activation: a review. Int. J. Miner. Metall, Mater

    Book  Google Scholar 

  • Kock D, Schippers A (2008) Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00649-08

  • Krishna RS, Mishra J, Zribi M, et al (2021) A review on developments of environmentally friendly geopolymer technology. Materialia. https://doi.org/10.1016/j.mtla.2021.101212

  • Kumar K, Dasgupta CN, Nayak B et al (2011) Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour, Technol

    Book  Google Scholar 

  • Kumar MP, Mini KM, Rangarajan M (2018) Ultrafine GGBS and calcium nitrate as concrete admixtures for improved mechanical properties and corrosion resistance. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2018.06.096

  • Kumari D, Li M, Pan X, Xin-Yi Q (2014) Effect of bacterial treatment on Cr(VI) remediation from soil and subsequent plantation of Pisum sativum. Ecol Eng. https://doi.org/10.1016/j.ecoleng.2014.09.093

  • Lai Y, Yu J, Liu S, et al (2021) Experimental study to improve the mechanical properties of iron tailings sand by using MICP at low pH. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.121729

  • Lauchnor EG, Schultz LN, Bugni S, et al (2013) Bacterially induced calcium carbonate precipitation and strontium coprecipitation in a porous media flow system. Environ Sci Technol. https://doi.org/10.1021/es304240y

  • Lazorenko G, Kasprzhitskii A, Shaikh F et al (2021) Utilization potential of mine tailings in geopolymers: physicochemical and environmental aspects. Process Saf. Environ, Prot

    Google Scholar 

  • Lee M, Paik IS, Kim I, et al (2007) Remediation of heavy metal contaminated groundwater originated from abandoned mine using lime and calcium carbonate. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2006.10.007

  • Lei C, Yan B, Chen T, et al (2018) Silver leaching and recovery of valuable metals from magnetic tailings using chloride leaching. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.01.243

  • Levett A, Gleeson SA, Kallmeyer J (2021) From exploration to remediation: a microbial perspective for innovation in mining. Earth-Science Rev 216:103563

    Article  CAS  Google Scholar 

  • Levett A, Gagen EJ, Zhao Y, et al (2020) Biocement stabilization of an experimental-scale artificial slope and the reformation of iron-rich crusts. Proc Natl Acad Sci USA.https://doi.org/10.1073/pnas.2001740117

  • Li C, Sun H, Bai J, Li L (2010) Innovative methodology for comprehensive utilization of iron ore tailings. Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting. J Hazard Mater 174(13):71–77. https://doi.org/10.1016/j.jhazmat.2009.09.018

    Article  CAS  Google Scholar 

  • Li C, Sun H, Yi Z, Li L (2010) Innovative methodology for comprehensive utilization of iron ore tailings Part 2: the residues after iron recovery from iron ore tailings to prepare cementitious material. J Hazard Mater. 174(1–3):78–83. https://doi.org/10.1016/j.jhazmat.2009.09.019

    Article  CAS  Google Scholar 

  • Li M, Cheng X, Guo H (2013) Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int Biodeterior Biodegrad. https://doi.org/10.1016/j.ibiod.2012.06.016

  • Li Y, Sun Q, Zhan J, et al (2016) Vegetation successfully prevents oxidization of sulfide minerals in mine tailings. J Environ Manage. https://doi.org/10.1016/j.jenvman.2016.04.026

  • Li C, Wen Q, Hong M, et al (2017) Heavy metals leaching in bricks made from lead and zinc mine tailings with varied chemical components. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2016.12.076

  • Lian B, Hu Q, Chen J, et al (2006) Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochim Cosmochim Acta. https://doi.org/10.1016/j.gca.2006.08.044

  • Lim M, Han GC, Ahn JW, et al (2009) Leachability of arsenic and heavy metals from mine tailings of abandoned metal mines. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph6112865

  • Liu Y, Du F, Yuan L, et al (2010) Production of lightweight ceramisite from iron ore tailings and its performance investigation in a biological aerated filter (BAF) reactor. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2010.02.038

  • Liu X, Zhang A, Ji C, et al (2013) Biochar’s effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data. Plant Soil. https://doi.org/10.1007/s11104-013-1806-x

  • Liu J, Zhang S, Wagner F (2018) Exploring the driving forces of energy consumption and environmental pollution in China’s cement industry at the provincial level. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.02.277

  • Lottermoser BG, Ashley PM (2011) Trace element uptake by Eleocharis equisetina (spike rush) in an abandoned acid mine tailings pond, northeastern Australia: implications for land and water reclamation in tropical regions. Environ Pollut. https://doi.org/10.1016/j.envpol.2011.04.014

  • Lottermoser BG (2011) Recycling, reuse and rehabilitation of mine wastes. Elements. https://doi.org/10.2113/gselements.7.6.405

  • Lottermoser B (2016) Predictive environmental indicators in metal mining. In: Environmental indicators in metal mining. https://doi.org/10.1007/978-3-319-42731-7_1

  • Lu H, Qi C, Chen Q, et al (2018) A new procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.04.041

  • Marques APGC, Moreira H, Franco AR, et al (2013) Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria - effects on phytoremediation strategies. Chemosphere. https://doi.org/10.1016/j.chemosphere.2013.02.055

  • Martin D, Dodds K, Butler IB, Ngwenya BT (2013) Carbonate precipitation under pressure for bioengineering in the anaerobic subsurface via denitrification. Environ Sci Technol. https://doi.org/10.1021/es401270q

  • Martins M, Santos ES, Faleiro ML, et al (2011) Performance and bacterial community shifts during bioremediation of acid mine drainage from two Portuguese mines. Int Biodeterior Biodegrad. https://doi.org/10.1016/j.ibiod.2011.07.006

  • McCutcheon J, Power IM, Harrison AL, et al (2014) A greenhouse-scale photosynthetic microbial bioreactor for carbon sequestration in magnesium carbonate minerals. Environ Sci Technol. https://doi.org/10.1021/es500344s

  • Mendez MO, Neilson JW, Maier RM (2008) Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02883-07

  • Meyer FD, Bang S, Min S et al (2011) Microbiologically-induced soil stabilization: application of Sporosarcina pasteurii for Fugitive Dust Control. https://doi.org/10.1061/41165(397)409

  • Miller CL, Landa ER, Updegraff DM (1987) Ecological aspects of microorganisms inhabiting uranium mill tailings. Microb Ecol. https://doi.org/10.1007/BF02013019

  • Minaei Mobtaker M, Osanloo M (2015) Positive impacts of mining activities on environment. In: Legislation, technology and practice of mine land reclamation - proceedings of the Beijing International Symposium Land Reclamation and Ecological Restoration, LRER 2014. https://doi.org/10.1201/b17500-7

  • Mitchell AC, Ferris FG (2005) The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: temperature and kinetic dependence. Geochim Cosmochim Acta. https://doi.org/10.1016/j.gca.2005.03.014

  • Montoya BM, DeJong JT, Boulanger RW (2013) Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Geotechnique. https://doi.org/10.1680/geot.SIP13.P.019

  • Mouazen AM, Alhwaimel SA, Kuang B, Waine T (2014) Multiple on-line soil sensors and data fusion approach for delineation of water holding capacity zones for site specific irrigation. Soil Tillage Res. https://doi.org/10.1016/j.still.2014.06.003

  • Moukannaa S, Loutou M, Benzaazoua M, et al (2018) Recycling of phosphate mine tailings for the production of geopolymers. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.03.094

  • Mudd GM, Boger D V. (2013) The ever growing case for paste and thickened tailings - towards more sustainable mine waste management. AusIMM Bull

  • Mujah D, Shahin MA, Cheng L (2017) State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiol J 34(6):524–537

    Article  CAS  Google Scholar 

  • Mwandira W, Nakashima K, Kawasaki S, et al (2019) Efficacy of biocementation of lead mine waste from the Kabwe Mine site evaluated using Pararhodobacter sp. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-04984-8

  • Mwandira W, Nakashima K, Kawasaki S (2021) Stabilization/solidification of mining waste via biocementation. In: Low carbon stabilization and solidification of hazardous wastes. https://doi.org/10.1016/B978-0-12-824004-5.00014-1

  • Naeimi M, Chu J (2017) Comparison of conventional and bio-treated methods as dust suppressants. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-9889-1

  • Naqi A, Jang JG (2019) Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: a review. Sustain 18(6):1352–1360

    Google Scholar 

  • Natarajan KA (2008) Microbial aspects of acid mine drainage and its bioremediation. Trans Nonferrous Met Soc China (English Ed. https://doi.org/10.1016/S1003-6326(09)60008-X

  • Nemati M, Voordouw G (2003) Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. https://doi.org/10.1016/s0141-0229(03)00191-1

  • Ober JA (2017) Mineral commodity summaries: U.S. Geological Survey. https://doi.org/10.3133/70180197

  • Okwadha GDO, Li J (2010) Optimum conditions for microbial carbonate precipitation. Chemosphere. https://doi.org/10.1016/j.chemosphere.2010.09.066

  • Okwadha GDO, Li J (2011) Biocontainment of polychlorinated biphenyls (PCBs) on flat concrete surfaces by microbial carbonate precipitation. J Environ Manage. https://doi.org/10.1016/j.jenvman.2011.05.029

  • Omoregie AI, Khoshdelnezamiha G, Senian N et al (2017) Experimental optimisation of various cultural conditions on urease activity for isolated Sporosarcina pasteurii strains and evaluation of their biocement potentials. Ecol Eng 109:65–75. https://doi.org/10.1016/j.ecoleng.2017.09.012

    Article  Google Scholar 

  • Opiso EM, Tabelin CB, Maestre C V., et al (2021) Synthesis and characterization of coal fly ash and palm oil fuel ash modified artisanal and small-scale gold mine (ASGM) tailings based geopolymer using sugar mill lime sludge as Ca-based activator. Heliyon. https://doi.org/10.1016/j.heliyon.2021.e06654

  • Ouyang Y (2002) Phytoremediation: modeling plant uptake and contaminant transport in the soil-plant-atmosphere continuum. J Hydrol. https://doi.org/10.1016/S0022-1694(02)00116-6

  • Perumal P, Piekkari K, Sreenivasan H, et al (2019) One-part geopolymers from mining residues – effect of thermal treatment on three different tailings. Miner Eng. https://doi.org/10.1016/j.mineng.2019.106026

  • Pirkle JL, Gunter EW, Paschal DC, et al (1994) The decline in blood lead levels in the United States: the National Health and Nutrition Examination Surveys (NHANES). JAMA J Am Med Assoc. https://doi.org/10.1001/jama.1994.03520040046039

  • Primo PPB, Antunes MN, Arias ARL, et al (2021) Mining dam failures in Brazil: comparing legal post-disaster decisions. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph182111346

  • Puthipad N, Ouchi M, Attachaiyawuth A (2018) Effects of fly ash, mixing procedure and type of air-entraining agent on coalescence of entrained air bubbles in mortar of self-compacting concrete at fresh state. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2018.04.138

  • Qaidi SMA, Tayeh BA, Zeyad AM, et al (2022) Recycling of mine tailings for the geopolymers production: a systematic review. Case Stud Constr Mater. https://doi.org/10.1016/j.cscm.2022.e00933

  • Qi C, Fourie A (2019) Cemented paste backfill for mineral tailings management: review and future perspectives. Miner, Eng

    Google Scholar 

  • Rai A, Maurya SK, Khare P, et al (2010) Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci. https://doi.org/10.1093/toxsci/kfq266

  • Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using micro-organisms. ACI Mater J. https://doi.org/10.14359/10154

  • Ramanan R, Kannan K, Deshkar A et al (2010) Enhanced algal CO2 sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresour Technol. 101(8):2616–2622. https://doi.org/10.1016/j.biortech.2009.10.061

    Article  CAS  Google Scholar 

  • Redmile-Gordon M, Gregory AS, White RP, Watts CW (2020) Soil organic carbon, extracellular polymeric substances (EPS), and soil structural stability as affected by previous and current land-use. Geoderma. https://doi.org/10.1016/j.geoderma.2019.114143

  • Rehman S, Iqbal S, Ali A (2018) Combined influence of glass powder and granular steel slag on fresh and mechanical properties of self-compacting concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2018.05.148

  • Reich M, Deditius A, Chryssoulis S, et al (2013) Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: a SIMS/EMPA trace element study. Geochim Cosmochim Acta. https://doi.org/10.1016/j.gca.2012.11.006

  • Reiche M, Lu S, Ciobotǎ V, et al (2011) Pelagic boundary conditions affect the biological formation of iron-rich particles (iron snow) and their microbial communities. Limnol Oceanogr. https://doi.org/10.4319/lo.2011.56.4.1386

  • Renault S, Lait C, Zwiazek JJ, MacKinnon M (1998) Effect of high salinity tailings waters produced from gypsum treatment of oil sands tailings on plants of the boreal forest. Environ Pollut. https://doi.org/10.1016/s0269-7491(98)00099-2

  • Rivadeneyra MA, Delgado G, Ramos-Cormenzana A, Delgado R (1998) Biomineralization of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. Res Microbiol. https://doi.org/10.1016/S0923-2508(98)80303-3

  • Rodriguez-Navarro C, Rodriguez-Gallego M, Chekroun K Ben, Gonzalez-Muñoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microbiol. https://doi.org/10.1128/AEM.69.4.2182-2193.2003

  • Rousk J, Bååth E, Brookes PC, et al (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. https://doi.org/10.1038/ismej.2010.58

  • Sahariah BP, Chatterjee T (2022) Bioremediation of mine tailings from Chhattisgarh, India. Geomicrobiol J 0:1–11. https://doi.org/10.1080/01490451.2022.2045650

  • Santini TC, Kerr JL, Warren LA (2015) Microbially-driven strategies for bioremediation of bauxite residue. J. Hazard, Mater

    Book  Google Scholar 

  • Santofimia E, González-Toril E, López-Pamo E, et al (2013) Microbial diversity and its relationship to physicochemical characteristics of the water in two extreme acidic pit lakes from the Iberian Pyrite Belt (SW Spain). PLoS One. https://doi.org/10.1371/journal.pone.0066746

  • Schippers A, Breuker A, Blazejak A et al (2010) The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. In: Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2010.01.012

  • Scrivener KL, John VM, Gartner EM (2018) Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2018.03.015

  • Seifan M, Berenjian A (2019) Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. Appl Microbiol Biotechnol 103(12):4693–4708

    Article  CAS  Google Scholar 

  • Seifan M, Samani AK, Berenjian A (2016) Induced calcium carbonate precipitation using Bacillus species. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-016-7701-7

  • Seifan M, Samani AK, Berenjian A (2017a) A novel approach to accelerate bacterially induced calcium carbonate precipitation using oxygen releasing compounds (ORCs). Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2017.10.021

  • Seifan M, Samani AK, Berenjian A (2017b) New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-017-8109-8

  • Seifan M, Samani AK, Hewitt S, Berenjian A (2017c) The effect of cell immobilization by calcium alginate on bacterially induced calcium carbonate precipitation. Fermentation. https://doi.org/10.3390/fermentation3040057

  • Seifan M, Ebrahiminezhad A, Ghasemi Y, et al (2018a) The role of magnetic iron oxide nanoparticles in the bacterially induced calcium carbonate precipitation. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-018-8860-5

  • Seifan M, Ebrahiminezhad A, Ghasemi Y, et al (2018b) Amine-modified magnetic iron oxide nanoparticle as a promising carrier for application in bio self-healing concrete. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-017-8611-z

  • Seifan M, Sarmah AK, Ebrahiminezhad A, et al (2018c) Bio-reinforced self-healing concrete using magnetic iron oxide nanoparticles. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-018-8782-2

  • Seifan M, Sarmah AK, Samani AK, et al (2018d) Mechanical properties of bio self-healing concrete containing immobilized bacteria with iron oxide nanoparticles. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-018-8913-9

  • Sensoy T, Bozbeyoglu NN, Dogan NM, et al (2017) Characterization of calcium carbonate produced by ureolytic bacteria (Sporocarcina pasteurii ATCC 6453 and Bacillus aerius U2) and effect of environmental conditions on production of calcium carbonate. 15th Int Conf Environ Sci Technol

  • Sharma I (2021) Bioremediation techniques for polluted environment: concept, advantages, limitations, and prospects. In: Trace metals in the environment - new approaches and recent advances. https://doi.org/10.5772/intechopen.90453

  • Shen W, Cao L, Li Q et al (2015) Quantifying CO2 emissions from China’s cement industry. Renew. Sustain, Energy Rev

    Book  Google Scholar 

  • Shetron SG, Spindler JJ (1983) Alfalfa, Medicago sativa L., establishment in mine mill tailings - H. Root patterns of alfalfa in iron tailings and natural soils. Plant Soil. https://doi.org/10.1007/BF02197719

  • Silva Rotta LH, Alcântara E, Park E, et al (2020) The 2019 Brumadinho tailings dam collapse: possible cause and impacts of the worst human and environmental disaster in Brazil. Int J Appl Earth Obs Geoinf. https://doi.org/10.1016/j.jag.2020.102119

  • Simate GS, Ndlovu S (2014) Acid mine drainage: challenges and opportunities. J. Environ. Chem, Eng

    Google Scholar 

  • Soon NW, Lee LM, Khun TC, Ling HS (2014) Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation. J Geotech Geoenvironmental Eng. https://doi.org/10.1061/(asce)gt.1943-5606.0001089

  • Sun W, Ji B, Khoso SA et al (2018) An extensive review on restoration technologies for mining tailings. Environ Sci Pollut Res 25(34):33911–33925

    Article  CAS  Google Scholar 

  • Sun X, Miao L, Yuan J, et al (2021) Application of enzymatic calcification for dust control and rainfall erosion resistance improvement. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.143468

  • Taher SMS, Saadullah ST, Haido JH, Tayeh BA (2021) Behavior of geopolymer concrete deep beams containing waste aggregate of glass and limestone as a partial replacement of natural sand. Case Stud Constr Mater. https://doi.org/10.1016/j.cscm.2021.e00744

  • Tang W, Gong J, Wu L et al (2016) DGGE diversity of manganese mine samples and isolation of a Lysinibacillus sp. efficient in removal of high Mn (II) concentrations. Chemosphere 165:277–283. https://doi.org/10.1016/j.chemosphere.2016.08.134

    Article  CAS  Google Scholar 

  • Tang CS, Yin L yang, Jiang N jun, et al (2020) Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environ Earth Sci. https://doi.org/10.1007/s12665-020-8840-9

  • Taušová M, Čulková K, Domaracká L, et al (2017) The importance of mining for socio-economic growth of the country. Acta Montan Slovaca

  • Tchounwou PB, Wilson BA, Abdelghani AA, et al (2002) Differential cytotoxicity and gene expression in human liver carcinoma (HepG2) cells exposed to arsenic trioxide, and monosodium acidmethanearsonate (MSMA). Int J Mol Sci. https://doi.org/10.3390/i3111117

  • Tchounwou P, Patlolla A, Centeno J (2003) Carcinogenic and systemic health effects associated with arsenic exposure - a critical review. Toxicol Pathol. https://doi.org/10.1080/714044691

  • Thavamani P, Samkumar RA, Satheesh V et al (2017) Microbes from mined sites: harnessing their potential for reclamation of derelict mine sites. Environ, Pollut

    Google Scholar 

  • Thompson F, de Oliveira BC, Cordeiro MC et al (2020) Severe impacts of the Brumadinho dam failure (Minas Gerais. Sci Total Environ, Brazil) on the water quality of the Paraopeba River. https://doi.org/10.1016/j.scitotenv.2019.135914

    Book  Google Scholar 

  • Tiano P, Biagiotti L, Mastromei G (1999) Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J Microbiol Methods. 36(12):139–145

    Article  CAS  Google Scholar 

  • USGS (2021) Gypsum: mineral commodity summaries. US Geol Surv

  • Utgikar VP, Harmon SM, Chaudhary N, et al (2002) Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Environ Toxicol. https://doi.org/10.1002/tox.10031

  • van Paassen LA, Daza CM, Staal M et al (2010) Potential soil reinforcement by biological denitrification. Ecol Eng 36:168–175. https://doi.org/10.1016/j.ecoleng.2009.03.026

    Article  Google Scholar 

  • Verburg R, Bezuidenhout N, Chatwin T, Ferguson K (2009) The global acid rock drainage guide (GARD Guide). Mine Water Environ. https://doi.org/10.1007/s10230-009-0078-4

  • Wakelin SA, Macdonald LM, Rogers SL, et al (2008) Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol Biochem. https://doi.org/10.1016/j.soilbio.2007.10.015

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol, Adv

    Book  Google Scholar 

  • Wang C, Harbottle D, Liu Q, Xu Z (2014) Current state of fine mineral tailings treatment: a critical review on theory and practice. Miner, Eng

    Google Scholar 

  • Wang X, Liu Y, Zeng G, et al (2008) Pedological characteristics of Mn mine tailings and metal accumulation by native plants. Chemosphere. https://doi.org/10.1016/j.chemosphere.2008.05.001

  • Wang X, Feng Y, Liu J, et al (2010) Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosens Bioelectron. https://doi.org/10.1016/j.bios.2010.04.036

  • Wang J, Van Tittelboom K, De Belie N, Verstraete W (2012a) Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2011.06.054

  • Wang JY, De Belie N, Verstraete W (2012b) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-011-1037-1

  • Wang CL, Ni W, Zhang SQ, et al (2016) Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2015.12.041

  • Wang W, Cao G, Li Y, et al (2022) Experimental study of dynamic characteristics of tailings with different reconsolidation degrees after liquefaction. Front Earth Sci. https://doi.org/10.3389/feart.2022.876401

  • Warren LA, Maurice PA, Parmar N, Ferris FG (2001) Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiol J. https://doi.org/10.1080/01490450151079833

  • Wei S, Cui H, Jiang Z, et al (2015) Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Brazilian J Microbiol. https://doi.org/10.1590/S1517-838246220140533

  • Wei B, Zhang Y, Bao S (2017) Preparation of geopolymers from vanadium tailings by mechanical activation. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.03.234

  • Whiffin VS, van Paassen LA, Harkes MP (2007) Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J. https://doi.org/10.1080/01490450701436505

  • Wielinga B, Lucy JK, Moore JN, et al (1999) Microbiological and geochemical characterization of fluvially deposited sulfidic mine tailings. Appl Environ Microbiol. https://doi.org/10.1128/aem.65.4.1548-1555.1999

  • Wiktor V, Jonkers HM (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2011.03.012

  • Wolfaardt GM, Hendry MJ, Korber DR (2008) Microbial distribution and diversity in saturated, high pH, uranium mine tailings. Can J Microbiol, Saskatchewan, Canada. https://doi.org/10.1139/W08-084

    Book  Google Scholar 

  • Xiao X, Luo S, Zeng G et al (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol 101(6):1668–1674. https://doi.org/10.1016/j.biortech.2009.09.083

    Article  CAS  Google Scholar 

  • Xie X, Xiao S, He Z et al (2007) Microbial populations in acid mineral bioleaching systems of Tong Shankou Copper Mine. J Appl Microbiol, China. https://doi.org/10.1111/j.1365-2672.2007.03382.x

    Book  Google Scholar 

  • Xie P, Hao X, Herzberg M, et al (2015) Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China. J Environ Sci (China). https://doi.org/10.1016/j.jes.2014.07.017

  • Xu DM, Zhan CL, Liu HX, Lin HZ (2019) A critical review on environmental implications, recycling strategies, and ecological remediation for mine tailings. Environ Sci Pollut Res 26(35):35657–35669

    Article  Google Scholar 

  • Xue S, Zhu F, Kong X, et al (2016) A review of the characterization and revegetation of bauxite residues (Red mud). Environ Sci Pollut Res. https://doi.org/10.1007/s11356-015-4558-8

  • Yin S, Wang L, Wu A, et al (2018) Copper recycle from sulfide tailings using combined leaching of ammonia solution and alkaline bacteria. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.04.116

  • Yliniemi, Paiva, Ferreira, et al (2017) Development and incorporation of lightweight waste-based geopolymer aggregates in mortar and concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2016.11.017

  • Zamani A, Montoya BM (2017) Shearing and hydraulic behavior of MICP treated silty sand. https://doi.org/10.1061/9780784480489.029

  • Zamarreño D V., Inkpen R, May E (2009) Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02079-08

  • Zhang S, Worrell E, Crijns-Graus W (2015) Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry. Appl Energy 147:192–213. https://doi.org/10.1016/j.apenergy.2015.02.081

    Article  CAS  Google Scholar 

  • Zhang X, Yang H, Cui Z (2016) A new indicator to evaluate the pollution of iron and manganese. RSC Adv. https://doi.org/10.1039/c6ra00765a

  • Zhang S, Ren H, Zhou W, et al (2018a) Assessing air pollution abatement co-benefits of energy efficiency improvement in cement industry: A city level analysis. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.02.293

  • Zhang X, Yang H, Cui Z (2018b) Evaluation and analysis of soil migration and distribution characteristics of heavy metals in iron tailings. J Clean Prod. https://doi.org/10.1016/j.jclepro.2017.09.277

  • Zhu T, Dittrich M (2016) Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2016.00004

  • Zhu T, Paulo C, Merroun ML, Dittrich M (2015) Potential application of biomineralization by Synechococcus PCC8806 for concrete restoration. Ecol Eng. https://doi.org/10.1016/j.ecoleng.2015.05.017

Download references

Acknowledgements

The authors acknowledge the support provided by Scholarship School BD (SSBD) and Md Nazmul Hasan, Admin of SSBD, for arranging and conducting this research campaign (Research Camp-1).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the conception and design of the study. Mahabub MS conceptualized the article, performed all analyses, and prepared the original draft of this manuscript. Material preparation and data collection were performed by Mahabub MS and assisted by Alahi F. Imran MA provided guidelines for key concepts, data validations, and visualizations, including supervision of this research. All the authors commented on the previous versions of the manuscript, and Mahabub MS performed all the necessary editing, and Imran MA reviewed the manuscript. All the authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Md. Shakil Mahabub.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Responsible Editor: Robert Duran

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahabub, M.S., Alahi, F. & Al Imran, M. Unlocking the potential of microbes: biocementation technology for mine tailings restoration — a comprehensive review. Environ Sci Pollut Res 30, 91676–91709 (2023). https://doi.org/10.1007/s11356-023-28937-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-28937-4

Keywords

Navigation