Skip to main content
Log in

Recent advancements in flat plate solar collector using phase change materials and nanofluid: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Solar energy has emerged as one of the most promising sources of renewable energy to replace the current energy market. Flat plate solar collectors (FPSC) not only are one of the easiest collectors to produce and work with but also are cheap and economical. Due to this, extensive research has been done on FPSC to improve its efficiency and reliability. Some of the methods include using nanofluids to improve the heat transfer process, phase change materials to increase and maintain stable temperatures, or integrating the collector with additional components. This review article focuses on analyzing the recent improvements in FPSC, with a particular emphasis on the achieved efficiencies and temperatures in the studies. Additionally, it is aimed at updating the information in the current field, providing a comprehensive overview of the advancements in FPSC technology. Furthermore, the article explores the combined effects of nanofluids and phase change materials in photovoltaic/thermal (PVT) collectors, considering the resulting temperature enhancements. By critically evaluating the efficiency improvements and temperatures achieved through these approaches, this article is aimed at providing valuable insights into the state-of-the-art of FPSC and their potential for advancing solar energy utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

All data are given in the manuscript.

Abbreviations

FPSC:

Flat plate solar collector

FPC:

Flat plate collector

ETSC:

Evacuated tube solar collector

MWCNT:

Multi-walled carbon nanotubes

MEPCM:

Microencapsulated phase change material

PCM:

Phase change materials

CNC:

Crystalline nanocellulose

EG:

Expanded graphite

PV:

Photovoltaic

PVT:

Photovoltaic thermal

NF:

Nanofluid

References

  • Acaroğlu H, Baykul MC (2016) Economic analysis of flat-plate solar collectors (FPSCs): a solution to the unemployment problem in the city of Eskisehir. Renew Sustain Energy Rev 64:607–617

    Google Scholar 

  • Acaroğlu H, Baykul MC (2018) Economic guideline about financial utilization of flat-plate solar collectors (FPSCs) for the consumer segment in the city of Eskisehir. Renew Sustain Energy Rev 81:2045–2058

    Google Scholar 

  • Ahmadi A, Ehyaei MA, Doustgani A, Assad MEH, Hmida A, Jamali DH, ... Razmjoo A (2021) Recent residential applications of low-temperature solar collector. J Clean Prod 279:123549

  • Ahmadlouydarab M, Ebadolahzadeh M, Ali HM (2020) Effects of utilizing nanofluid as working fluid in a lab-scale designed FPSC to improve thermal absorption and efficiency. Physica A 540:123109

    CAS  Google Scholar 

  • Ahmadu TO, Balogun MB, Dandajeh HA (2022) Effect of design parameter variation on flat plate solar collector efficiency using nano working fluids. Int J Renew Energy Res (IJRER) 12(2):721–729

    Google Scholar 

  • Ahmed SF, Khalid M, Vaka M, Walvekar R, Numan A, Rasheed AK, Mubarak NM (2021) Recent progress in solar water heaters and solar collectors: a comprehensive review. Therm Sci Eng Prog 25:100981

    Google Scholar 

  • Ajayan J, Nirmal D, Mohankumar P, Saravanan M, Jagadesh M, Arivazhagan L (2020) A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies. Superlattices Microstruct 143:106549

    CAS  Google Scholar 

  • Ajeena AM, Víg P, Farkas I (2022) A comprehensive analysis of nanofluids and their practical applications for flat plate solar collectors: fundamentals, thermophysical properties, stability, and difficulties. Energy Rep 8:4461–4490

    Google Scholar 

  • Akoh H, Tsukasaki Y, Yatsuya S, Tasaki A (1978) Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate. J Cryst Growth 45:495–500

    CAS  Google Scholar 

  • Alawi OA, Kamar HM, Mallah AR, Mohammed HA, Kazi SN, Sidik NAC, Najafi G (2021) Nanofluids for flat plate solar collectors: fundamentals and applications. J Clean Prod 291:125725

    CAS  Google Scholar 

  • Algarni S (2023) Evaluation and optimization of the performance and efficiency of a hybrid flat plate solar collector integrated with phase change material and heat sink. Case Stud Therm Eng 45:102892

    Google Scholar 

  • Algarni S, Mellouli S, Alqahtani T, Almutairi K, Anqi A (2020) Experimental investigation of an evacuated tube solar collector incorporating nano-enhanced PCM as a thermal booster. Appl Therm Eng 180:115831

    CAS  Google Scholar 

  • Al-Kayiem HH, Lin SC (2014) Performance evaluation of a solar water heater integrated with a PCM nanocomposite TES at various inclinations. Sol Energy 109:82–92

    CAS  Google Scholar 

  • Al-Waeli AH, Sopian K, Kazem HA, Yousif JH, Chaichan MT, Ibrahim A, ... Ruslan MH (2018) Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network. Sol Energy 162:378–396

  • Ashour AF, El-Awady AT, Tawfik MA (2022) Numerical investigation on the thermal performance of a flat plate solar collector using ZnO & CuO water nanofluids under Egyptian weathering conditions. Energy 240:122743

    CAS  Google Scholar 

  • Avargani VM, Norton B, Rahimi A, Karimi H (2021) Integrating paraffin phase change material in the storage tank of a solar water heater to maintain a consistent hot water output temperature. Sustain Energy Technol Assess 47:101350

    Google Scholar 

  • Awani S, Chargui R, Tashtoush B (2021) Experimental and numerical evaluation of a new design of a solar thermosyphon water heating system with phase change material. J Energy Storage 41:102948

  • Babar OA, Arora VK, Nema PK, Kasara A, Tarafdar A (2021) Effect of PCM assisted flat plate collector solar drying of green chili on retention of bioactive compounds and control of aflatoxins development. Sol Energy 229:102–111

    CAS  Google Scholar 

  • Badiei Z, Eslami M, Jafarpur K (2020) Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: a CFD modeling. Energy 192:116719

    Google Scholar 

  • Bamisile O, Cai D, Adun H, Adedeji M, Dagbasi M, Dika F, Huang Q (2022) A brief review and comparative evaluation of nanofluid application in solar parabolic trough and flat plate collectors. Energy Rep 8:156–166

    Google Scholar 

  • Bohdal T, Dutkowski K, Kruzel M (2022) Experimental studies of the effect of microencapsulated PCM slurry on the efficiency of a liquid solar collector. Materials 15(13):4493

    CAS  Google Scholar 

  • Borode A, Ahmed N, Olubambi P (2019) A review of solar collectors using carbon-based nanofluids. J Clean Prod 241:118311

    CAS  Google Scholar 

  • Cetina-Quiñones AJ, Xamán J, Bassam A, Soberanis ME, Pérez-Quintana I (2021) Thermo-economic analysis of a flat solar collector with a phase changing material under tropical climate conditions: residential and industrial case. Appl Therm Eng 182:116082

    Google Scholar 

  • Chang H et al (2007) Process optimization and material properties for nanofluid manufacturing. Int J Adv Manuf Technol 34:300–306

    Google Scholar 

  • Chen Y, Wang X (2008) Novel phase-transfer preparation of monodisperse silver and gold nanoparticles at room temperature. Mater Lett 62(15):2215–2218

    CAS  Google Scholar 

  • Dagdougui H, Ouammi A, Robba M, Sacile R (2011) Thermal analysis and performance optimization of a solar water heater flat plate collector: application to Tétouan (Morocco). Renew Sustain Energy Rev 15(1):630–638

    Google Scholar 

  • Daghigh R, Zandi P (2021) An air and water heating system based on solar gas combined with nanofluids and phase change materials. J Clean Prod 311:127751

    CAS  Google Scholar 

  • Darbari B, Rashidi S (2021) Thermal efficiency of flat plate thermosyphon solar water heater with nanofluids. J Taiwan Inst Chem Eng 128:276–287

    CAS  Google Scholar 

  • Douvi E, Pagkalos C, Dogkas G, Koukou MK, Stathopoulos VN, Caouris Y, Vrachopoulos MG (2021) Phase change materials in solar domestic hot water systems: A review. Int J Thermofluids 10:100075

    Google Scholar 

  • Elbahjaoui R, El Qarnia H (2019) Performance evaluation of a solar thermal energy storage system using nanoparticle-enhanced phase change material. Int J Hydrog Energy 44(3):2013–2028

    CAS  Google Scholar 

  • Elshazly E, Abdel-Rehim AA, El-Mahallawi I (2022) 4E study of experimental thermal performance enhancement of flat plate solar collectors using MWCNT, Al2O3, and hybrid MWCNT/Al2O3 nanofluids. Results Eng 16:100723

    CAS  Google Scholar 

  • Eltaweel M, Abdel-Rehim AA, Attia AA (2021) A comparison between flat-plate and evacuated tube solar collectors in terms of energy and exergy analysis by using nanofluid. Appl Therm Eng 186:116516

    CAS  Google Scholar 

  • Farajzadeh E, Movahed S, Hosseini R (2018) Experimental and numerical investigations on the effect of Al2O3/TiO2H2O nanofluids on thermal efficiency of the flat plate solar collector. Renew Energy 118:122–130

    CAS  Google Scholar 

  • Farhana K, Kadirgama K, Mohammed HA, Ramasamy D, Samykano M, Saidur R (2021) Analysis of efficiency enhancement of flat plate solar collector using crystal nano-cellulose (CNC) nanofluids. Sustain Energy Technol Assess 45:101049

    Google Scholar 

  • Fu Z, Liang X, Li Y, Li L, Zhu Q (2021) Performance improvement of a PVT system using a multilayer structural heat exchanger with PCMs. Renew Energy 169:308–317

    Google Scholar 

  • Fudholi A, Sopian K (2019) A review of solar air flat plate collector for drying application. Renew Sustain Energy Rev 102:333–345

    Google Scholar 

  • Garcia RP, del Rio Oliveira S, Scalon VL (2019) Thermal efficiency experimental evaluation of solar flat plate collectors when introducing convective barriers. Sol Energy 182:278–285

    Google Scholar 

  • Geovo L, Dal Ri G, Kumar R, Verma SK, Roberts JJ, Mendiburu AZ (2023) Theoretical model for flat plate solar collectors operating with nanofluids: Case study for Porto Alegre, Brazil. Energy 263:125698

    CAS  Google Scholar 

  • Gorjian S, Ebadi H, Calise F, Shukla A, Ingrao C (2020) A review on recent advancements in performance enhancement techniques for low-temperature solar collectors. Energy Convers Manag 222:113246

    Google Scholar 

  • Hosseinzadeh M, Sardarabadi M, Passandideh-Fard M (2018) Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material. Energy 147:636–647

    CAS  Google Scholar 

  • Hussein OA, Habib K, Muhsan AS, Saidur R, Alawi OA, Ibrahim TK (2020) Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid. Sol Energy 204:208–222

    CAS  Google Scholar 

  • Jawad QA, Mahdy AM, Khuder AH, Chaichan MT (2020) Improve the performance of a solar air heater by adding aluminum chip, paraffin wax, and nano-SiC. Case Stud Therm Eng 19:100622

    Google Scholar 

  • Jouybari HJ, Saedodin S, Zamzamian A, Nimvari ME, Wongwises S (2017) Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study. Renew Energy 114:1407–1418

    CAS  Google Scholar 

  • Kabeel AE, Khalil A, Shalaby SM, Zayed ME (2016) Investigation of the thermal performances of flat, finned, and v-corrugated plate solar air heaters. J SolEnergy Eng 138(5):051004

    Google Scholar 

  • Karthikeyan R, Kumar RA, Manikandan P, Senthilnathan AK (2021) Investigation of solar air heater with phase change materials using packed bed absorber plate. Mater Today: Proc 45:1360–1365

    CAS  Google Scholar 

  • Kizildag D, Castro J, Kessentini H, Schillaci E, Rigola J (2022) First test field performance of highly efficient flat plate solar collectors with transparent insulation and low-cost overheating protection. Sol Energy 236:239–248

    Google Scholar 

  • Kong W, Perers B, Fan J, Furbo S, Bava F (2015) A new Laplace transformation method for dynamic testing of solar collectors. Renew Energy 75:448–458

    Google Scholar 

  • Kumar A, Tiwari AK, Said Z (2021) A comprehensive review analysis on advances of evacuated tube solar collector using nanofluids and PCM. Sustain Energy Technol Assess 47:101417

    Google Scholar 

  • Kumar A, Gupta PR, Tiwari AK, Said Z (2022) Performance evaluation of small scale solar organic Rankine cycle using MWCNT+ R141b nanorefrigerant. Energy Convers Manag 260:115631

    CAS  Google Scholar 

  • Li W, Hou R, Wan H, Liu P, He G, Qin F (2017) A new strategy for enhanced latent heat energy storage with microencapsulated phase change material saturated in metal foam. Sol Energy Mater Sol Cells 171:197–204

    CAS  Google Scholar 

  • Lo CH, Tsung TT, Chen LC (2005) Ni nano-magnetic fluid prepared by submerged arc nano synthesis system (SANSS). JSME Int j, Ser B 48(4):750–755

    CAS  Google Scholar 

  • Mahamude ASF, Harun WSW, Kadirgama K, Ramasamy D, Farhana K, Salih K, Yusaf T (2022) Experimental study on the efficiency improvement of flat plate solar collectors using hybrid nanofluids graphene/waste cotton. Energies 15(7):2309

    CAS  Google Scholar 

  • Manoj Kumar P, Mylsamy K (2019) Experimental investigation of solar water heater integrated with a nanocomposite phase change material: energetic and exergetic approach. J Therm Anal Calorim 136:121–132

    CAS  Google Scholar 

  • Muhammad MJ, Muhammad IA, Sidik NAC, Yazid MNAWM (2016) Thermal performance enhancement of flat-plate and evacuated tube solar collectors using nanofluid: a review. Int Commun Heat Mass Transfer 76:6–15

    CAS  Google Scholar 

  • Mukherjee S, Paria S (2013) Preparation and stability of nanofluids-a review. IOSR J Mech Civ Eng 9(2):63–69

    Google Scholar 

  • Murugan M, Saravanan A, Elumalai PV, Kumar P, Saleel CA, Samuel OD, ... Afzal A (2022) An overview on energy and exergy analysis of solar thermal collectors with passive performance enhancers. Alex Eng J 61(10):8123–8147

  • Mustafa J, Alqaed S, Kalbasi R (2021) Challenging of using CuO nanoparticles in a flat plate solar collector-Energy saving in a solar-assisted hot process stream. J Taiwan Inst Chem Eng 124:258–265

    CAS  Google Scholar 

  • Nadda R, Kumar A, Maithani R (2018) Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: a review. Renew Sustain Energy Rev 93:331–353

    Google Scholar 

  • Naghdbishi A, Yazdi ME, Akbari G (2020) Experimental investigation of the effect of multi-wall carbon nanotube–water/glycol based nanofluids on a PVT system integrated with PCM-covered collector. Appl Therm Eng 178:115556

    CAS  Google Scholar 

  • Negi BS, Singh S, Negi S (2021) Multiphase numerical modeling of PCM integrated solar collector. In Recent Advances in Mechanical Engineering: Select Proceedings of ICRAME 2020. Springer Singapore, pp 849–860

  • Omara AA, Abuelnuor AA, Dafaallah MA, Ali AM, Alshoubli MA (2018) Energy and exergy analysis of solar water heating system integrated with phase change material (PCM). In 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE). IEEE, pp 1–5

  • Owolabi AL, Al-Kayiem HH, Baheta AT (2017) Performance investigation on a thermal energy storage integrated solar collector system using nanofluid. Int J Energy Res 41(5):650–657

    CAS  Google Scholar 

  • Owolabi Afolabi L, Al-Kayiem HH, Aklilu TB (2017) On the nano-additive enhanced flat plate solar collector integrated with thermal energy storage. Nanosci Nanotechnol-Asia 7(2):172–182

    Google Scholar 

  • Palacio M, Rincón A, Carmona M (2020) Experimental comparative analysis of a flat plate solar collector with and without PCM. Sol Energy 206:708–721

    Google Scholar 

  • Prasad AA, Taylor RA, Kay M (2017) Assessment of solar and wind resource synergy in Australia. Appl Energy 190:354–367

    Google Scholar 

  • Raj P, Subudhi S (2018) A review of studies using nanofluids in flat-plate and direct absorption solar collectors. Renew Sustain Energy Rev 84:54–74

    CAS  Google Scholar 

  • Resch K, Wallner GM (2009) Thermotropic layers for flat-plate collectors—a review of various concepts for overheating protection with polymeric materials. Sol Energy Mater Sol Cells 93(1):119–128

    CAS  Google Scholar 

  • Sadhishkumar S, Balusamy T (2014) Performance improvement in solar water heating systems—a review. Renew Sustain Energy Rev 37:191–198

    Google Scholar 

  • Sajedi A, Farahani SD, Alizadeh AA (2023) Numerical investigation and group method of data handling-based prediction on new flat plate solar collector integrated with nanoparticles enhanced phase change materials and tube rotation mechanism. J Energy Storage 67:107542

    Google Scholar 

  • Sarasar MB, Saedodin S, Rostamian SH, Doostmohammadi M, Khaledi O (2022) The effect of vortex generator insert and TiO2/Water nanofluid on thermal efficiency and heat transfer of flat plate solar collector. Sustain Energy Technol Assess 53:102617

    Google Scholar 

  • Sardarabadi M, Passandideh-Fard M, Maghrebi MJ, Ghazikhani M (2017) Experimental study of using both ZnO/water nanofluid and phase change material (PCM) in photovoltaic thermal systems. Solar Energy Mater Solar Cells 161:62–69

    CAS  Google Scholar 

  • Sathish T, Muthukumar K, Saravanan R, Dhinakaran V (2020, October) Study on temperature difference of aluminium nitride nanofluid used in solar flat plate collector over normal water. In AIP Conference Proceedings, vol 2283, no 1). AIP Publishing

  • Saw CL, Al-Kayiem HH, Owolabi AL (2013) Experimental investigation on the effect of PCM and nano-enhanced PCM of integrated solar collector performance. WIT Trans Ecol Environ 179:899–909

    Google Scholar 

  • Sharma A, Chauhan R (2022) Integrated and separate collector storage type low-temperature solar water heating systems with latent heat storage: a review. Sustain Energy Technol Assess 51:101935

    Google Scholar 

  • Sharma D, Tiwari AK (2018) Thermal performance of CeO2-Water nanofluid in flat plate solar collector. Int J Mech Eng Technol 9(9):552–558

    Google Scholar 

  • Sheikholeslami M, Farshad SA, Ebrahimpour Z, Said Z (2021) Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: a review. J Clean Prod 293:126119

    CAS  Google Scholar 

  • Singh D, Sharma AK, Dobriyal R, Paliwal V (2023, May) Experimental performance of flat plate solar collector using Al2O3-water nanofluid. In AIP Conference Proceedings, vol 2521, no 1. AIP Publishing

  • Sint NKC, Choudhury IA, Masjuki HH, Aoyama H (2017) Theoretical analysis to determine the efficiency of a CuO-water nanofluid based-flat plate solar collector for domestic solar water heating system in Myanmar. Sol Energy 155:608–619

    CAS  Google Scholar 

  • Su D, Jia Y, Alva G, Liu L, Fang G (2017) Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials. Energy Convers Manag 131:79–89

    CAS  Google Scholar 

  • Sundar LS, Kirubeil A, Punnaiah V, Singh MK, Sousa AC (2018) Effectiveness analysis of solar flat plate collector with Al2O3 water nanofluids and with longitudinal strip inserts. Int J Heat Mass Transf 127:422–435

    Google Scholar 

  • Suthahar SJ, Jaisankar S, Saravanan S (2022) Experimental investigation on solar flat plate collector using alumina nanofluid with tube inserts. Mater Technol 37(3):179–189

    CAS  Google Scholar 

  • Tagliafico LA, Scarpa F, De Rosa M (2014) Dynamic thermal models and CFD analysis for flat-plate thermal solar collectors–a review. Renew Sustain Energy Rev 30:526–537

    Google Scholar 

  • Thakur A, Kumar R, Kumar S, Kumar P (2021) Review of developments on flat plate solar collectors for heat transfer enhancements using phase change materials and reflectors. Mater Today: Proc 45:5449–5455

    CAS  Google Scholar 

  • Vakili M, Yahyaei M, Ramsay J, Aghajannezhad P, Paknezhad B (2021) Adaptive neuro-fuzzy inference system modeling to predict the performance of graphene nanoplatelets nanofluid-based direct absorption solar collector based on experimental study. Renew Energy 163:807–824

    CAS  Google Scholar 

  • Vengadesan E, Senthil R (2020a) A review on recent development of thermal performance enhancement methods of flat plate solar water heater. Sol Energy 206:935–961

    Google Scholar 

  • Vengadesan E, Senthil R (2020b) A review on recent developments in thermal performance enhancement methods of flat plate solar air collector. Renew Sustain Energy Rev 134:110315

    Google Scholar 

  • Verma SK, Tiwari AK, Tiwari S, Chauhan DS (2018) Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid. Sol Energy 167:231–241

    CAS  Google Scholar 

  • Verma SK, Gupta NK, Rakshit D (2020) A comprehensive analysis on advances in application of solar collectors considering design, process and working fluid parameters for solar to thermal conversion. Sol Energy 208:1114–1150

    CAS  Google Scholar 

  • Wang D, Huo X, Liu Y, Chen Y, Fan B, Xu T, Wang LL (2022) A study on frost and high-temperature resistance performance of supercooled phase change material-based flat panel solar collector. Sol Energy Mater Sol Cells 239:111665

    CAS  Google Scholar 

  • Wang D, Liu H, Liu Y, Xu T, Wang Y, Du H,... Liu J (2019) Frost and High-temperature resistance performance of a novel dual-phase change material flat plate solar collector. Solar Energy Mater Solar Cells 201:110086

  • Wei L, Yuan D, Tang D, Wu B (2013) A study on a flat-plate type of solar heat collector with an integrated heat pipe. Sol Energy 97:19–25

    Google Scholar 

  • Xiong Q, Hajjar A, Alshuraiaan B, Izadi M, Altnji S, Shehzad SA (2021) State-of-the-art review of nanofluids in solar collectors: a review based on the type of the dispersed nanoparticles. J Clean Prod 310:127528

    CAS  Google Scholar 

  • Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S (2012) An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew Energy 39(1):293–298

    CAS  Google Scholar 

  • Yu W, Xie H (2012) A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater 2012:1–17

    Google Scholar 

  • Yu W, Xie H, Chen L, Li Y (2010) Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method. Colloids Surf, A 355(1–3):109–113

    CAS  Google Scholar 

  • Zamzamian A, KeyanpourRad M, KianiNeyestani M, Jamal-Abad MT (2014) An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors. Renew Energy 71:658–664

    CAS  Google Scholar 

  • Zayed ME, Zhao J, Du Y, Kabeel AE, Shalaby SM (2019a) Factors affecting the thermal performance of the flat plate solar collector using nanofluids: a review. Sol Energy 182:382–396

    CAS  Google Scholar 

  • Zayed ME, Zhao J, Elsheikh AH, Du Y, Hammad FA, Ma L,... Sadek S (2019b) Performance augmentation of flat plate solar water collector using phase change materials and nanocomposite phase change materials: a review. Process Saf Environ Prot 128:135–157

  • Zhou F, Ji J, Yuan W, Zhao X, Huang S (2019) Study on the PCM flat-plate solar collector system with antifreeze characteristics. Int J Heat Mass Transf 129:357–366

    Google Scholar 

  • Zhu HT, Lin YS, Yin YS (2004) A novel one-step chemical method for preparation of copper nanofluids. J Colloid Interface Sci 277(1):100–103

    CAS  Google Scholar 

  • Zondag HA (2008) Flat-plate PV-Thermal collectors and systems: a review. Renew Sustain Energy Rev 12(4):891–959

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sriram Surya Kirampadi Sankar: writing original manuscript; Anish Murugan: writing original manuscript; Abdur Rahman: review and editing; Mohamed Illyas: review and editing; Rajendran Duraisamy Ramalingam: review and editing; Fausto Pedro Garcia Marquez: review and editing; Muthu Manokar Athikesavan: formal analysis and review and editing.

Corresponding author

Correspondence to Muthu Manokar Athikesavan.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankar, S.S.K., Murugan, A., Rahman, A. et al. Recent advancements in flat plate solar collector using phase change materials and nanofluid: a review. Environ Sci Pollut Res 30, 88366–88386 (2023). https://doi.org/10.1007/s11356-023-28790-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-28790-5

Keywords

Navigation