Skip to main content

Advertisement

Log in

Occurrence, environmental impact and fate of pharmaceuticals in groundwater and surface water: a critical review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In many nations and locations, groundwater serves as the population's primary drinking water supply. However, pharmaceuticals found in groundwater and surface waters may affect aquatic ecosystems and public health. As a result, their existence in natural raw waters are now more widely acknowledged as a concern. This review summarises the evidence of research on pharmaceuticals' occurrence, impact and fate, considering results from different water bodies. Also, various analytical techniques were reviewed to compare different pharmaceuticals' detection frequencies in water bodies. These include liquid chromatography-mass spectrometry (LC–MS), high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and gas chromatography-mass spectrometry (GC–MS). However, owing to LC–MS's high sensitivity and specification, it is the most reported instrument used for analysis. The PRISMA reviewing methodology was adopted based on relevant literature in order to focus on aim of the review. Among other pharmaceuticals reviewed, sulfamethoxazole was found to be the most frequently detected drug in wastewater (up to 100% detection frequency). The most reported pharmaceutical group in this review is antibiotics, with sulfamethoxazole having the highest concentration among the analysed pharmaceuticals in groundwater and freshwater (up to 5600 ng/L). Despite extensive study and analysis on the occurrence and fate of pharmaceuticals in the environment, appropriate wastewater management and disposal of pharmaceuticals in the water environment are not still monitored regularly. Therefore, there is a need for mainstream studies tailored to the surveillance of pharmaceuticals in water bodies to limit environmental risks to human and aquatic habitats in both mid and low-income nations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used for this work are contained in the manuscript.

References

  • Al Aukidy M, Verlicchi P, Jelic A, Petrovic M, Barcelò D (2012) Monitoring release of pharmaceutical compounds: occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Sci Total Environ 438:15–25

    Article  CAS  Google Scholar 

  • Alder AC, Bruchet A, Carballa M, Clara M, Joss A, Löffler D (2006) Consumption and occurrence. In: Ternes TA, Joss A (eds) Human pharmaceuticals, hormones and fragrances: the challenge of micropollutants in urban water management. IWA Publishing, London

    Google Scholar 

  • Aus der Beek T, Weber F-A, Bergmann A, Hickmann S, Ebert I, Hein A, Küster A (2016) Pharmaceuticals in the environment-Global occurrences and perspectives. Environ Toxicol Chem 35:823e835. https://doi.org/10.1002/etc.3339

    Article  CAS  Google Scholar 

  • Azanu D, Styrishave B, Darko G, Weisser JJ, Abaidoo RC (2018) Occurrence and risk assessment of antibiotics in water and lettuce in Ghana. Sci Total Environ 622–623:293–305. https://doi.org/10.1016/j.scitotenv.2017.11.287

    Article  CAS  Google Scholar 

  • Babić S, Mutavdžić Pavlović D, Ašperger D, Periša M, Zrnčić M, Horvat AJ, Kaštelan-Macan M (2010) Determination of multi-class pharmaceuticals in wastewater by liquid chromatography–tandem mass spectrometry (LC–MS–MS). Anal Bioanal Chem 398:1185–1194

    Article  Google Scholar 

  • Baena-Nogueras RM, González-Mazo E, Lara-Martín PA (2017) Degradation kinetics of pharmaceuticals and personal care products in surface waters: photolysis vs biodegradation. Sci Total Environ 590–591:643–654. https://doi.org/10.1016/j.scitotenv.2017.03.015. (Elsevier B.V)

    Article  CAS  Google Scholar 

  • Bain R, Cronk R, Hossain R, Bonjour S, Onda K, Wright J, Yang H, Slaymaker T, Hunter P (2014) Global assessment of exposure to faecal contamination through drinking water based on a systematic review. Trop Med Int Health 19:917–927

    Article  Google Scholar 

  • Bartelt-Hunt S, Snow DD, Damon-Powell T, Miesbach D (2011) Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities. J Contam Hydrol 123:94–103

    Article  CAS  Google Scholar 

  • Basaglia G, Pietrogrande MC (2012) Optimization of a SPME/GC/MS Method for the Simultaneous Determination of Pharmaceuticals and Personal Care Products in Waters. Chromatographia 75:361–370

    Article  CAS  Google Scholar 

  • Basset GJC, Quinlivam EP, Gregory JF, Hanson AD (2005) Folate synthesis and metabolism in plants and prospects for biofortification. Crop Sci 45:449–453

    Article  CAS  Google Scholar 

  • Baye D (2021) Sustainable development goals (SDG) target 6.2 in Ethiopia: challenges and opportunities. Open Access Libr J 8:1–28

    Google Scholar 

  • Bayer A, Asner R, Schüssler W, Kopf W, Weiß K, Sengl M et al (2014) Behavior of sartans (antihypertensive drugs) in wastewater treatment plants, their occurrence and risk for the aquatic environment. Environ Sci Pollut Res 21(18):10830–10839. https://doi.org/10.1007/s11356-014-3060-z

    Article  CAS  Google Scholar 

  • Ben Y, Fu C, Hu M, Liu L, Wong MH, Zheng C (2019) Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ Res 169:483–493. https://doi.org/10.1016/j.envres.2018.11.040

    Article  CAS  Google Scholar 

  • Bertelkamp C, Verliefde AR, Schoutteten K, Vanhaecke L, Vanden-Bussche J, Singhal N, van der Hoek JP (2016) The effect of redox conditions and adaptation time on organic micropollutant removal during river bank filtration: a laboratory-scale column study. Sci Total Environ 544:309–318. https://doi.org/10.1016/j.scitotenv.2015.11.035

    Article  CAS  Google Scholar 

  • Białk-Bielińska A, Kumirska J, Borecka M, Caban M, Paszkiewicz M, Pazdro K, Stepnowski P (2016) Selected analytical challenges in the determination of pharmaceuticals in drinking/marine waters and soil/sediment samples. J Pharm Biomed Anal 121:271–296. https://doi.org/10.1016/j.jpba.2016.01.016

    Article  CAS  Google Scholar 

  • Biel-Maeso M, Gonzalez-Gonzalez C, Lara-Martin PA, Corada- Fernandez C (2019) Sorption and degradation of contaminants of emerging concern in soils under aerobic and anaerobic conditions. Sci Total Environ 666:662–671

    Article  CAS  Google Scholar 

  • Binh VN, Dang N, Anh NTK, Ky LX, Thai PK (2018) Antibiotics 856 in the aquatic environment of Vietnam: Sources, concentrations, risk and control strategy. Chemosphere 197:438–450

    Article  CAS  Google Scholar 

  • Boy-Roura M, Mas-Pla J et al (2018) Towards the understanding of antibiotic occurrence and transport in groundwater: findings from the Baix Fluvi`a alluvial aquifer. Sci Total Environ 612:1387–1406

    Article  CAS  Google Scholar 

  • Bound JP, Voulvoulis N (2005) Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United Kingdom. Environ Health Perspect 113:1705–1711

    Article  Google Scholar 

  • Bradley PM, Barber LB, Kolpin DW et al (2007) Biotransformation of caffeine, cotinine and nicotine in stream sediments: implications for use as wastewater indicators. Environ Toxicol Chem 26:1116–1121

    Article  CAS  Google Scholar 

  • Bruce GM, Pleu RC, Snyder SA (2010) Toxicological Relevance of Pharmaceuticals in Drinking Water. Environ Sci Technol 44:5619–5626

    Article  CAS  Google Scholar 

  • Bueno MJ, Gomez MJ, Herrera S, Hernando MD, Agüera A, Fernández- Alba AR (2012) Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: two years pilot survey monitoring. Environ Pollut 164:267–273

    Article  CAS  Google Scholar 

  • Burri NM, Weatherl R, Moeck C, Schirmer M (2019) A review of threats to groundwater quality in the anthropocene. Sci Total Environ 684:136–154

    Article  CAS  Google Scholar 

  • Buszka PM, Yeskis DJ, Kolpin DW, Furlong ET, Zaugg SD, Meyer MT (2009) Waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water near Elkhart, Indiana, 2000–2002. Bull Environ Contam Toxicol 82:653–659

    Article  CAS  Google Scholar 

  • Charuaud L, Jarde E, Jaffrezic A, Thomas M-F, Le Bot B (2019) Veterinary pharmaceutical residues from natural water to tap water: sales, occurrence and fate. J Hazard Mater 361:169e186. https://doi.org/10.1016/j.jhazmat.2018.08.075

    Article  CAS  Google Scholar 

  • Christensen AM, Markussen B, Baun A, Halling-Sørensen B (2009) Probabilistic environmental risk characterization of pharmaceuticals in sewage treatment plant discharges. Chemosphere 77:351–358

    Article  CAS  Google Scholar 

  • Comber S et al (2018) Active pharmaceutical ingredients entering the aquatic environment from wastewater treatment works: A cause for concern? Sci Total Environ 613–614:538–547

    Article  Google Scholar 

  • Conkle JL, White JR, Metcalfe CD (2008) Reduction of pharmaceutically active compounds by a lagoon wetland wastewater treatment system in Southeast Louisiana. Chemosphere 73(11):1741–1748

    Article  CAS  Google Scholar 

  • Dalahmeh S, Björnberg E, Elenström AK, Niwagaba CB, Komakech AJ (2020) Pharmaceutical pollution of water resources in Nakivubo wetlands and Lake Victoria, Kampala, Uganda. Sci Total Environ 710:136347

    Article  CAS  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Proj 107:907–938

    Article  CAS  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433. https://doi.org/10.1128/MMBR.00016-10

    Article  CAS  Google Scholar 

  • Davis JG, Truman CC, Kim SC, Ascough JC, Carlson K (2006) Antibiotic transport via runoff and soil loss. J Environ Qual 35:2250–2260

    Article  CAS  Google Scholar 

  • Doruk AY, Goker H, Cihangir N (2018) Biodegradation of diclofenac with fungal strains. Arch Environ Protect 44(1):55–62

    Google Scholar 

  • Drewes JE (2009) Ground water replenishment with recycled water e water quality improvements during managed aquifer recharge. Ground Water 47:502–505

    Article  CAS  Google Scholar 

  • Drewes JE, Heberer T, Rauch T, Reddersen K (2003) Fate of pharmaceuticals during groundwater recharge. Ground Water Monit Rem 23:64–72

    Article  CAS  Google Scholar 

  • Ebele AJ, Oluseyi T, Drage DS, Abou-Elwafa Abdallah M, Harrad S (2020) Occurrence, seasonal variation and human exposure to pharmaceuticals and personal care products in surface water, groundwater and drinking water in Nigeria. Emerg Contam 6:124–132

    Article  Google Scholar 

  • Ebele AJ, Abdallah ME, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contam 3:1–16

    Article  Google Scholar 

  • Eggen T, Moeder M, Arukwe A (2012) Municipal landfill leachates: a significant source for new and emerging pollutants. Sci Total Environ 408:5147–5157

    Article  Google Scholar 

  • Ellis JB, Revitt DM, Lister P et al (2002) Experimental studies of sewer exfiltration. Water Sci Technol 47:61–67

    Article  Google Scholar 

  • Emmanuel E, Perrodin Y, Keck G et al (2005) Eco-toxicological risk assessment of hospital wastewater: a proposed framework for raw effluents discharging into urban sewer network. J Hazard Mater 117:1–11. https://doi.org/10.1016/j.jhazmat.2004.08.032

    Article  CAS  Google Scholar 

  • Fatta D et al (2007) Analytical methods for tracing pharmaceutical residues in water and wastewater. Trends Anal Chem 26(6):515–533

    Article  CAS  Google Scholar 

  • Fatta-Kassinos D, Meric S, Nikolaou A (2011) Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal Bioanal Chem 399:251–275

    Article  CAS  Google Scholar 

  • Ferrer I, Thurman EM (2012) Analysis of 100 pharmaceuticals and their degradates in water samples by liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr A 1259:148–157. https://doi.org/10.1016/j.chroma.2012.03.059

    Article  CAS  Google Scholar 

  • Fernandes T, Vaz-Moreira I, Manaia CM (2019) Neighbor urban wastewater treatment plants display distinct profiles of bacterial community and antibiotic resistance genes. Environ Sci Pollut Res 26(11):11269–11278

    Article  CAS  Google Scholar 

  • Fick J, S€oderstr€om H, Lindberg RH et al (2009) Pharmaceuticals and personal care products in the environment: contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem 28:2522–2527

    Article  CAS  Google Scholar 

  • Flynn DO, Lawler J, Yusuf A, Parle-mcdermott A, Harold D, Cloughlin M, Holland L (2021) Analytical Methods A review of pharmaceutical occurrence and pathways in the aquatic environment in the context of a changing climate and the COVID-19 pandemic 575–594. https://doi.org/10.1039/d0ay02098b

  • Focazio MJ, Kolpin DW, Barnes KK, Furlong ET, Meyer MT, Zaugg SD et al (2008) A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States — II) untreated drinking water sources. Sci Total Environ 402:201–216

    Article  CAS  Google Scholar 

  • Fram MS, Belitz K (2014) Occurrence and Concentrations of Pharmaceutical Compounds in Groundwater Used for Public Drinking-Water Supply in California Science of the Total Environment Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California. Sci Total Environ 409(18):3409–3417. https://doi.org/10.1016/j.scitotenv.2011.05.053

    Article  CAS  Google Scholar 

  • Fram MS, Belitz K (2011) Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California. Sci Total Environ 409:3049–3417

    Article  Google Scholar 

  • Fuhrimann S, Winkler MS, Stalder M, Niwagaba CB, Babu M, Kabatereine NB, Halage AA, Utzinger J, Cissé G, Nauta M (2016) Disease burden due to gastrointestinal pathogens in a wastewater system in Kampala, Uganda. Microbial Risk Anal 4:16–28

    Article  Google Scholar 

  • García-Galán MJ, González Blanco S, López Roldán R, Díaz-Cruz S, Barceló D (2012) Ecotoxicity evaluation and removal of sulfonamides and their acetylated metabolites during conventional wastewater treatment. Sci Total Environ 437:403–412

    Article  Google Scholar 

  • Godfrey E, Woessner WW, Benotti MJ (2007) Pharmaceuticals in on-site sewage effluent and groundwater, western Montana. Groundwater 45(3):263–271

    Article  CAS  Google Scholar 

  • Golet E, Alder A, Hartmann A, Ternes T, Giger W (2001) Trace determination of fluoroquinolone antibacterial agents in urban wastewater by solid-phase extraction and liquid chromatography with fluorescence detection. Anal Chem 73(15):3632–3638. https://doi.org/10.1021/ac0015265

    Article  CAS  Google Scholar 

  • González AS, Catalá M, Maroto R, Gil J, De Miguel Á, Valcárcel Y (2010) Pollution by psychoactive pharmaceuticals in the Rivers of Madrid metropolitan area (Spain). Environ Int 36(2):195–201. https://doi.org/10.1016/j.envint.2009.11.004

    Article  CAS  Google Scholar 

  • Gonzalez-Pleiter M, Gonzalo S, Rodea-Palomares I, Leganes F, Rosal R, Boltes K, Marco E, Fernandez-Pinas F (2013) Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Res 47:2050–2064

    Article  CAS  Google Scholar 

  • Gurr CJ, Reinhard M (2006) Harnessing natural attenuation of pharmaceuticals and hormones in rivers. Environ Sci Technol 40:2872–2876

    Article  CAS  Google Scholar 

  • Gwenzi W, Simbanegavi TT, Rzymski P (2023) Household Disposal of Pharmaceuticals in Low-Income Settings: Practices, Health Hazards, and Research Needs. Water 15:476. https://doi.org/10.3390/w15030476

    Article  Google Scholar 

  • Heberer T (2002) Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol 266:175–189

    Article  CAS  Google Scholar 

  • Heberer T, Mechlinski A, Fanck B, Knappe A, Massmann G, Pekdeger A et al (2004) Field studies on the fate and transport of pharmaceutical residues in bank filtration. Ground Water Monit Rem 24(2):70–77

    Article  CAS  Google Scholar 

  • Hebig KH, Groza LG, Sabourin MJ, Scheytt TJ, Ptacek CJ (2017) Transport behavior of the pharmaceutical compounds carbamazepine, sulfamethoxazole, gemfibrozil, ibuprofen, and naproxen, and the lifestyle drug caffeine, in saturated laboratory columns. Sci Total Environ 590–591:708–719. https://doi.org/10.1016/j.scitotenv.2017.03.031

    Article  CAS  Google Scholar 

  • Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69(2 SPEC. ISS):334–342. https://doi.org/10.1016/j.talanta.2005.09.037

    Article  CAS  Google Scholar 

  • Hossain A, Nakamichi S, Habibullah-Al-Mamun M, Tani K, Masunaga S, Matsuda H (2018) Occurrence and ecological risk of pharmaceuticals in river surface water of Bangladesh. Environ Res 165(March):258–266. https://doi.org/10.1016/j.envres.2018.04.030

    Article  CAS  Google Scholar 

  • Hughes S, Vincent M (2012) Managing gout and hyperuricaemia. Clin Pharm 4(3):79–83. https://doi.org/10.1016/j.mpmed.2011.12.027. (Elsevier Ltd)

    Article  Google Scholar 

  • Huo SM, Yang H, Deng AP (2007) Development and validation of a highly sensitive ELISA for the determination of pharmaceutical indomethacin in water samples. Talanta 73:380–386. https://doi.org/10.1016/j.talanta.2007.03.055

    Article  CAS  Google Scholar 

  • Igere BE, Onohuean H, Nwodo UU (2022a) Modern knowledge-scape possesses a petite influence on the factual persistence of resistance (ARGs/MGEs) determinants: A mapping assessment of discharged wastewater and water bodies. Cell Press family, Heliyon Environment. https://doi.org/10.1016/j.heliyon.2022.e12253

    Book  Google Scholar 

  • Igere BE, Onohuean H, Nwodo UU (2022b) Water bodies are Potential hub for spatio-allotment of Cell free Nucleic Acid and Pandemic: A Pentadecadal (1969–2021) critical review on Particulate Cell free DNA reservoirs in Water nexus. Springer, Bulletin of the National Research Centre. https://doi.org/10.1186/s42269-022-00750-y

    Book  Google Scholar 

  • Isidori M, Bellotta M, Cangiano M, Parrella A (2009) Estrogenic activity of pharmaceuticals in the aquatic environment. Environ Int 35:826–829

    Article  CAS  Google Scholar 

  • Jałowiecki Ł, Płaza G, Ejhed H, Nawrotek M (2019) Aerobic biodegradation of norfloxacin and ofloxacin by a microbial consortium. Arch Environ Protect 45(4):40–47

    Google Scholar 

  • Jurado A, Vázquez-Suñé E, Pujades E (2017) Potential uses of pumped urban groundwater: a case study in Sant Adrià del Besòs (Spain). Hydrogeol J 25:1745–1758. https://doi.org/10.1007/s10040-017-1575-3

    Article  CAS  Google Scholar 

  • Kabir M, Yasmin S, Mou SA et al (2021) An LLE Based LC- ESI MS/MS Analytical Method Development to Detect Azithromycin Residue in Water to Monitor Contamination Level of River and Fish Farm of Bangladesh 1–12. https://doi.org/10.21203/rs.3.rs-588090/v1

  • Kairigo P, Ngumba E, Sundberg L-R, Gachanja A, Tuhkanen T (2020) Occurrence of antibiotics and risk of antibiotic resistance evolution in selected Kenyan wastewaters, surface waters and sediments. Sci Total Environ 720:137580. https://doi.org/10.1016/j.scitotenv.2020.37580

    Article  CAS  Google Scholar 

  • Karnjanapiboonwong A, Suski JG, Shah AA, Cai Q, Morse AN, Anderson TA (2011) Occurrence of PPCPs at a wastewater treatment plant and in soil and groundwater at a land application site. Water Air Soil Pollut 216:257–273

    Article  CAS  Google Scholar 

  • Kayiwa R, Kaseddea RH, Lubwamaa M, Kirabiraa JB, Kayondob T (2022) Occurrence and toxicological assessment of selected active pharmaceutical ingredients in effluents of pharmaceutical manufacturing plants and wastewater treatment plants in Kampala , Uganda. 17(4). https://doi.org/10.2166/wpt.2022.024

  • Khan AH, Aziz HA, Khan NA et al (2021) Impact, disease outbreak and the eco - hazards associated with pharmaceutical residues : a Critical review. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03158-9

    Article  Google Scholar 

  • Khan U, Bloom RA, Nicell JA, Laurenson JP (2017) Risks Associated with the Environmental Release of Pharmaceuticals on the U.S. Food and Drug Administration “Flush List.” Sci Total Environ 609:1023–1040

    Article  CAS  Google Scholar 

  • Kiecak A, Sassine L, Boy-Roura M, Elsner M, Mas-Pla J, Le Gal La Salle C, Stumpp C (2019) Sorption properties and behaviour at laboratory scale of selected pharmaceuticals using batch experiments. J Contam Hydrol 225:103500. https://doi.org/10.1016/j.jconhyd.2019.103500

    Article  CAS  Google Scholar 

  • Knee KL, Gossettc R, Boehmd AB et al (2010) Caffeine and agricultural pesticide concentrations in surface water and groundwater on the north shore of Kauai. Mar Pollut Bull 60:1376–1382

    Article  CAS  Google Scholar 

  • K’oreje KO, Vergeynst L, Ombaka D, Wispelaere PD, Okoth M (2016) Chemosphere Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere 149:238–244. https://doi.org/10.1016/j.chemosphere.2016.01.095

    Article  CAS  Google Scholar 

  • Koçoğlu ES, Sözüdoğru O, Komesli OT, Yılmaz AE, Bakırdere S (2019) Simultaneous determination of drug active compound, hormones, pesticides, and endocrine disruptor compounds in wastewater amples by GC-MS with direct calibration and matrix matching strategies after preconcentration with dispersive liquid-liquid microextraction. Environ Monit Assess 2019(191):653

    Article  Google Scholar 

  • Kugathas S, Williams RJ, Sumpter JP (2012) Prediction of environmental concentrations of glucocorticoids: The River Thames, UK, as an example. Environ Int 40:15–23

    Article  CAS  Google Scholar 

  • Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use - present knowledge and future challenges. J Environ Manag 90:2354–2366. https://doi.org/10.1016/j.jenvman.2009.01.023

    Article  CAS  Google Scholar 

  • Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303

    Article  CAS  Google Scholar 

  • Laws BV, Dickenson ERV, Johnson TA, Snyder SA, Drewes JE (2011) Attenuation of contaminants of emerging concern during surface-spreading aquifer recharge. Sci Total Environ 409:1087–1094

    Article  CAS  Google Scholar 

  • Li HS, Zhou SQ, Sun YB, Feng P, Li JD (2009) Advanced treatment of landfill leachate by a new combination process in a full-scale plant. J Hazard Mater 172:408–415

    Article  CAS  Google Scholar 

  • Li JY, Dodgen L, Ye QF, Gan J (2013) Degradation kinetics and metabolites of carbamazepine in soil. Environ Sci Technol 47:3678–3684

    Article  CAS  Google Scholar 

  • Li WC (2014) Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut 187:193–201. https://doi.org/10.1016/j.envpol.2014.01.015

    Article  CAS  Google Scholar 

  • Li Y, Sallach JB, Zhang W, Boyd SA, Li H (2019) Insight into the distribution of pharmaceuticals in soil-water-plant systems. Water Res 152:38–46. https://doi.org/10.1016/j.watres.2018.12.039

    Article  CAS  Google Scholar 

  • Li Z, Maier MP, Radke M (2014) Screening for pharmaceutical transformation products formed in river sediment by combining ultrahigh performance liquid chromatography/high resolution mass spectrometry with a rapid data-processing method. Anal Chim Acta 810:61–70. https://doi.org/10.1016/j.aca.2013.12.012

    Article  CAS  Google Scholar 

  • Li Z, Sobek A, Radke M (2015) Flume experiments to investigate the environmental fate of pharmaceuticals and their transformation products in streams. Environ Sci Technol 49:6009–6017. https://doi.org/10.1021/acs.est.5b00273

    Article  CAS  Google Scholar 

  • Lin YC, Lai WW, Tung HH, Lin AY (2015) Occurrence of pharmaceuticals, hormones, and perfluorinated compounds in groundwater in Taiwan. Environ Monit Assess 187:256. https://doi.org/10.1007/s10661-015-4497-3

    Article  CAS  Google Scholar 

  • Lindberg RH, Östman M, Olofsson U, Grabic R, Fick J (2014) Occurrence and behavior of 105 active pharmaceutical ingredients in sewage waters of a municipal sewer collection system. Water Res 58:221–229

    Article  CAS  Google Scholar 

  • Löffler D, Römbke J, Meller M, Ternes TA (2005) Environmental fate of pharmaceuticals in water/sediment systems. Environ Sci Technol 39:5209–5218

    Article  Google Scholar 

  • López-Serna R, Petrović M, Barceló D (2012) Occurrence and distribution of multi-class pharmaceuticals and their active metabolites and transformation products in the Ebro River basin (NE Spain). Sci Total Environ 440:280–289

    Article  Google Scholar 

  • Lukubye B, Andama M (2017) Physico-chemical quality of selected drinking water sources in Mbarara Municipality, Uganda. J Water Resour Prot 9:707–722

    Article  CAS  Google Scholar 

  • Maculewicz J, Kowalska D, Klaudia Ś, Stepnowski P, Bia A, Do J (2022) Transformation products of pharmaceuticals in the environment : Their fate ( eco ) toxicity and bioaccumulation potential. Sci Total Environ 802. https://doi.org/10.1016/j.scitotenv.2021.149916

  • Magdaleno A, Saenz ME, Juarez AB, Moretton J (2015) Effects of six antibiotics and their binary mixtures on growth of Pseudokirchneriella subcapitata. Ecotoxicol Environ Saf 113:72–78

    Article  CAS  Google Scholar 

  • Martín J, Camacho-Muñoz D, Santos JL, Aparicio I, Alonso E (2012) Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal. J Hazard Mater 239–240:40–47

    Article  Google Scholar 

  • Martins N, Pereira R, Abrantes N, Pereira J, Gonçalves F, Marques CR (2012) Ecotoxicological effects of ciprofloxacin on freshwater species: data integration and derivation of toxicity thresholds for risk assessment. Ecotoxicology 21:1167–1176

    Article  CAS  Google Scholar 

  • Marube LC, Caldas SS, Santos EOD, Michaelsen A, Primel EG (2018) Multi-residue method for determination of thirty-five pesticides, pharmaceuticals and personal care products in water using ionic liquid-dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry. J Braz Chem Soc 2018(29):1349–1359

    Google Scholar 

  • McArthur JV, Tuckfield RC (2000) Spatial patterns in antibiotic resistance among stream bacteria: effects of industrial pollution. Appl Environ Microbiol 66:3722–3726

    Article  CAS  Google Scholar 

  • McEachran AD, Shea D, Bodnar W, Nichols EG (2016) Pharmaceutical Occurrence in Groundwater and Surface Waters in Forests Land-Applied with Municipal Wastewater. Environ Toxicol Chem 35(4):898–905. https://doi.org/10.1002/etc.3216

    Article  CAS  Google Scholar 

  • Michael I, Rizzo L et al (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 47(3):957–995

    Article  CAS  Google Scholar 

  • Mohamed HM (2015) Green, environment-friendly, analytical tools give insights in pharmaceuticals and cosmetics analysis. TrAC Trends Anal Chem 66:176–192

    Article  CAS  Google Scholar 

  • Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35:803–814

    Article  CAS  Google Scholar 

  • Mooney D, Coxon C, Richards KG, Gill L, Mellander PE, Danaher M (2019) Development and optimisation of a multiresidue method for the determination of 40 anthelmintic compounds in environmental water samples by solid phase extraction (SPE) with LC-MS/MS detection. Molecules 24(10):1978

    Article  CAS  Google Scholar 

  • Montesdeoca-Esponda S, Palacios-Díaz MP, Estévez E, Sosa-Ferrera Z, Santana-Rodríguez JJ, Cabrera MC (2021) Occurrence of Pharmaceutical Compounds in Groundwater from the Gran Canaria Island (Spain). Water 13:262

    Article  CAS  Google Scholar 

  • Mooney D, Richards KG, Danaher M, Grant J, Gill L, Mellander P, Coxon CE (2021) An analysis of the spatio-temporal occurrence of anthelmintic veterinary drug residues in groundwater. Sci Total Environ 769:144804. https://doi.org/10.1016/j.scitotenv.2020.144804

    Article  CAS  Google Scholar 

  • Mudgal S, De Toni A, Lockwood S, Sales L, Backhaus T, Sorensen BH (2013) Study on the environmental risks of medicinal products. Final report. Executive Agency for Health and Consumers, Bio Intelligence Service

    Google Scholar 

  • Murray KE, Thomas SM, Bodour AA (2010) Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environ Pollut 158:3462–3471

    Article  CAS  Google Scholar 

  • Nantaba F, Wasswa J, Kylin H, Palm W, Bouwman H, Kümmerer K (2020) Chemosphere Occurrence, distribution, and ecotoxicological risk assessment of selected pharmaceutical compounds in water from Lake Victoria, Uganda. Chemosphere 239:124642. https://doi.org/10.1016/j.chemosphere.2019.124642

    Article  CAS  Google Scholar 

  • Nicholas-Bateman D (2012) Non-steroidal anti-inflammatory drugs. Medicine 40:140

    Article  Google Scholar 

  • Nie XP, Liu BY, Yu HJ, Liu WQ, Yang YF (2013) Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata. Environ Pollut 172:23–32

    Article  CAS  Google Scholar 

  • Niemi L, Taggart M, Boyd K, Zhang Z, Gaffney PPJ, Pfleger S, Gibb S (2020) Assessing hospital impact on pharmaceutical levels in a rural ‘source-to-sink’ water system. Sci Total Environ 737:139618. https://doi.org/10.1016/j.scitotenv.2020.139618

    Article  CAS  Google Scholar 

  • Novo A, Andre S, Viana P, Nunes OC, Manaia CM (2013) Antibiotic resistance, antimicrobial residues and bacterial community composition in urban wastewater. Water Res 47:1875–1887

    Article  CAS  Google Scholar 

  • Organization for Economic Cooperation and Development. OECD (2019) Pharmaceutical residues in freshwater: hazards and policy responses. OECD studies on water. OECD Publishing, Paris. https://doi.org/10.1787/c936f42d-en

  • Page MJ, Moher D (2017) Evaluations of the uptake and impact of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Statement and extensions: a scoping review. Syst Rev 6(1):1–14

    Article  Google Scholar 

  • Paíga P, Correia M, Fernandes MJ, Silva A, Carvalho M, Vieira J, Jorge S, Silva JG, Freire C, Delerue-Matos C (2019) Assessment of 83 pharmaceuticals inWWTP influent and effluent samples by UHPLC-MS/MS: hourly variation. Sci Total Environ 648:582–600. https://doi.org/10.1016/j.scitotenv.2018.08.129

    Article  CAS  Google Scholar 

  • Pal A, Gin KY, Lin AY, Reinhard M (2010) Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ 408:6062–6069

    Article  CAS  Google Scholar 

  • Petrie B, Barden R, Kasprzyk-Hordern B (2014) A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27

    Article  Google Scholar 

  • Petrovic M, Eljarrat E, Lopez De Alda MJ, Barceló D (2004) Endocrine disrupting compounds and other emerging contaminants in the environment: A survey on new monitoring strategies and occurrence data. Anal Bioanal Chem 378:549–562

    Article  CAS  Google Scholar 

  • PHYSPROP. Physical properties database. (2014) FatePointers Search Module of the Syracuse Research Company (SRC, Inc.); Available at: http://esc.syrres.com/fatepointer/search.asp. Accessed in May 2014

  • Postigo C, Barceló D (2014) Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation. Sci Total Environ 503–504:32–47. https://doi.org/10.1016/j.scitotenv.2014.06.019

    Article  CAS  Google Scholar 

  • Praveena SM, Shaifuddin SNM, Sukiman S, Nasir FAM, Hanafi Z, Kamarudin N, …, Aris AZ (2018) Pharmaceuticals residues in selected tropical surface water bodies from Selangor (Malaysia): Occurrence and potential risk assessments. Sci Total Environ 642:230–240. https://doi.org/10.1016/j.scitotenv.2018.06.058

  • Priyanka MS, Mohapatra S, Menon NG (2021) Hybrid membrane technology: an alternative to industrial wastewater treatment. Membrane-Based Hybrid Processes for Wastewater Treatment 481–501 112855. https://doi.org/10.1016/j.envres.2022.112855

  • Puckowski A, Mioduszewska K, Łukaszewicz P, Borecka M, Caban M, Maszkowska J, Stepnowski P (2016) Bioaccumulation and analytics of pharmaceutical residues in the environment: a review. J Pharmaceut Biomed Anal 127:232–255. https://doi.org/10.1016/j.jpba.2016.02.049

    Article  CAS  Google Scholar 

  • Rabiet M, Togola A, Brissaud F, Seidel JL, Budzinski H, Elbaz-Poulichet F (2006) Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized Mediterranean catchment. Environ Sci Technol 40:5282–5288

    Article  CAS  Google Scholar 

  • Ramírez-Morales D, Masís-Mora M, Montiel-Mora JR, Cambronero-Heinrichs JC, Pérez-Rojas G, Tormo-Budowski R, …, Rodríguez-Rodríguez CE (2021) Multi-residue analysis of pharmaceuticals in water samples by liquid chromatography- mass spectrometry: Quality assessment and application to the risk assessment of urban-influenced surface waters in a metropolitan area of Central America. Process Saf Environ Protect 153:289–300. https://doi.org/10.1016/j.psep.2021.07.025

  • Rehman M, Rashid N, Ashfaq M, Saif A, Ahmad N, Han J (2015) Global risk of pharmaceutical contamination from highly populated developing countries. Chemosphere 138:1045–1055. https://doi.org/10.1016/j.chemosphere.2013.02.036

    Article  CAS  Google Scholar 

  • Seiler RL, Zaugg SD, Thomas JM et al (1999) Caffeine and pharmaceuticals as indicators of waste water contamination in wells. Groundwater 37:405–410

    Article  CAS  Google Scholar 

  • Sharma BM, Becanova J et al (2018) Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Sci Total Environ 646(PT.1–1660):1459–1467

    Google Scholar 

  • Shi J, Dong Y, Shi Y, Yin T, He W, An T (2022) Groundwater antibiotics and microplastics in a drinking-water source area, northern China : Occurrence, spatial distribution, risk assessment, and correlation. Environ Res 210:112855

    Article  CAS  Google Scholar 

  • Silva LJG, Lino CM, Meisel LM, Pena A (2012) Selective serotonin re-uptake inhibitors (SSRIs) in the aquaticenvironment: an ecopharmacovigilance approach. Sci Total Environ 437:185–195

    Article  CAS  Google Scholar 

  • Sim WJ, Lee JW, Lee ES, Shin SK, Hwang SR, Oh JE (2011) Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 82:179–186

    Article  CAS  Google Scholar 

  • Singh V (2022) Sustainable development and climate change. In: Research anthology on measuring and achieving sustainable development goals. IGI Global, pp 944–964

  • Snyder SA, Leising J, Westerhoff P, Yoon Y, Mash H, Vanderford B (2004) Biological and physical attenuation of endocrine disruptors and pharmaceuticals: implications for water reuse. Ground Water Monit Rem 24(2):108–118

    Article  CAS  Google Scholar 

  • Sweetman SC (ed) (2002) Martindale: The Complete Drug Reference, 33rd edn. Pharmaceutical Press, London

    Google Scholar 

  • Terzic S, Senta I, Ahel M, Gros M, Petrovic M, Barcelo D, Müller J, Knepper T, Martí I, Ventura F, Jovancic P, Jabucar D (2008) Occurrence and fate of emerging wastewater contaminants in Western Balkan Region. Sci Total Environ 399:66–77

    Article  CAS  Google Scholar 

  • Tonski M, Dolzonek J, Stepnowski P, Bialk-Bielinska A (2019) Hydrolytic stability of selected pharmaceuticals and their transformation products. Chemosphere 236:124–136. https://doi.org/10.1016/j.chemosphere.2019.06.206

    Article  CAS  Google Scholar 

  • Tran NH, Hu J, Li J, Ong SL (2014) Suitability of artificial sweeteners as indicators of raw wastewater contamination in surface water and groundwater. Water Res 48:443–456. https://doi.org/10.1016/j.watres.2013.09.053

    Article  CAS  Google Scholar 

  • Twinomucunguzi FRB, Nyenje PM, Willem J, Frank F (2021) contrasting peri-urban areas in Uganda Emerging organic contaminants in shallow groundwater underlying two contrasting peri ‑ urban areas in Uganda. Environ Monit Assess (April). https://doi.org/10.1007/s10661-021-08975-6

  • Valitalo P, Kruglova A, Mikola A, Vahala R (2017) Toxicological impacts of antibiotics on aquatic micro-organisms: A mini-review. Int J Hyg Environ Health 220:558–569

    Article  CAS  Google Scholar 

  • Van Stempvoort DR, Roy JW, Grabuski J, Brown SJ, Bickerton G, Sverko E (2013) An artificial sweetener and pharmaceutical compounds as co-tracers of urban wastewater in groundwater. Sci Total Environ 461–462:348–359

    Article  Google Scholar 

  • Vulliet E, Cren-Olivé C (2011) Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwater intended to human consumption. Environ Pollut 159:2929–2934

    Article  CAS  Google Scholar 

  • Wilkinson JL, Hooda PS, Barker J, Barton S, Swinden J (2016) Ecotoxic pharmaceuticals, personal care products, and other emerging contaminants: A review of environmental, receptor-mediated, developmental, and epigenetic toxicity with discussion of proposed toxicity to humans. Crit Rev Environ Sci Technol 46:336–381

    Article  CAS  Google Scholar 

  • World Health Organization (2015) Antibiotic resistance: multi-country public awareness survey

  • World Health Organization. WHO (2012) Pharmaceuticals in drinking water. World Health Organization, Geneva, Switzerland

    Google Scholar 

  • Yamamoto H, Nakamura Y, Moriguchi S, Nakamura Y, Honda Y, Tamura I, Hirata Y, Hayashi A, Sekizawa J (2009) Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Res 43:351–362

    Article  CAS  Google Scholar 

  • Yang Y, Ok Y, Kim K, Kwon E, Tsang Y (2017) Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci Total Environ 596:303–320. https://doi.org/10.1016/j.scitotenv.2017.04.102

    Article  CAS  Google Scholar 

  • Yang WW, Tang ZP, Zhou FQ, Zhang WH, Song LR (2013) Toxicity studies of tetracycline on Microcystis aeruginosa and Selenastrum capricornutum. Environ Toxicol Pharmacol 35:320–324

    Article  CAS  Google Scholar 

  • Yang YY, Gray JL, Furlong ET, Davis JG, Revello RC, Borch T (2012) Steroid hormone runoff from agricultural test plots applied with municipal biosolids. Environ Sci Technol 46:2746–2754

    Article  CAS  Google Scholar 

  • Yao B, Yan S, Lian L, Yang X, Wan C, Dong H, Song W (2018) Occurrence and indicators of pharmaceuticals in Chinese streams: a nationwide study. Environ Pollut 236:889–898. https://doi.org/10.1016/j.envpol.2017.10.032

    Article  CAS  Google Scholar 

  • Yu JT, Bouwer EJ, Coelhan M (2006) Occurrence and biodegradability studies of selected pharmaceuticals and personal care products in sewage effluent. Agric Water Manag 86:72–80

    Article  Google Scholar 

  • Yuan Q, Snow DD, Bartelt-Hunt SL (2013) Potential water quality impacts originating from land burial of cattle carcasses. Sci Total Environ 456–457:246–253

    Article  Google Scholar 

  • Zenker A, Cicero MR, Prestinaci F et al (2014) Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J Environ Manage 133:378–387

    Article  CAS  Google Scholar 

Download references

Funding

No funds was received for this research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Idris Olatunji Sanusi, Godwin Oladele Olutona, Ibrahim Garba Wawata, Hope Onohuean; Methodology: Idris Olatunji Sanusi, Hope Onohuean; Formal analysis and investigation: Idris Olatunji Sanusi; Writing - original draft preparation: Idris Olatunji Sanusi; Writing - review and editing: Godwin Oladele Olutona, Ibrahim Garba Wawata, Hope Onohuean; Critically revised: Hope Onohuean; Funding acquisition: None; Resources: Idris Olatunji Sanusi, Godwin Oladele Olutona; Supervision: Godwin Oladele Olutona, Ibrahim Garba Wawata, Hope Onohuean.

Corresponding author

Correspondence to Idris Olatunji Sanusi.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Conflict of interest

None of the authors has any potential conflict of interest in relation to this study.

Additional information

Responsible Editor: Ester Heath

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanusi, I.O., Olutona, G.O., Wawata, I.G. et al. Occurrence, environmental impact and fate of pharmaceuticals in groundwater and surface water: a critical review. Environ Sci Pollut Res 30, 90595–90614 (2023). https://doi.org/10.1007/s11356-023-28802-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-28802-4

Keywords

Navigation